Matemáticas

De linces ibéricos a unicornios, pasando por centauros. Tiempos de crisis, titulación con futuro. Hazte matemátic@ (y IV).

Comparte MatemáTICas: 1,1,2,3,5,8,13,...

Hace años escribí una trilogía de posts sobre los estudios de matemáticas y su empleabilidad. El último de ellos, Tiempos de crisis, titulación con futuro. Hazte matemátic@ (y III).

En el primero de ellos realizaba un llamamiento, hacia el reclutamiento de estudiantes universitarios matemáticos y escribí literalmente:

“Somos los linces ibéricos del gremio de titulados (graduados) universitarios. Hazte matemátic@ y salva la especie”.

En los siguientes posts observé cómo, afortunadamente, los datos indicaban que ambas poblaciones, la de matemáticos/as y la de linces ibéricos, evolucionamos a la par, abandonando el peligro de extinción, mostrando mi alegría por ello.

Casi 9 años más tarde, en un excepcional reportaje publicado en El País Semanal, el cual lleva por título Las mentes matemáticas mueven el mundo, leo con satisfacción lo que se evidencia a diario, pero abordado desde diferentes perspectivas con protagonistas relevantes en distintos ámbitos, que no es otra cosa que, los/as matemáticos/as hemos pasado de linces a unicornios, pasando por centauros. Sigue leyendo y encontrarás la justificación a esta afirmación que acabo de escribir.

El citado reportaje, de obligada lectura diría yo, aborda la potencia de las matemáticas desde 6 ópticas (La academia, Big data, Start-up, Supercomputación, La Olimpiada y Economía) y comienza con el párrafo que vemos en la imagen.

1. La academia

Jorge Osés, logroñés de 22 años, en quinto del doble grado de Matemáticas e Ingeniería Informática, cuenta en el descanso que ya está trabajando en Graphext, compañía que desarrolla una herramienta para el análisis de datos. “Las empresas”, dice, “valoran tu capacidad para resolver problemas”. Se metió en Matemáticas porque quería superar un reto difícil. “Ahora sé que soy capaz de hacer cualquier cosa. Tengo confianza en mí mismo. Matemáticas es pensar, con presión, y sin una base. La carrera no consiste en memorizar. Te plantean problemas, te preguntan cosas nuevas”. Big datainteligencia artificialfinanzas. El mundo digital es una locomotora. Y son pocos quienes tienen la llave para amasar la harina de este nuevo universo regido por el cálculo. Según Osés, “es más fácil contratar a un matemático y enseñarle economía que contratar a un economista y enseñarle matemáticas”.

El veterano catedrático Antonio Córdoba, director del Instituto de Ciencias Matemáticas, describe un nuevo tipo de criatura: “Ese centauro que forma el matemático con su ordenador es el espécimen más innovador que existe ahora mismo en la ciencia”. Siempre ha habido interacción de las matemáticas con todo, añade. “Pero desde la Segunda Guerra Mundial, y con la aparición de los grandes ordenadores —por cierto, creados por matemáticos—, ha ido in crescendo”. Córdoba compara la disciplina con una pirámide en cuyo vértice superior se encuentran los investigadores. Los matemáticos más creativos, personas que piensan en problemas sin necesidad de una aplicación en el mundo real. Pero sin los cuales no existirían avances en otros campos. Por debajo se encuentra la matemática aplicada. “Es este segundo estadio, el de la aplicación de los modelos matemáticos a ingeniería o economía, el que ha crecido”, dice. “El big data está muy bien. Pero se basa en teorías desarrolladas en la cumbre”. Ese es el propósito de este reportaje: un recorrido por las secciones de esa pirámide para entender el papel de las matemáticas en la revolución tecnológica.

“Ese centauro que forma el matemático con su ordenador es el espécimen más innovador que existe ahora en la ciencia”, dice Antonio Córdoba

El despacho de Ignacio Luengo, catedrático de Álgebra en la Complutense, se encuentra en la última planta de la Facultad y en él reina un caos de libros y folios con fórmulas escritas a mano. Es experto en singularidades. Durante siete años ha estado trabajando en un sistema de encriptación capaz de resistir la potencia de cálculo de un futuro ordenador cuántico. Para evitar que, cuando aparezca, toda la información que circula en la Red, y que hoy permanece cifrada gracias al teorema de Fermat, quede al desnudo. Presentó su protocolo (tres páginas llenas de polinomios) a un concurso público del Instituto Nacional de Estándares y Tecnología (NIST) de EE UU y aún se encuentra en fase de valoración. En su opinión, “ahora el mundo se está dando cuenta de que las matemáticas están por todas partes. Todos saben lo que son los algoritmos. Gobiernan la estrategia de grandes empresas y también nos ayudan a ligar. Yo terminé la carrera en el año 1975; en esa época, la mayoría venía pensando que iba a ser profesor de instituto. Eso ha cambiado. Hoy los alumnos quieren trabajar en la industria”.

