Geogebra

Ecuaciones por un tubo (polinómicas, racionales, radicales,… y sistemas de ecuaciones). 15 actividades y problemas resueltos paso a paso

Comparte MatemáTICas: 1,1,2,3,5,8,13,...

Buenos días, comenzando esta nueva semana, comparto este material que he ido elaborando para mi alumnado de Matemáticas 4ºESO, por si fuera de utilidad para tu trabajo en el aula o para compartir con tus alumnos.

Ya me contarás cómo te ha ido.

¡¡Saludos y a por el lunes!!

ECUACIONES POR UN TUBO · MATEMÁTICAS: 1,1,2,3,5,8,13,… de Luis Miguel Iglesias Albarrán

 

PDF con enlaces

Acceso a PDF para pulsar en los enlaces: ECUACIONES POR UN TUBO · MATEMÁTICAS 1,1,2,3,5,8,13,…

Acceso a Graspable Math con las 15 actividades resueltas

Acceso a las actividades resueltas paso a paso en Graspable Math

 

 

 

Comparte MatemáTICas: 1,1,2,3,5,8,13,...

Conferencia Magistral «Enseñar y aprender matemáticas en modalidad híbrida» en el XVI Congreso Internacional de Metodología de la Ciencia y de la Investigación para la Educación de México

Comparte MatemáTICas: 1,1,2,3,5,8,13,...

La Asociación Mexicana de Metodología de la Ciencia y de la Investigación, A. C. y la Universidad Guadalupe Victoria ha convocado a especialistas en metodología de la ciencia, en metodología de la investigación, en investigación científica y tecnológica, en investigación educativa, educadores, pedagogos, autoridades educativas, líderes y responsables de proyectos de investigación en centros educativos, científicos de la educación, tomadores de decisiones en el ámbito científico-educativo, padres de familia, estudiantes y a todo los interesados en la generación, uso y aplicación de las nuevas tendencias de la metodología de la ciencia, de la metodología de la investigación, de los lineamientos y políticas actuales de la educación a interactuar y dialogar en el espacio del 16º Congreso Internacional de Metodología de la Ciencia y de la Investigación para la Educación, que se ha realizado en Modalidad Híbrida (Presencial y en línea) en las instalaciones de la Universidad Guadalupe Victoria, en Multunchac, Campeche, Cam., México, del 26 al 28 de octubre de 2023, con el tema “Metodologías para el aprendizaje y el conocimiento en la Modalidad Híbrida” («Methodologies for learning and knowledge in the Hybrid Modality»).

 
Desde estas líneas agradezco la invitación recibida desde México, en la persona de D. Noel Ángulo primeramente y, por parte de, D. Ángel Eduardo Vargas Garza, como Coordinador General del Comité Organizador del citado Congreso, para impartir la Conferencia Magistral «Enseñar y aprender matemáticas en modalidad híbrida”.
 
 
‘La Asociación Mexicana de Metodología de la Ciencia y de la Investigación A. C., reconociendo su amplia trayectoria académica e interés en participar en la proyección de los profesionales de la Metodología de la Ciencia y de la Investigación Educativa, tiene el agrado de invitarle a participar en el “Décimo Sexto Congreso Internacional de Metodología de la Ciencia y de la Investigación para la Educación”, con la Video Conferencia Magistral: «Enseñar y aprender matemáticas en modalidad híbrida”.’

 

Ha sido un honor, un verdadero placer, compartir y aprender en este Congreso con centenares de colegas del contexto mexicano en particular, e iberoamericano en general. Por último quisiera destacar la excelente organización por parte de la AMCCI, de la Universidad Guadalupe Victoria, y el resto de entidades colaboradoras.

 
 

El pase de diapositivas requiere JavaScript.

Más contenido matemático en redes sociales

Comparte MatemáTICas: 1,1,2,3,5,8,13,...

Creamos nuestro Círculo Matemático Computacional (CMC) para trabajar el Pensamiento Computacional y la Resolución de Problemas. Proyecto Situaciones de Aprendizaje del MEFP

Comparte MatemáTICas: 1,1,2,3,5,8,13,...

Este curso 22/23 se ha implantado el nuevo currículo derivado de la implantación de la LOMLOE en los cursos impares (1º, 3º y 5º de Primaria, 1º y 3º de Secundaria y 1º de Bachillerato). A partir de septiembre se implantará en los pares, finalizando así dicha implantación. 

Uno de los nuevos paradigmas propuestos en el nuevo marco curricular son las Situaciones de Aprendizaje, que son situaciones y actividades que implican el despliegue por parte del alumnado de actuaciones asociadas a competencias clave y competencias específicas, y que contribuyen a la adquisición y desarrollo de las mismas.

Acompañando al desarrollo normativo se han realizado diferentes acciones. Entre ellas se ha establecido un itinerario formativo para el profesorado y se ha puesto en marcha el proyecto Situaciones de Aprendizaje, un proyecto que publicará en torno a 200 Situaciones de Aprendizaje de todas las etapas (desde Infantil a Bachillerato) y de todas las materias. 

He tenido la suerte de participar en este bonito proyecto de Recursos Educativos Abiertos (REA), concretamente en el grupo de trabajo de Matemáticas,  con la elaboración de una de las Situaciones de Aprendizaje la cual espero sea de utilidad, si no ya para el presente curso, que está tocando a su fin, para el curso que viene. 