El decano de Matemáticas de la Complutense, Antonio Bru, … explica que últimamente las empresas se acercan a la universidad para llevarse a los mejores. “Ayer justo el BBVA fichó a un alumno para temas de big data. Quieren personas preparadas para responder a problemas difíciles. Que sepan plantearlos y resolverlos. Con un grado de conocimiento matemático que permita describir y simular muchos procesos. Un todo en uno capaz de enfrentarse a casi cualquier problemática de manera eficiente”. Los salarios en el sector privado son tan competitivos que, según el decano, “el propio éxito de las matemáticas puede ir en su contra”. Hoy, la posibilidad de encontrar un empleo estable en la universidad es reducida. Lo cual desalienta a muchos doctores. Y desciende también el número de quienes quieren ser profesores en secundaria (en las últimas oposiciones se quedaron sin cubrir unas 300 plazas de profesores de Matemáticas, denunció el sindicato CSIF). “Puede ser el principio de nuestra muerte”, dice Bru. “Porque hay que explicar bien las matemáticas en el colegio y en la universidad. Y potenciar la investigación básica. El riesgo es que nos perdamos la revolución tecnológica”.

2. Big data

La omnipresencia de Google, el Internet de las cosas, las tarifas dinámicas de Uber y Cabify, las recomendaciones de Facebook e Instagram. Los datos son el nuevo petróleo. Y solo unos pocos parecen capaces de dominarlos. El primer empleo de la canadiense Holden Karau, antes incluso de acabar la carrera de Matemáticas en Ciencia de Computación, fue desarrollar para Amazon un modelo capaz de discernir entre las dos acepciones de la palabra rabbit en inglés. Una es “conejo”; la otra, “vibrador”. Llegó a ser ingeniera principal de soft­ware de big data en IBM. Hoy trabaja para Google, donde se dedica a enseñar lo que sabe y a supervisar lo que otros hacen dentro del gran buscador. Tiene 32 años, vive en San Francisco, pero recorre el globo dando conferencias en las que el contenido resulta un laberinto futurista. En noviembre participó en Madrid en el evento Big Data Spain. Salió al escenario vistiendo un largo abrigo de pelo blanco decorado con luces de colores y una capucha coronada con un cuerno. “Un científico de datos veterano es un unicornio”, se presentó. “Somos muy difíciles de encontrar”. Risas entre los asistentes, como preludio de una charla sobre Apache Spark —un “motor de análisis unificado para procesamiento de datos a gran escala”, define una web especializada—, “conductos de información” y “modelos de regresión lineal”. Karau bromea: “En ocasiones he roto cosas que valen millones”. De nuevo risas, porque los presentes parecen expertos en el arte de cosechar miles de datos, tratarlos y explotarlos.

Holden Karau, científica de datos de Google.
Imagen de El País Semanal, publicada en
Las mentes matemáticas mueven el mundo Holden Karau, científica de datos de Google. CARLOS SPOTTORNO

“La carrera no consiste en memorizar. Te plantean problemas, te preguntan cosas nuevas”, explica un estudiante de Matemáticas e Ingeniería Informática

3. Start-up

Mohamed Umair, paquistaní de 23 años, pedalea en las calles de Barcelona guiado por un algoritmo. Trabaja desde hace un año a lomos de una bicicleta para la compañía Glovo. Glovo es una start-up que recibe órdenes de clientes que piden algo, sobre todo comida, aunque puede ser cualquier cosa —condones, una guitarra, flores—, y envía ciclistas o motoristas a recoger el pedido y llevarlo hasta el destinatario. Ese proceso de asignación, que determina cuál es el mejor repartidor para cada pedido optimizando tiempo y distancia, es un proceso matemático complejo. La solución la calcu­la un algoritmo y la ejecutan personas como Umair. “Trabajo todos los días. Unas 8 o 10 horas. Hago una media de 70 u 80 kilómetros. Si la jornada es buena, quizá 110”, dice el paquistaní. “El trabajo está bien, por los ingresos. El empleo en el restaurante no era mejor. Aquí gano más, entre 1.200 y 1.500 euros al mes”.

La sede de Glovo en Barcelona ocupa dos plantas. La empresa nació en esta ciudad en 2015. Su jefe de tecnología, el canadiense Bartek Kunowski, también dio sus primeros pasos en Amazon (desarrollando un algoritmo de recomendación). Sobre Glovo, Kunowski dice: “Somos una compañía tech. Todo está basado en ciencias de la computación, es decir, en matemáticas”. Habla del algoritmo húngaro, pero también de los miles de datos que recolectan y almacenan, con los que pronostican la futura demanda. Y de sus modelos de machine learning(sistemas que aprenden automáticamente). Los cálculos se hacen para más de 60 ciudades de 20 países. Kunowski lidera un equipo internacional de 70 personas; son físicos, ingenieros, matemáticos y análogos, diestros en computación y código, que han de encajar con la cultura de la empresa: “Gente a la que le guste la tecnología, resolver problemas y que adoren las matemáticas”.

4. Supercomputación

El silencio de la vieja capilla es sepulcral. Hay una enorme urna de cristal transparente en el centro, y en su interior, como un tótem de nuestra era, se yerguen hileras de bastidores con miles de chips, nodos y procesadores. Para acceder a la urna hay que superar una puerta de seguridad. Dentro, el zumbido de los ventiladores vibra como la sala de máquinas de un barco. El ambiente es frío, pero si uno abre la espalda de una de las torres se libera un calor digital. Se ven cables, placas, lucecitas. “Esto es pura matemática”, dice el ingeniero que lo vigila.

Este supercomputador, el más potente de España y el quinto de Europa, llamado Mare Nostrum IV,alcanza una potencia pico de 13,7 petaflops, lo cual significa que puede ejecutar 13.700 billones de operaciones por segundo. Es difícil imaginarlo. Tampoco sus aplicaciones resultan demasiado comprensibles: gracias a esta máquina se han podido observar las ondas gravitacionales que Einstein predijo (el equipo LiGO, ganador del Nobel en 2017 por este trabajo, realizó parte de los cálculos en el Mare Nostrum). El supercomputador se encuentra en el campus de la Universidad Politécnica de Cataluña, en Barcelona, en este espacio que fue una capilla en el siglo XIX. Un emplazamiento tan exótico que Dan Brown lo usó como escenario de su novela Origen, en la que mezcla guerras de religión y ordenadores cuánticos.

El supercomputador Mare Nostrum IV en Barcelona.
Imagen de El País Semanal, publicada en
Las mentes matemáticas mueven el mundo – El supercomputador Mare Nostrum IV en Barcelona. CARLOS SPOTTORNO

En un edificio cercano se encuentran los investigadores del Centro Nacional de Supercomputación de Barcelona (BSC, por sus siglas en inglés), centenares de personas entregadas a las tareas más variopintas. Entre ellos abundan los matemáticos. Personas como Eva Casoni, de 36 años, doctora en Matemáticas, que se dedica a la simulación numérica de materiales. Es decir, provoca desastres aterradores: disecciona aortas y deforma el fuselaje de los aviones hasta romperlos, pero en un mundo ficticio, el de los cálculos matemáticos, empleando para ello “ecuaciones con un montón de parámetros” que solo son posibles de resolver a través de la supercomputación. La italiana Enza di Tomaso, doctora en Ingeniería Matemática, trabaja en el departamento de clima y se dedica a simular el movimiento de millones de partículas en la atmósfera, lo cual resulta útil para predecir las tormentas de arena —trabaja en coordinación con la Agencia Estatal de Meteorología (Aemet)—.

5. La Olimpiada

María Gaspar tiene mucho que ver con el creciente prestigio de las matemáticas… “Antes, los buenos tenían que disimular”. Gaspar también es profesora de Estalmat, un proyecto de detección y estímulo del talento precoz. Son clases de matemáticas puras que se imparten en fin de semana en toda España a menores sobresalientes. Y también tratan de ir un paso más allá: un empleado de IBM, por ejemplo, les dio hace poco lecciones de programación en R, lenguaje habitual en biomedicina y matemática financiera.

Álvaro Gamboa, de 13 años, el aspirante de menor edad en el examen de la fase cero de la Olimpiada Matemática, durante la prueba en la Universidad Complutense.

Imagen de El País Semanal, publicada en
Las mentes matemáticas mueven el mundo – Álvaro Gamboa, de 13 años, el aspirante de menor edad en el examen de la fase cero de la Olimpiada Matemática, durante la prueba en la Universidad Complutense. CARLOS SPOTTORNO

6. Economía

… Pablo Hernández, analista encargado del estudio, afirma: “Las matemáticas son un driver del crecimiento a largo plazo”. (En otros países europeos, donde se han hecho estudios similares, aseguran que las matemáticas contribuyen al PIB entre un 10% y un 15%, publicó Europa Press).

Lo mostrado en este post es sólo una pequeña parte del contenido del artículo publicado en El País Semanal: Las mentes matemáticas mueven el mundo. 