Creamos nuestro Círculo Matemático Computacional (CMC)

Situación de Aprendizaje: Creamos nuestro Círculo Matemático Computacional (CMC)

 

 

Situaciones de Aprendizaje de Matemáticas

Con la excelente coordinación por parte de José Luis Muñoz Casado, hemos trabajado el siguiente equipo de Matemáticas:

  • Julio Rodríguez Taboada
  • Antonio Moreno
  • Ester Solves
  • María Ángeles Portilla
  • José Rafael Viana Sánchez
  • Luis Miguel Iglesias
  • Claudia Lázaro
  • José María Vázquez
  • Laureano Serrano Muñoz
  • Lluis Bonet
  • Pilar Sabariego
  • Berta Sánchez García
  • Carmen Lahiguera Serrano
  • Pablo Peñalver Alonso
  • Francisco Zapatero Sánchez

Todas las Situaciones de Aprendizaje de Matemáticas pueden ser localizadas accediendo a a la web del proyecto y filtrando (marcando la casilla Matemáticas). 

Aunque no soy objetivo por ser parte del proyecto, os recomiendo encarecidamente visitar y conocer las Situaciones de Aprendizaje de Matemáticas, y del resto de materias elaboradas, y os animo a adaptarlas y llevarlas a vuestras aulas. 

Acceder a la web del Proyecto y activa el filtro «Matemáticas» https://intef.es/recursos-educativos/situaciones-aprendizaje/

 

Proyecto Situaciones de Aprendizaje MEFP

Acceder a la web del Proyecto: https://intef.es/recursos-educativos/situaciones-aprendizaje/

 

¿Qué se ofrece?

Una colección de situaciones de aprendizaje y otros materiales didácticos de naturaleza competencial creados por docentes en activo, para Educación Infantil, Educación Primaria, Educación Secundaria Obligatoria y Bachillerato. Todos ellos se publican con una licencia abierta (Creative Commons Reconocimiento-CompartirIgual 4.0) e incluyen el archivo fuente para su descarga y posible edición posterior.

Información curricular

Estos materiales se han diseñado conforme a los objetivos, competencias, criterios de evaluación y saberes básicos fijados en el Real Decreto 95/2022, de 1 de febrero, por el que se establece la ordenación y las enseñanzas mínimas de la Educación Infantil, el Real Decreto 157/2022, de 1 de marzo, por el que se establecen la ordenación y las enseñanzas mínimas de la Educación Primaria, el Real Decreto 217/2022, de 29 de marzo, por el que se establece la ordenación y las enseñanzas mínimas de la Educación Secundaria Obligatoria y el Real Decreto 243/2022, de 5 de abril, por el que se establecen la ordenación y las enseñanzas mínimas del Bachillerato.

Información técnica (eXeLearning)

Todos los materiales se han elaborado con la herramienta eXeLearning, un editor de recursos educativos interactivos, gratuito y de código abierto, lo que hace posible que cualquier usuario los pueda descargar y utilizar -con o sin conexión-, así como editar para adaptarlos a sus necesidades. Ofrece, asimismo, la ventaja de que permite exportar los contenidos a diferentes formatos estándar para su utilización en entornos web (html) o en plataformas de gestión de contenido educativo (SCORM) como Moodle y otros LMS.

 

Currículo básico Matemáticas Secundaria LOMLOE

Comparte MatemáTICas: 1,1,2,3,5,8,13,...

Instrumento para la evaluación competencial. Diana de evaluación y metacognición con Geogebra

Comparte MatemáTICas: 1,1,2,3,5,8,13,...

A estas alturas, como docentes de matemáticas, es de sobra conocido el potencial didáctico de la herramienta Geogebra. El límite a lo que podamos hacer con ella depende, no de la herramienta en sí, sino más bien de nuestra creatividad y de nuestra capacidad técnica.

En esta entrada os presento un uso de Geogebra un tanto diferente al habitual. En este caso la he usado para elaborar un instrumento de evaluación, concretamente una diana de aprendizaje o diana de evaluación y metacognición. La misma la elaboré en el marco del Proyecto REA/DUA Andalucía, proyecto bellísimo y superpotente de creación de Recursos Educativos Abiertos (REA) según los principios del Diseño Universal de Aprendizaje (DUA), en el que tengo la fortuna de participar desde el rol de Coordinador Técnico, junto a más de 200 compañeros y compañeras docentes de Andalucía. Si aún no lo conoces te animo a visitarlo, explorar y compartir las más de 250 situaciones de aprendizaje disponibles, adaptadas al nuevo marco curricular derivado de la implantación de la LOMLOE, con licencia Creative Commons.

Vídeo: Diana de evaluación y metacognición con Geogebra

Diana de aprendizaje de evaluación y metacognición

A continuación os dejo un fragmento de un excelente post publicado por Ingrid Mosquera en el sitio web del Máster Universitario en Formación del Profesorado de Secundaria de la UNIR (https://www.unir.net/educacion/revista/dianas-de-aprendizaje-que-son-y-para-que-sirven/). Recomiendo su lectura completa, además de otros posts de la serie relacionados con las dianas digitales.

¿Qué es una diana de evaluación?

Se puede decir que es un sistema visual, rápido y sencillo de llevar a cabo un aprendizaje participativo. Una participación que puede darse en todos los estadios de su empleo, desde la propia elaboración de la misma hasta el debate sobre los resultados obtenidos. Suele definirse como una posible representación gráfica de una evaluación que nos conducirá a la reflexión a partir de una única imagen que aglutina diferentes informaciones. Es el visual thinking de las evaluaciones, por usar terminología actual.

El dibujo o la plantilla de una diana consiste en círculos concéntricos que, de dentro hacia fuera, indican el nivel de cumplimiento o de adaptación a cada uno de los ítems incluidos. Alrededor del círculo más amplio tendremos los nombres de los ítems y para cubrir la diana iremos indicando el número que corresponde en cada uno de ellos. Así, al final, uniendo los puntos, obtendremos lo que se viene denominando como mapa de evaluación.

Aquí podemos ver un ejemplo sencillo en el que únicamente una persona participa, reflexionando sobre sus propias capacidades lingüísticas:

autoevaluacion

Dianas de evaluación y metacognición

La diana puede servir para autoevaluarse, para coevaluar a otros compañeros, para valorar el trabajo en grupo o para que los estudiantes puedan calificarnos como docentes. A menudo suelen emplearse para evaluar las actitudes y la participación del alumnado. Dependiendo del objetivo último para la que se elabore, muchos de los puntos presentados en la enumeración anterior vendrán determinados de antemano.