Tras realizar su lectura completa, ¿aún necesitas más argumento de peso para hacerte matemátic@? ¿A qué esperas?

Comparte MatemáTICas: 1,1,2,3,5,8,13,...

Matemáticas+Algoritmos+Programación+Creatividad = Música electrónica+Gráficos en tiempo real #livecoding #STEAM

Comparte MatemáTICas: 1,1,2,3,5,8,13,...

¿Alguna vez pensaste que música y programación podían ir de la mano?
De eso se trata la disciplina del Live Coding (código en vivo), donde una o varias personas crean y ejecutan música en vivo por medio de sus ordenadores, mediante la escritura y ejecución de líneas de código de programación.

https://twitter.com/CNDSD_/status/1087041215810416641

Esta nueva disciplina, nacida hace unos 20 años en el contexto universitario del Reino Unido, ha ido ganando adeptos y llamando la atención en el mundo artístico, tecnológico y de la investigación. En mi opinión, creo que habrá que estar muy atento y seguir muy de cerca la progresión de esta tendencia, real y consolidada, que ha venido para quedarse. Particularmente #mEncanta esta mezcla.

https://twitter.com/i/status/1061437783506673665

A continuación comparto fragmentos de sendos artículos publicados en medios digitales de España, verne – El País, y Argentina, eltrece, que se hacen eco este nuevo paradigma creativo, y algunos vídeos compartidos en Youtube e Instagram de distintas «algoraves».

Los algoritmos ya manejan buena parte de tu vida: cuando buscás pareja en las redes sociales, al pedir un crédito en el banco, cuando usás el GPS para guiarte o incluso cuando vas a bailar a una fiesta electrónica. 

Esto último es lo que hoy se conoce como “algorave”, que son fiestas electrónicas donde los DJ ya no controlan los sintetizadores, sino que solo miran las pantallas de las computadoras para modificar el código que genera melodías improvisadas. Al mismo tiempo que cumplen con esta tarea, en el salón hay pantallas gigantes donde se muestra lo que ocurre en las computadoras.

Las algoraves existen desde hace ya seis años, cuando se creó la primera en el Reino Unido, de la mano del músico Alex McLean. Desde entonces se ha constituido en un movimiento cada vez mayor, que fue reemplazando a las clásicas fiestas electrónicas. Quienes se dedican a manejar estos algoritmos crean o modifican las partituras en el momento, lo que les da mucha más libertad a la hora de crear nuevas melodías.

Para ello, hace falta tener más conocimientos que antes. Ahora no solo hace falta tener buen oído musical, sino también nociones de matemáticas (no se puede modificar un código en cualquier momento, hay que tener criterio para que la melodía inventada no pierda el ritmo). Y, por sobre todo, curiosidad y atreverse a experimentar.

Fuente: eltrece
Algorave: la fiesta electrónica donde la música la decide un algoritmo
live coding (fluxus)

En esta fiesta, llamada algorave, el dj no manipula sintetizadores, sino que modifica un código con el que genera melodías improvisadas mientras muestra a los asistentes mediante una proyección lo que ocurre en su pantalla de ordenador.
“Estas fiestas tratan de romper prejuicios. Ni los programadores son solo tipos incapaces de tener inclinaciones artísticas, ni los algoritmos son la base de una existencia ya escrita”, cuenta la creadora colombiana Alexandra Cárdenas (Bogotá, 1976). Su nombre es habitual en eventos de live coding, disciplina que combina en directo expresiones como la música o la danza con la programación informática.

En el caso de las algoraves, crean partituras con las letras, números y símbolos de un teclado. “No hay nada más matemático que una partitura musical. Creamos o cambiamos esa partitura sobre la marcha para lograr de forma espontánea sonidos que, en muchos casos, un humano no podría concebir por sí mismo. Lo que hacemos es precisamente liberarnos y desprogramarnos de lo que hemos aprendido hasta ahora sobre qué debe ser una canción”, comenta Cárdenas.
Antes de actuar con su ordenador portátil en fiestas electrónicas de todo el mundo, estudió durante años matemáticas, composición musical y guitarra clásica y es una de las invitadas estrella de la 4º Conferencia Internacional de Live Coding del Medialab-Prado hasta el domingo 19 de enero. Además de coloquios y talleres, su programación incluye varias algoraves, que hasta ahora apenas se habían celebrado en Madrid, explican sus responsables.

Fuente: verne – El País
Visitamos una ‘algorave’, la fiesta donde suenan y se bailan algoritmos

Ya ves, Matemáticas para todo 😉

Seguimos…

Comparte MatemáTICas: 1,1,2,3,5,8,13,...

Encuesta: Betis-Sevilla. Propuesta didáctica #STEM para trabajar con la placa micro:bit #microbitedu y Scratch 3.0 #Scratch3

Comparte MatemáTICas: 1,1,2,3,5,8,13,...

Si hace algún tiempo compartía Estadística con #Scratch. Creación de un diagrama de sectores aplicación que muestra cómo representar un diagrama de sectores con Scratch, hoy comparto una aplicación que muestra cómo realizar un sistema de encuesta integrando la placa programable micro:bit y la nueva versión de Scratch, Scratch 3.0, lanzada oficialmente el pasado día 2 de enero de 2019.

Propuesta didáctica y modo de funcionamiento

La que hoy comparto es una propuesta didáctica con enfoque STEM para trabajar con la placa micro:bit y Scratch 3.0

Se trata de una encuesta para elegir el equipo favorito, en este caso entre Real Betis Balompié y Sevilla Fútbol Club

La misma, puede ser adaptada a otros contextos, con las modificaciones correspondientes, desde preguntas Verdadero/Falso, clasificación en grupos/categorías, …

Para su elaboración he usado todos los bloques de Scratch 3.0: Movimiento, Apariencia, Sonido, Eventos, Control, Sensores y Variables, así como las extensiones: Lápiz, Música y micro:bit.

Es la última extensión la que permite la interacción con la placa programable de su mismo nombre, la cual nos abre un mar de posibilidades para trabajar el enfoque STEM desde el aula de Matemáticas, mi materia, y desde cualquier otra; sin límites, donde nos lleve nuestra imaginación y creatividad en nuestro doble rol: como docentes (a la hora de presentar propuestas a nuestros estudiantes en entornos mediados por TIC) y como aprendices (al diseñar y programar nosotros mismos las distintas propuestas).

Debo reconocer que me he divertido mucho diseñando, programando y probando la misma con mi hijo y sus compañeros/as de clase que hoy nos acompañaban en casa preparando un trabajo para la clase de Francés. 

Vídeo demostración

 

¿Quieres probarla?

Nota: Es necesario disponer de una placa micro:bit conectada con Scratch vía Bluetooth. Si aún no dispones de ella, puedes verla funcionando en el vídeo de demostración anterior. 

Encuesta: Betis – Sevilla #Scratch3 + #microbit on Scratch 

Comparte MatemáTICas: 1,1,2,3,5,8,13,...

El origen de los números #Podcast #LingMáTICas

Comparte MatemáTICas: 1,1,2,3,5,8,13,...
Verba volant – NEUDC RNE

Comparto en esta entrada el podcast correspondiente a la sección Verba Volant que nos trae cada sábado el profesor Emilio del Río en uno de mis programas radiofónicos favoritos, No es un día cualquiera, un clásico de las ondas del cual suelo disfrutar cada fin de semana en RNE, presentado por Pepa Fernández.

Minutos 2:30 al 16:00 aproximadamente

Quien me conoce, y los lectores habituales de este blog, saben de mi gusto y de la importancia que otorgo en el proceso de Enseñanza-Aprendizaje a la vinculación entre la Lengua y las Matemáticas; lo que denominé en llamar en su día como LingMáTICas.

Conocer el origen y la evolución de las palabras es otro aspecto fundamental para la construcción y comprensión del lenguaje matemático. El audio que os comparto es fácil de seguir y nos muestra aspectos interesantes del origen de los números, así como otros más lúdicos y algunas curiosidades que tal vez no conocías.

Espero que disfruten de él como yo lo hice, motivo por el cual he considerarlo interesante compartirlo en este espacio.

¡Feliz 2019 y que sigamos disfrutando de las Matemáticas!

Comparte MatemáTICas: 1,1,2,3,5,8,13,...

Emoción, aprendizaje, formación reglada y redes horizontales docentes. Mini-crónica de mi paso por el I Congreso Iberoamericano de Docentes

Comparte MatemáTICas: 1,1,2,3,5,8,13,...
Nube de palabras con mi resumen de #CongresoIB

El Congreso Iberoamericano de Docentes nace con el objetivo de unir, de sumar fuerzas, de trabajar en equipo y lograr metas aun más altas. Será un escaparate donde dar a conocer proyectos, actividades, experiencias… y dar un paso más. Hacer de ese escaparate un lugar de reunión donde encontrar compañeros que llevan a cabo labores similares o que están en la búsqueda de un proyecto como el tuyo para su aula.

600 millones de habitantes en Iberoamérica necesitan docentes comprometidos como tú, que trabajan localmente y a partir de ahora pueden actual globalmente. Vivimos conectados, trabajemos en conexión. Subamos del escalón de la inteligencia colectiva hasta el de la inteligencia colaborativa.