 

Como elemento de autoevaluación, las dianas contribuirán al desarrollo de la metacognición de nuestros alumnos. Igualmente, una autoevaluación, como la presentada en la imagen previa, puede ser comparada con la coevaluación y autoevaluación de otros compañeros, o con la propia evaluación del docente. De esta manera, de un solo vistazo, se podrá abrir un interesante debate en el que los alumnos podrán reflexionar acerca de las percepciones que tienen sobre su propio aprendizaje.

 Diana de evaluación y metacognición en Geogebra.org


Acceso a la diana de evaluación en Geogebra.org

 

Espero que sea de utilidad para ti y para tus estudiantes y le saquéis mucho partido en el aula.

Más contenido matemático en redes sociales

Comparte MatemáTICas: 1,1,2,3,5,8,13,...

El problema viral del corte del sandwich, por elrubius @Rubiu5. Ricas y variadas estrategias de resolver un problema usando distintos saberes

Comparte MatemáTICas: 1,1,2,3,5,8,13,...

Os comparto este tweet viral de elrubius (@Rubiu5) que, más allá de comentarios sin sentido, divertidos y jocosos; así como soluciones correctas y erróneas, nos muestran variadas e interesantes maneras de abordar este problema cotidiano.

El problema es el siguiente:

He tomado algunas respuestas, con diferentes y variados acercamientos, haciendo uso de diferentes estrategias y saberes (contenidos) para resolverlo.

  1. Análitico (integrales),
  2. Cálculo de área (rectángulo y triángulo)
  3. Área y perímetro
  4. Cálculo de áreas de forma manipulativa, por descomposición y recomposición, usando las propiedades de la medida.

1. Un acercamiento usando integrales (Alon @alonsozazo)

2. Caso particular, área de rectángulos y triángulos (Justine@Im_Justnx)

3. Área y perímetro… y ‘sensación de más grande’ (Kimel @Kimel_Kobol)

4. Áreas, descomposición y recomposición (? @aressatxn)

Como se observa en esta selección de ejemplos que he realizado, aunque os animo a seguir el hilo de respuestas para analizar otras, se puede resolver un problema de múltiples maneras y movilizando saberes (contenidos) de los distintos sentidos matemáticos (bloques de contenidos).

Gracias, elrubius (@Rubiu5), por viralizar las matemáticas y propiciar este rico escenario de aprendizaje 😉

Comparte MatemáTICas: 1,1,2,3,5,8,13,...

MatemáTICas: 1,1,2,3,5,8,13… cumple 13 años en la red

Comparte MatemáTICas: 1,1,2,3,5,8,13,...

Hoy es un día especial para quien escribe ya que, tal día como hoy, hace 13 años (14 de marzo de 2009), en el hueco que gentilmente me cedieron los compañeros de Profeblog, escribía los primeros renglones de mi libro virtual matemático; MatemáTICas: 1,1,2,3,5,8,13,…  

Pastel de cumpleaños con vela rosa número 13 en backgraund azul prendido fuego por encendedor. vista de primer plano | Foto Premium

Fuente: Freepik

Lo bauticé con este nombre, en honor a una de las sucesiones más conocidas de la matemática, la sucesión de Fibonacci

File:Fibonacci sequence - starting with zero.jpg

File:Fibonacci blocks.svg

Fuente: Wikimedia commons

Llegó a este mundo cuando ya incluso anunciaban la muerte de los blogs. Ya veis que no hice mucho caso a tales rumores :-). Lo tenía claro. Necesitaba un espacio que complementara mis clases, un rincón que apostase de manera clara por la inclusión de la tecnología en la práctica educativa, en mis clases de matemáticas. Un lugar en la red donde centralizar los materiales didácticos que fuese elaborando para mis alumnos. Ese sitio, ese lugar, ese espacio debía de ser un blog, este blog.

Y claro, no podía ser de otra forma. Su fecha de lanzamiento, el día de Pi #díadePi o #Piday, por aquello del inglés, 3/14 (14 de marzo). Mi primer post, un modesto y tímido, Bienvenid@ . La 40ª Conferencia General de la UNESCO proclamó el 14 de marzo de cada año como el Día Internacional de las Matemáticas en noviembre de 2019 (40C/Resolución 30).

Por este motivo, hoy, la comunidad matemática mundial también está de celebración, aunque no podamos hacerlo como quisiéramos y nos gustaría. El mundo y especialmente Europa está viviendo días negros por la invasión de Ucrania a manos de Rusia. Si no tuvimos bastante con la COVID-19, la tragedia humanitaria causada por esta violación de las fronteras de un país y de los derechos humanos nos tiene bastante apenados y sonrojados, al ver día tras día a través de los medios de comunicación la barbarie que la especie humana pude llegar a cometer. Desde estas líneas, todo mi apoyo y fuerza al pueblo ucraniano.

Mucho ha llovido desde aquel 14/03/2009. El termino competencia digital había realizado su incursión junto al resto de Competencia Básicas de la LOE (Ley Orgánica de Educación, 2006). Los docentes que usábamos los blogs como medio para ampliar nuestra aula física, lo que hoy sería un entorno blended-learning, lo hacíamos a voluntad propia y éramos considerado una especie un tanto singular. Recuerdo aquella mesa de debate en el primer EABE (Encuentro Andaluz de Blogs Educativos) donde en la mesa de trabajo simultánea ya hablamos del reconocimiento de la competencia digital. ¡Qué cosas se nos ocurrían! 😉

13 años más tarde, dos nuevas leyes educativas LOMCE (2013) y LOMLOE (2020), celebro que Europa y España lo tengan claro, y con un buen marco de la Competencia Digital Docente elaborado por INTEF con colaboración de las comunidades, habrá un proceso certificador y acreditador de la competencia a través de actividades formativas alineadas con dicho marco, que se desencadenará en nuestro país en próximas fechas. La Educación de hoy día no se concibe sin Tecnología, y en Matemáticas son imprescindibles para Enseñar y para Aprender.