Crear, compartir y finalmente colaborar, sumar, crecer. Aportar y enriquecerse con la experiencia del grupo. Y no sólo a nivel docente. La oportunidad de ofrecer a tus alumnos una visión más amplia, un conocimiento de otros países y culturas, una colaboración activa con compañeros a cientos o miles de kilómetros.
 
Una experiencia inolvidable.

Extracto del correo electrónico enviado por Óscar Macías desde la Organización a los docentes participantes en el Congreso.

Con el título de esta entrada he querido sintetizar lo vivido durante mi paso por el I Congreso Iberoamericano de Docentes, celebrado en Algeciras del 6 al 8 de diciembre de 2018. Creo que los objetivos de la Organización se han cumplido con creces, «una experiencia inolvidable».

Es por ello por lo que, aunque han transcurrido ya varias semanas de este Congreso, tenía pendiente la publicación de un pequeño post, a modo de recordatorio y síntesis de esta experiencia vivencial. Y como dice que una imagen vale más que mil palabras, mi crónica se resume en la nube de palabras anterior y en el vídeo que he preparado para mostrar, a partir de las instantáneas tomadas, parte de lo vivido y lo sentido. No están todos los momentos, como es normal, pero todos los que están son.

https://youtu.be/6xeA2EW4ITU

Vídeo-resumen de mi paso por el I Congreso Iberoamericano de Docentes

Este Congreso, promovido por el Ayuntamiento de Algeciras, la Universidad de Cádiz, la Asociación Amigos de la Ciencia Diverciencia y la Asociación Formación IB, tiene como objetivo sumar fuerzas, crear y colaborar en torno a la docencia y la educación, y ha sido la bella ciudad de Algeciras la elegida como el epicentro de este primer congreso. Las jornadas se han configurado como un espacio en el que los docentes hemos podido compartir, aprender, colaborar y enfrentar los desafíos de la educación del siglo XXI, tal y como ya ocurre en la red de participación de profesionales del sector fundada en abril de 2016, que ha dado origen al congreso y en el que están cooperando 37000 educadores actualmente.

Para que nos hagamos una idea de la magnitud de este evento comparto:

Calendario de Conferencias Mesas y Talleres – I Congreso IB

Calendario de comunicaciones libres – I Congreso IB

https://twitter.com/congresoib/status/1076010667067559937

En el citado Congreso he tenido la fortuna de desempeñar distintos roles:

  • Vocal del Comité Científico, junto a excelentes compañeros/as de diversos lugares de la geografía iberoamericana, presidido por el profesor de Didáctica y Organización Escolar de la Universidad de Almería, César Bernal.
  • Impartido la Conferencia: Competencia Digital Docente & Organizaciones Digitalmente Competentes como elementos imprescindibles para el desarrollo de la competencia digital del alumnado
    7 de diciembre – Fundación Campus Tecnológico

Siendo plenamente conscientes de la presencia cada vez mayor de las tecnologías digitales en todos los niveles educativos y teniendo como principal objetivo una formación integral competencial del alumnado en nuestras aulas, para que puedan desenvolverse con soltura, interpretar e interactuar con el medio digital en el que les ha tocado vivir, es necesario que el alumnado alcance un nivel óptimo de competencia digital al finalizar la Educación Obligatoria. En este contexto se hace imprescindible definir un ecosistema de aprendizaje digital educativo que nos permita alcanzar este nivel de competencia Digital por parte del alumnado y que favorezca consolidar el progreso y la sostenibilidad a medio-largo plazo de las tecnologías digitales en el ámbito educativo.
Conscientes de esta necesidad, organismos como la UNESCO, la Comisión Europea, INTEF y distintas administraciones educativas autonómicas, entre otras, están implementando marcos de evaluación de referencia y herramientas diagnósticas que permitirán la autoevaluación de la competencia digital de los docentes y de los centros educativos, los cuales permitirán conocer su situación en cuanto al nivel de competencia digital, lo que permitirá y favorecerá el diseño y la realización de acciones encaminadas a la integración y uso eficaz de las tecnologías de aprendizaje digital.

  • Impartido el Taller: ¿Pensamiento computacional? ¿Qué es eso? Partiendo de cero hacia su integración en el aula… con Scratch

7 diciembre – Centro del Profesorado de Algeciras

Aunque existen muchas definiciones del término, siguiendo a Cuny, Snyder & Wing (2010), podemos definir el pensamiento computacional como el proceso mental utilizado para formular problemas y sus soluciones de forma que las soluciones se representan en una forma que puede ser llevada a cabo por un agente de proceso de información. En otras palabras, podíamos definir el término como pensar con ideas y datos, combinarlos con la ayuda de las TIC y de esta forma resolver problemas; es decir, poner las TIC de nuestra parte para resolver problemas, entendiendo problema en su sentido más amplio, más allá del ámbito matemático, como cualquier reto que tengamos que resolver. En el presente taller plantearemos dinámicas para ser desarrolladas de manera activa por todos los participantes, con ayuda de la herramienta Scratch; propuestas dinámicas, sencillas, atractivas y transversales, independiente de áreas/materias, partiendo de cero, incluyendo una aproximación al pensamiento computacional, sin ordenador, no siendo necesario disponer de conocimientos previos sobre Scratch para participar y sacar partido del taller.

Taller Pensamiento Computacional – I CongresoIB

Si bien me siento agradecido por la confianza y la oportunidad brindada por la Organización del Congreso para desempeñar los roles anteriores, especialmente a Joaquín, Óscar y Juan Carlos, me gustaría resaltar al mismo tiempo que en el rol de asistente/aprendiz me he encontrado extraordinariamente cómodo, aprendido, conversado y disfrutado muchísimo reforzando mi idea de que, en lo que respecta a la formación del profesorado, es crucial complementar modelos de desarrollo profesional docente reglados, con modelos basados en la experimentación didáctica en el aula compartidas en blogs y redes sociales (aulas transparentes) e imprescindible y urgente potenciar modalidades de formación horizontales (redes horizontales docentes) de forma que el desarrollo profesional sea construido en red, vía aprendizaje entre iguales, combinando vida y profesión, todo en uno, como la Escuela misma demanda y necesita.

https://twitter.com/luismiglesias/status/1071107816994324482

Os recomiendo veáis el vídeo de presentación del Congreso, algunas de las extraordinarias crónicas compartidas por compañeros/as y el hashtag #congresoib.

Esperando el II Congreso Iberoamericano de Docentes, os deseo un feliz año 2019 cargado de felicidad y aprendizaje.

¡Brindemos por una Escuela inclusiva, laboratorio de la vida, que nos lleve de la mano hacia un mundo mejor!

https://www.youtube.com/watch?v=2EVj8xUnYAY
Vídeo de presentación emitido en la Apertura en Algeciras el 6 de diciembre de 2018 en el Teatro Florida del Ayuntamiento de Algeciras El Congreso Iberoamericano de Docentes nace con el objetivo de unir, de sumar fuerzas, de trabajar en equipo y lograr metas aun más altas. Será un escaparate donde dar a conocer proyectos, actividades, experiencias… y dar un paso más. Hacer de ese escaparate un lugar de reunión donde encontrar compañeros que llevan a cabo labores similares o que están en la búsqueda de un proyecto como el tuyo para su aula.
https://twitter.com/congresoib/status/1071436014558826498
https://twitter.com/carmenca/status/1071864142598938625
https://twitter.com/congresoib/status/1073789257507106816
https://twitter.com/congresoib/status/1073471094026366976
https://twitter.com/AcercaCiencia/status/1073325185913151488
https://twitter.com/luismiglesias/status/1078752181447208960

Seguimos…

 

Comparte MatemáTICas: 1,1,2,3,5,8,13,...

miniTAREA: Chocolatina fraccionaria

Comparte MatemáTICas: 1,1,2,3,5,8,13,...

miniTAREA. Observa la siguiente chocolatina y, pasados unos minutos, comenta aquellos aspectos matemáticos que te hayan llamado la atención y/o comprobado.

La misma ha aparecido en casa a la hora del postre, tras el almuerzo, al traerla nuestro hijo del colegio junto a otros pequeños regalos de su participación con su grupo-clase en «El amigo invisible».

Pero es muy curiosa, ¿verdad? ¿Conoces algún caso similar presentación de otra chocolatina? Bueno, piensa y nos cuentas.

 

Comparte MatemáTICas: 1,1,2,3,5,8,13,...

Reloj interactivo Geogebra para trabajar la magnitud tiempo (actividades horarias) en Educación Primaria

Comparte MatemáTICas: 1,1,2,3,5,8,13,...

Comparto en esta entrada un recurso interactivo realizado con Geogebra que elaboré hace más de 5 años para trabajar la magnitud tiempo en el aula de Primaria.