Iglesias-Albarrán, Luis M. Enseñanza y aprendizaje de las matemáticas en la era digital. Ambientes de aprendizaje mediados por TIC,SCOPEO MONOGRÁFICO Nº4: e-MatemáTICas,,4,41-80,2012,Universidad de Salamanca. Servicio de Innovación y Producción Digital

 

Desde aquel día, reconocimiento del ITE, ahora INTEF, como Buena Práctica 2.0 por la inclusión de las TIC en la práctica educativa,  muchas vivencias, reconocimientos en certámenes y otras muy buenas experiencias profesionales a través de las cuales he conocido, compartido y descubierto grandes compañeros/as de viaje, más de 500 entradas publicadas, multitud de materiales de elaboración propia o recopilados, material de conferencias, jornadas de trabajo en las que he participado, artículos publicados en revistas o reseñas de colaboraciones en libros, más de 6 millones de visitas,… hacen que hoy deba daros las GRACIAS, y confirmar que seguiré viniendo por aquí mientras tenga fuerzas, a compartir cada vez que tenga o sea capaz de encontrar la manera de hacer un hueco para escribir y publicar sobre Matemáticas (con Tecnología): MatemáTICas.

Para terminar os dejo con tres vídeos sobre Pi y dos poemas. Espero que os guste.

Vídeo: ¿Para qué sirve el número Pi? BBC Mundo

 

Vídeo: El número Pi Canal encuentro Adrián Paenza

Vídeo: Spock («Star Trek») desactiva una computadora malvada pidiéndole que calcule el último dígito de Pi :-). Fuente: Mathigon

 

Poema: El número Pi (Wislawa Szymborska, Premio Nobel de Literatura 1996). Fuente: Yosoytuprofe

El admirable número Pi
tres coma uno cuatro uno.
Las cifras que siguen son también preliminares
cinco nueve dos porque jamás acaba.
No puede abarcarlo seis cinco tres cinco la mirada,
ocho nueve ni el cálculo
siete nueve ni la imaginación,
ni siquiera tres dos tres ocho un chiste, es decir, una comparación
cuatro seis con cualquier otra cosa
dos seis cuatro tres de este mundo.

La serpiente más larga de la tierra suma equis metros y se acaba.
Y lo mismo las serpientes míticas aunque tardan más.
El séquito de dígitos del número Pi
llega al final de la página y no se detiene,
sigue, recorre la mesa, el aire,
una pared, una hoja, un nido de pájaros, las nubes, hasta llegar
directo al cielo,
perderse en la insondable hinchazón del cielo.
¡Qué breve la cola de un cometa, cual la de un ratón!
¡Qué endeble el rayo de un astro si se curva en la insignificancia
del espacio!

Mientras aquí dos tres quince trescientos diecinueve
mi número de teléfono la talla de tu camisa
el año mil novecientos sesenta y tres sexto piso
el número de habitantes sesenta y cinco céntimos
dos pulgadas de cintura una charada y un mensaje cifrado
que dice vuela mi ruiseñor y canta
y también se ruega guardar silencio,
y se extinguirán cielo y tierra,
pero el número Pi no, jamás,
seguirá su camino con su nada despreciable cinco
con su en absoluto vulgar ocho
con su ni por asomo postrero siete,
empujando, ¡ay!, empujando a durar
a la perezosa eternidad.

Poema: El número  π (A Pilar Bayer y A F Walter May). Fuente: Repoelas


3

 

1

 

4

 

1

5

 

 

9

 

 

 

 

2

 

6

 

 

5

 

 

3

 

5

 

 

8

 

 

 

 

9

 

 

 

 

7

 

 

 

9

 

 

 

 

3

 

2

3

 

8

 

 

 

4

 

 

6

 

 

2

 

6

 

 

 

4

 

3

 

3

 

8

 

 

 

3

 

2

 

7

 

 

 

9

 

 

 

 

5

 

0

2

 

8

 

 

 

8

 

 

 

4

 

1

 

 

9

 

 

 

 

7

 

1

 

6

 

 

9

 

 

 

 

3

 

9

 

 

 

 

9

 

 

 

 

3

 

7

 

 

 

 

5

 

1

0

5

 

8

 

 

 

2

 

9

 

 

 

 

7

 

 

 

4

 

 

9

 

 

 

 

4

 

 

4

La longitud de la circunferencia,
la longitud del diámetro:
¡qué fuerza su cociente,

siempre el mismo, constante, eterno!,

tres coma catorce,
tres coma catorce dieciséis,
primeros balbuceos de un río infinito
de decimales sin período, siempre nuevos,

único e infinito, único y diverso,

tres coma catorce,
el recuerdo escolar de tantos cálculos,
tres coma catorce dieciséis,
el recuerdo de números en clave,
como barcos en un puerto,

humeantes, a punto de partir
río abajo, mientras el agua fluye
hecha números y caricia,
y el lomo de los cocodrilos de las preguntas
que van haciendo los matemáticos
anuncia ya todo tipo de peligros:
es fácil que una de ellas os pille
en sus mandíbulas plagadas de agudezas
y os arranque años de vida con un problema,

el área del círculo
Dividida por el cuadrado del radio

seductor, desafiante,
muy difícil de resolver,
pero tan atractivo que ni siquiera os déis cuenta
de que estáis quemando en él la vida,
de tan adentro como os ha entrado
aquella pregunta que tan pocos pueden comprender,

y los cinco sentidos se ponen al acecho
de algo que desborda los sentidos,
de las extrañas propiedades de un número
llamado irracional y que desborda la razón,
pero que está en el fondo de la razón del universo.

El primer problema: calcularlo,
obtener más y más decimales,
escalar un monte de decimales,

penetrando cada vez más en un mundo
que ya no pertenece al universo de la medida
–si medís las longitudes
de circunferencias reales, de diámetros reales,
y obtenéis su cociente,

sólo hallaréis dos decimales, tres decimales,
quizás cuatro decimales del número ?
(lo que de él sabían los egipcios):
los otros quedarán más allá
de los límites de la precisión de la medida-;
una definición, pues, que parece tan simple,
–un cociente de dos longitudes que estáis viendo
dibujadas en el papel–

y lleva, en cambio, a un desbordamiento de decimales.
¿Y cómo han calculado tantos decimales?
Durante más de dos mil quinientos años,
los que se atrevieron a embarcarse en la aventura,
siguiendo los pasos del gran Arquímedes,
inscribían polígonos en un círculo,
decágonos, dodecágonos, pentadecágonos,
polígonos de más y más lados,
y calculaban su perímetro

y lo dividían por el diámetro del círculo circunscrito;
naturalmente, cuanto más lados,
más se aproxima el polígono a la circunferencia
y más precisión se consigue en los decimales,
pero también encontraban
más y más dificultades;
parece duro, lo sé,

parece árido, lo sé,
pero también sé ver los atractivos
de navegar por un río en una selva espesa,
sin saber cómo será su curso un poco más allá,
ahora lento –decimales pequeños–,
ahora rápido –decimales grandes–,
siempre fluyente pero siempre impredictible:
¿cuál será el siguiente decimal?
¿Valdrá dos?, ¿valdrá cinco?, ¿valdrá nueve?

no hay manera de saberlo,
salvo que hagáis el cálculo;
¿cuál será el valor del decimal quinquagésimo?

el área de la esfera
dividida por cuatro veces el cuadrado del radio,

no hay otra manera de saberlo
que hacer todos y cada uno de los cálculos
que conducen hasta este decimal,

es decir, calcular todos los decimales anteriores
sin saltarse ni uno
–como en el tiempo de nuestra vida:
no hay otra manera de saber
lo que pasará dentro de un año
que vivir día a día todo el año,
hora a hora, minuto a minuto todo el año,
un tiempo, pues, diferente del tiempo de los astros,

predictible a largo término.
Pero sigamos con los decimales del número ?:
el método de los polígonos se hace largo y fatigoso:
¿habría manera de hallar un camino más rápido?

John Wallis, hacia mil seiscientos ochenta,
encuentra (en Oxford) que ? puede ser expresado
-tomad nota-
como el doble del producto de los cuadrados
de todos los números pares
dividido por el producto de los cuadrados

el volumen de la esfera
dividido por cuatro tercios del cubo de su radio,

de todos los números impares;
parece misterioso, lo sé,
no es evidente, ni fácil de demostrar,
pero es un salto, ¿no lo véis?:
hemos pasado, por primera vez en dos mil años,
de la geometría a la aritmética,

vemos el número ? con una luz diferente,
nos cuesta reconocer en este cociente
de productos de números
aquel cociente de longitudes inmediatas,

tan directamente visibles y sensibles,
y ahora nos parece arisco y misterioso,
pero su cálculo se ha hecho más fácil,

más y más decimales;
el proceso se acelera todavía más
cuando se hallan otras formas aritméticas

de escribir el número π, :
como suma de potencias,
como suma de inversos de potencias,
como raíz de sumas de inversos de potencias…
Pero se necesita, para eso,
afinar los instrumentos de las matemáticas,
inventar las derivadas,
inventar las integrales

–¿inventar o descubrir?:
observad que son conceptos diferentes
que suponen, también, ideas muy diversas

dos veces el producto de los cuadrados de todos los pares
dividido por el producto de los cuadrados de todos los impares

sobre qué son los números y la mente–,
inventar series de Taylor,
inventar series de Fourier,
inventar muchos otros procedimientos
que no quiero mencionar para evitar
que este escrito deje de ser lo que quiero:
un poema, en cierta forma, y no una lección

de matemáticas o historia
–por eso no hablo de otras propiedades
del número π, como la transcendencia,
ni doy ningún detalle de lo que digo.
No hablo de fórmulas concretas,
sino de emociones que he sentido,
y que antes que yo han sentido muchos otros,
y que sentirán muchos otros cuando yo ya no esté,
emociones de belleza y de vértigo

de viaje y de aventura,
de esfuerzo, de derrota, de victoria,
de rebeldía, de perseverancia,
de fusión con el mundo y de lejanía del mundo,
que algún día también sentiréis vosotros

el área de la elipse,
dividida por el producto de sus ejes,

si pensáis, con detalle, en este número
o en otros números que le son familiares
–la raíz cuadrada de dos, por ejemplo,
es decir, el cociente de la diagonal
y el lado de un cuadrado,
cociente irracional
que amargó la vejez de Pitágoras,
quien había enseñado que el mundo

estaba hecho de números puramente racionales
–pero ¡qué ironía, que dos formas,
el círculo y el cuadrado, que encontramos por doquier,
rehúsen expresarse en estos números!.
Pero podéis preguntaros otras cosas
que cuál será el siguiente decimal:
con los ordenadores, el proceso se ha acelerado
enormemente y conocemos ya

miles de decimales,
en lugar de los quinientos a que se había llegado
con el ingenio y las fuerzas estrictamente humanas;
así, pues, suponed que ya tenemos

miles de decimales,

todos ellos irrelevantes a efectos prácticos,
salvo los cinco primeros o, como máximo,
de los quince o veinte primeros, hilando fino.
Os podéis preguntar por la abundancia
relativa de las diversas cifras:
la del uno, la del dos, la del tres, la del cuatro,
la del cinco, la del seis, la del siete, la del ocho,
la del nueve, la del cero.
Pues bien: se comprueba –pero mucho antes

de que esto hubiera sido comprobado ya lo había demostrado
Borel y otros matemáticos–
que la abundancia relativa de las diversas cifras
es la misma,
que la abundancia relativa de todos los grupos de dos cifras
–quince, veintitrés, noventa y cinco, por ejemplo–
es la misma

que la abundancia relativa de todos los grupos de tres cifras

–ciento veintiuno, quinientos veintitrés, pongamos por caso-
es la misma,
y así sucesivamente para grupos
de más y más cifras;
en otras palabras: es seguro
que en los decimales de π, encontraréis la fecha

de vuestro nacimiento
(23-10-1953, en mi caso,
o bien 31-4-1592, si nos fijamos
en las siete primeras cifras de pi)
y también la fecha de vuestra muerte
(que no sabréis reconocer,
como en mi caso),
y vuestro número de teléfono;
más aún: si designamos las letras mediante números

–1 la A, 2 la B, 3 la C, 4 la D
y así sucesivamente–
sabed desde ahora que vuestro nombre está escrito

en los decimales del número π, ,
y que en algún lugar del número π, podéis hallar,
juntos, vuestro nombre y el de vuestro amor
y el nombre de vuestros hijos,
y las fechas del nacimiento y de la muerte
de cada uno de vosotros
Es vertiginoso, ciertamente, pero he de decir
que al lado de vuestro nombre también está escrito
el nombre de cualquier hombre o mujer

que hayan existido o que nunca existirán:
es, pues, vertiginoso y fútil:
está toda vuestra historia
pero también todas las otras posibles historias
que habríais podido vivir,
todos los otros amores
que hubierais podido tener,
de manera que lo dice todo y nada,
como algunos oráculos antiguos,

o como pasa a menudo cuando se habla demasiado.
Si miráis el número π, después de haber leído
este poema, os parecerá, quizás, vertiginoso,

como un pozo sin fondo, como un infinito
que se despliega ilimitadamente delante vuestro,
pero moriréis antes de haber podido leer
una mínima parte de sus decimales.
En el número π, hay el reposo y el movimiento
(como en el círculo),
la eternidad y el tiempo

(como en Dios),
la finitud y la infinidad
(como en el universo),
la armonía y el caos
(como en el mundo):

una definición breve y precisa,

y una inacabable sucesión de decimales
que no repiten su orden en ningún período.
Pero hay casos aún más inquietantes:
números que no es posible definir,
ristras infinitas de decimales

colocados al azar, al puro azar,
números, pues, que nunca podréis reducir
a una definición breve y concisa,
como π, o raíz de dos,
sino números que son movimiento sin reposo,
caos sin armonía, tiempo sin eternidad,
números que ni tan sólo podemos pronunciar,
números que nos recuerdan que el mundo es inefable,

la longitud de la circunferencia
dividida por dos veces el radio

y por eso conviene que, de vez en cuando,
la poesía hable de esta clase de números
que comparten con ella los límites del lenguaje,
y quien sabe si del mundo,
tal como los números hablan en ella
mediante los acentos, las sílabas, las estrofas.
O quizás son números que no pueden existir
si es que el mundo, en el fondo, es palabra
–no nuestra, claro está, sino de un Dios

que hubiera querido hacerse palabra a la medida
de nuestra limitada capacidad de escucha–,
pero esto nos conduciría a otros derroteros
–los de Dios y de su presencia
en el mundo y en nosotros–
que convendría no esquivar como lo hacemos,
tan desdeñosamente, en estos tiempos.

Pero me detengo aquí
y doy por acabado este poema
–de hecho, inacabado y discursivo–,
sabiendo, empero, que el número π, sigue,

caudaloso como todos los ríos a un tiempo,
con más cifras que gotas el Nilo o el Ganges,
el Volga o el Amazonas,
con más cifras que granos de arena
hay en todas las playas de la Tierra,
con más cifras que átomos hay
en todos los planetas del sistema solar,
y rehusando siempre un orden claro y repetitivo,
como un río espumoso y turbulento, infinito,

pero también lento, sutil, discreto,
modesto en su apariencia
pero con más propiedades que oro hay
en las minas del mundo,

o hasta que Dios se canse de él y diga basta,
y haga terminar el universo por la fatiga
de tener que soportar números como éste,
el número π.

(GRACIAS)^∞

Más contenido matemático en redes sociales

Comparte MatemáTICas: 1,1,2,3,5,8,13,...

Busca tu fecha de nacimiento, fecha destacada o tu número favorito entre los decimales del número Pi

Comparte MatemáTICas: 1,1,2,3,5,8,13,...

Como es bien conocido, el número Pi (π) = 3.14159265359… , se obtiene al dividir el perímetro del cualquier círculo entre su diámetro, sin importar el tamaño del círculo.

Podéis comprobarlo vosotros mismos pulsando en el botón de reproducir (play) en el siguiente applet que elaboré hace unos años para una experiencia de aula que desarrollé con mis alumnos de 2º de ESO.

Applet Descubriendo el número Pi · Geogebra.org

Es de las constantes más famosas y tiene un papel fundamental en las matemáticas, hasta el punto que la UNESCO declaró el 14 de marzo (3/14, en inglés) como Día Internacional de las Matemáticas.

π es un número irracional, esto es, no se puede calcular como la división de dos números enteros. A diferencia de los números racionales, la expresión decimal de cualquier número irracional es infinita y no se repite nunca. π tiene tantos decimales diferentes que puedes encontrar la fecha de tu nacimiento, fecha de una efeméride o tu número favorito escrita entre los decimales del número Pi.

A continuación comparto dos aplicaciones para jugar y divertirnos un rato:

Aplicación de Mathigon 

Hace unas horas publiqué en Twitter:

Dígitos de Pi. Busca tu fecha de nacimiento, fecha favorita, número… en el primer millón de decimales del número #PiDay con este aplicativo de @MathigonOrg

Ejemplo: 1-1-1986 mathigon.org/step/circles/p

una aplicación de Mathigon donde puedes buscar entre el primer millón de decimales de Pi.

Pulsa en la imagen para acceder:

https://mathigon.org/step/circles/pi-digits

 

Aplicación de la Sociedad Matemática Mexicana 

Excelente aplicación, descubierta gracias a @_trastoy al responder a mi tuit anterior. Realiza búsquedas de cadenas de 6 dígitos más allá del primer millón de decimales.

Elaborado por Sociedad Matemática Mexicana · Instituto de Matemáticas de la UNAM para la celebración del Día de Pi

Espero que las disfrutéis y la compartáis entre vuestras amistades… ¡Que fluya la matemática en las redes! 🙂

Más contenido matemático en redes sociales

Comparte MatemáTICas: 1,1,2,3,5,8,13,...

Objetos digitales interactivos para la Enseñanza y el Aprendizaje de la Matemáticas gracias a la comunicación entre Descartes JS y Geogebra

Comparte MatemáTICas: 1,1,2,3,5,8,13,...

Captura de pantalla del objeto interactivo Triángulo 3D

En esta primera entrada del año comparto unos atractivos objetos interactivos fruto de la comunicación entre dos excelentes herramientas de autor para la enseñanza y el aprendizaje de la matemática: DescartesJS y Geogebra.

Los objetos interactivos que muestro a continuación han sido extraídos de un libro digital interactivo elaborado con la herramienta iCartesiLibri por Juan Guillermo Rivera Berrío, docente de la Institución Universitaria Pascual Bravo, miembro destacado de la Red Educativa Digital Descartes.

Este libro se ha desarrollado para explicar cómo se pueden diseñar objetos interactivos que incluyan dos herramientas de autor. La primera herramienta es Descartes en su versión JavaScript, la cual permite incluir diferentes elementos multimedia (imágenes, gráficas 2D y 3D, videos, audios, animaciones, textos y expresiones matemáticas en formato LaTeX). La segunda herramienta es GeoGebra, que complementa la primera al permitir desarrollar escenas interactivas con la incorporación del cálculo simbólico (CAS), una gran variedad de funciones (matemáticas, estadísticas, lógicas, financieras, entre otras) y, obviamente, la Geometría y Algebra que dieron origen a su nombre.

Antes de mostrar los objetos quiero trasladar mi felicitación por el excelente trabajo realizado durante casi 10 años como «Red Educativa Digital Descartes» (RED Descartes) y durante 23 años desde el inicio del Proyecto Descartes, el cual sigue dando extraordinarios frutos como se puede ver a continuación, en forma de regalo adelantado de Reyes Magos, para poder sacarle partido en nuestras aulas a partir de la próxima semana.

Interactuando con GeoGebra desde DescartesJS

Interactuando con GeoGebra y DescartesJS

Libro digital interactivo: Comunicación DescartesJS-Geogebra

Acceso al libro interactivo Comunicación DescartesJS-Geogebra

Todos los objetos mostrados pertenecen al siguiente libro interactivo el cual se ha desarrollado para explicar cómo se pueden diseñar objetos interactivos que incluyan dos herramientas de autor. La primera herramienta es Descartes en su versión JavaScript, la cual permite incluir diferentes elementos multimedia (imágenes, gráficas 2D y 3D, videos, audios, animaciones, textos y expresiones matemáticas en formato LaTeX). La segunda herramienta es GeoGebra, que complementa la primera al permitir desarrollar escenas interactivas con la incorporación del cálculo simbólico (CAS), una gran variedad de funciones (matemáticas, estadísticas, lógicas, financieras, entre otras) y, obviamente, la Geometría y Algebra que dieron origen a su nombre. En él se muestra de manera minuciosa y detalla el proceso de construcción de los mismos.

Más contenido matemático en redes sociales

Comparte MatemáTICas: 1,1,2,3,5,8,13,...

Proyecto MatesGG, Matemáticas con GeoGebra. Centenares de materiales seleccionados listos para usar en tu aula

Comparte MatemáTICas: 1,1,2,3,5,8,13,...

En esta entrada comparto información acerca de un atractivo y valioso proyecto para el aula de Matemáticas. Se trata de MatesGG, un proyecto de gran utilidad para el profesorado de matemáticas, el cual contiene una amplia selección de contenidos digitales de calidad listos para usar en nuestras clases de matemáticas. A partir de cada material se ha elaborado una guía didáctica. A continuación describo aspectos del mismo, el cual os animo a utilizar y a integrar desde ya en vuestra ‘maleta de recursos didácticos’.

Destacar además que todas los recursos seleccionados y las guías correspondientes elaboradas (386 hasta la fecha de esta publicación), son materiales en abierto, con licencia de autor CC BY SA, resaltando además como valor añadido que el trabajo ha sido desarrollado por compañeros especialistas en la materia.

Como consumidor y elaborador de recursos digitales con Geogebra desde hace unos cuantos años ya, amante y convencido de la bondad de los proyectos institucionales de Recursos Educativos Abiertos solo puedo mostrar mi agradecimiento y satisfacción al ver hecho realidad un proyecto como este. Vaya desde estas líneas, mi felicitación al Área de Recursos Educativos Digitales del INTEF y a la FESPM por idear y hacer posible este proyecto, así como a todos los compañeros que han trabajado y seguirán trabajando en la selección de recursos y en la elaboración de las guías.

Sobre el proyecto MatesGG

El proyecto “MatesGG” ha sido desarrollado por la Federación Española de Sociedades de Profesores de Matemáticas (FESPM) en colaboración con el Instituto Nacional de Tecnologías Educativas y de Formación del Profesorado (INTEF).

MatesGG, Matemáticas con GeoGebra, es un espacio en el que se pone a disposición del profesorado una selección de materiales elaborados con la herramienta GeoGebra a través de unas guías didácticas creadas con la herramienta de autor eXeLearning.

En estas guías, el profesorado encontrará información detallada sobre el recurso:

  • información curricular
  • propuestas de uso
  • material complementario
  • el archivo fuente de la guía (gracias al cual podremos editar, modificar y adaptar la guía a nuestras necesidades)
  • así como el propio recurso en modo interactivo.

Ejemplo: Aspecto de una de las guías didácticas, elaborada a partir del recurso Coordenadas cartesianas del usuario jefedo61

Introducción. Justificación del proyecto

La situación por la que la sociedad está pasando desde hace más de un año, y en concreto la escuela, que se ha encontrado con un cambio radical en el modelo de enseñanza que ha afectado a todos los niveles educativos, es lo que ha llevado a la Federación Española de Sociedades de Profesores de Matemáticas (FESPM) con el apoyo del Instituto Nacional de Tecnologías Educativas y de Formación del Profesorado (INTEF),  a plantearnos el ayudar al profesorado facilitándole los recursos necesarios y que además, estos sean de utilidad para el  alumnado y sus familias para afrontar esta situación.

Esta ayuda en forma de materiales no solo servirán para su uso en una enseñanza virtual sino también serán de utilidad para el aula, en el modelo presencial o en su caso en un modelo híbrido.

Los materiales que ponemos a disposición del profesorado están basados en el uso de la herramienta GeoGebra, debido a las posibilidades que ofrece, ya que consideramos que desde hace años este software se ha convertido en un recurso que podemos considerar imprescindible para cualquier docente que desee utilizar las TIC, a lo que ha contribuido en parte su sencillez en cuanto al aprendizaje y manejo, así como la cantidad de materiales creados y compartidos por los millones de usuarios.

La gran cantidad de materiales existentes elaborados con GeoGebra, es una ventaja para cualquier usuario, pero también una dificultad ya que requiere de un tiempo de búsqueda y selección del material apropiado que no siempre resulta fácil y rápido, por lo que, para solventar estas dificultades, seleccionamos materiales ya existentes, contrastando su utilidad y posibilidades didácticas, elaborando una guía de uso para facilitar que el profesorado pueda llevarlos y utilizarlos en su aula con ejemplos y recomendaciones de cómo hacerlo.

La selección de recursos y guías creadas abarcarán todos los contenidos del currículum de matemáticas en los niveles educativos de Educación Infantil, Educación Primaria, Educación Secundaria Obligatoria y Bachillerato.

 

¿Cómo localizo y uso material para mi aula?

Es muy sencillo. Basta acceder al sitio web de MatesGG https://intef.es/recursos-educativos/recursos-para-el-aprendizaje-en-linea/matesgg/ y hacer uso de los filtros ubicados en la parte lateral izquierda de la página.

A través de un sencillo y ágil buscador, se pueden localizar recursos que abarcan diferentes contenidos curriculares del área de Matemáticas y que corresponden con los diversos niveles educativos de Educación Infantil, Educación Primaria, Educación Secundaria Obligatoria y Bachillerato.

Ejemplo: Uso del buscador, filtrando para realizar una búsqueda de recursos relacionados con el bloque de Funciones para la Educación Secundaria Obligatoria (ESO)

Más contenido matemático en redes sociales

Comparte MatemáTICas: 1,1,2,3,5,8,13,...

Siembra a tresbolillo. Competencia Matemática, geometría plana aplicada en huertos y jardines. Día Mundial del Medio Ambiente

Comparte MatemáTICas: 1,1,2,3,5,8,13,...

Con motivo de la celebración del Día Mundial del Medio Ambiente, he considerado interesante traer esta entrada relacionada con la sostenibilidad, gracias a la contribución de las matemáticas, como muestra de eventuales tareas a trabajar en el aula (de matemáticas) en relación a la Agenda 2030 y los Objetivos de Desarrollo Sostenible (ODS).

Siete publicaciones imprescindibles para entender los ODS

¿Quieres descubrir una aplicación práctica y sencilla de la geometría en la agricultura?

El sistema de siembra tresbolillo o de triángulo, es aquel en el cual cada 3 plantas forman un triángulo equilátero.

Este sistema permite que cada planta pueda tener las horas de luz requeridas para su óptimo crecimiento, no se tapen unas con otras, un favoreciendo un excelente aprovechamiento de la luz, un uso óptimo del terreno cultivable y la generación de un microclima, que evita que se escape la humedad del terreno, disminuyendo la evaporación y la erosión.

Y lo mejor, todo ello, con una aplicación simple: triángulo equilátero de lado la extensión máxima de desarrollo de la planta que se vaya a cultivar.
Otro ejemplo más de la importancia de las Matemáticas en nuestras vidas. Matemáticas aplicadas, desarrollo de la competencia matemática al servicio de la resolución de problemas de nuestro día a día #geometría #figurasplanas #huertourbano #huertoecologico #huertoencasa

Vídeos

 

Aplicación Geogebra: calculadora número de plantas siembra tresbolillo

Para el cálculo del número de plantas que caben en una determinada superficie a cultivar, usando la siembra a tresbolillo, hacen falta tan solo conceptos básicos de trigonometría:

S: superficie a cultivar (en metros cuadrados)

d: distancia entre plantas (en metros)

Aplicación desarrollada con Geogebra

 

Ideas para desarrollo de nuevas tareas para el aula de matemáticas

Este contexto da mucho juego para el desarrollo de tareas competenciales puesto que hay diferentes métodos de plantación, con sus correspondientes diseños geométricos asociados. Dejo una fuente de inspiración por aquí, a modo de semilla productora de tareas… 🙂

Comparte MatemáTICas: 1,1,2,3,5,8,13,...
WP2Social Auto Publish Powered By : XYZScripts.com