Propuesta didáctica. ¿Cómo usar el recurso?
1. Accede al recurso: http://luismiglesias.es/geogebra/Reloj_Interactivo.html
2. Se trata un applet interactivo realizado con Geogebra que permite trabajar un amplio abanico de actividades horarias, previa configuración de los distintos ajustes de configuración que ofrece.
+ Descripción: Reloj con motivo infantil que permite trabajar actividades horarias de manera interactiva.
+ Opciones:
(·) Ayuda. Describe cómo usar el applet.
(·) Créditos. Información sobre autoría.
(·) Mostar/Ocultar manecillas. Muestra u oculta las manecillas permitiendo obtener un reloj mudo para trabajar actividades varias sobre él e incluso imprimirlo.
(·) Mostrar/Ocultar horas. Muestra u oculta los números.
(·) Reproducir/Detener. Simula el funcionamiento normal de un reloj. Basta con desplazar los puntos rojos de cada una de las manecillas para obtener distintas posiciones horarias. Configura la hora deseada y pulsar en Reproducir/Detener.
3. Ideal para el trabajo con pizarra digital interactiva, con dispositivos móviles, e incluso en papel, mediante captura de pantalla e impresión con los diferentes ajustes de configuración que proporciona el mismo.
4. Posibilidad de colocarlo como reloj proyectado (proyector/pizarra digital) en vuestra aula.
+ Acceder al recurso: http://luismiglesias.es/geogebra/Reloj_Interactivo.html.
+ Un alumno/a lo pone en hora.
+ Pulsa Reproducir.

5. Trabajar situaciones problemáticas, como por ejemplo:

Cuestiones relacionadas con la imagen de la izquierda:
1. ¿Qué hora indica el reloj?
2. ¿Cuánto tiempo falta para la 1?
3. Javi tenía cita con el dentista a las 11:45 y al mirar el reloj se ha acordado de la cita. ¿Cuánto tiempo acumula de retraso?

 

 

Otra potencialidad del recurso es el trabajo con dispositivos móviles, como se muestra a continuación:

En una sesión de tutoría con un grupo de futuros maestros, los cuales deben realizar un trabajo de diseño de sesiones de clase para trabajar los ángulos en la asignatura de Didáctica de la Matemática de 3º curso del grado de Educación Primaria, les indiqué que con la posición de las manecillas de un reloj se pueden trabajar todos los ángulos y recordé que años atrás había elaborado este reloj interactivo para trabajar la magnitud tiempo. Gracias a ellos lo he compartido en este espacio… 5 años después. Vemos como no hace falta buscar mucho para trabajar en contextos reales y cercanos al alumnado, un simple reloj, nos puede dar mucho juego; aquí tenemos dos: ángulos y tiempo.

Espero resulte de utilidad.

Acceso al reloj a pantalla completa: http://luismiglesias.es/geogebra/Reloj_Interactivo.html

Comparte MatemáTICas: 1,1,2,3,5,8,13,...

Participación en Proyecto de Investigación Educativa con la herramienta ToolboX para desarrollar el pensamiento computacional en el aula de Matemáticas #STEM

Comparte MatemáTICas: 1,1,2,3,5,8,13,...

Durante el curso pasado, la D.G. de Innovación y Formación del Profesorado de la Consejería de Educación de la Junta de Andalucía puso en marcha un Proyecto de Investigación Educativa con la Universidad de Málaga consistente en realizar la “Validación de la herramienta Toolbox”, mediante la introducción de la programación informática y el pensamiento computacional en la escuela y evaluar su impacto en los aprendizajes de los estudiantes.

Al recibir dicha invitación por parte del Servicio de Innovación Educativa, tras años de trabajo en el aula y en la formación permanente del profesorado en esta línea, no dudé en sumarme a la iniciativa, así como hacer extensiva la invitación a todos mis compañeros/as del Departamento de Matemáticas. De este modo participamos los/as 6 profesores/as del Departamento, con 120 alumnos de los cursos 2º, 3º y 4º de ESO, usando el pensamiento computacional y la herramienta de programación informática, ToolboX, como medio para resolver problemas de matemáticas, con apenas 10 ordenadores portátiles como material informático disponible para la realización de este proyecto, con el esfuerzo y el trabajo de planificación que ello conlleva pero concluyendo que el esfuerzo bien mereció la pena. 

 

El proyecto de investigación constaba de dos partes o experimentos, E1 y E2.

Experimento E1. Experimento sobre adquisición de habilidades de programación («Hora del código»)

La realización de E1 en nuestro centro contó con la participación al completo del Departamento de Matemáticas (6 profesores/as) y 120 alumnos/as de 2º, 3º (incluyendo alumnado de PMAR de ambos cursos) y 4º de ESO, en las materias de Matemáticas, Matemáticas Académicas, Matemáticas Aplicadas, Ámbito Científico-Matemático y TIC.

Comenzando por el final podemos afirmar que la valoración es muy positiva, tanto en rendimiento obtenido como en las impresiones manifestadas por los estudiantes y por nosotros los docentes, si bien es cierto que la preparación previa para poder llevar a cabo la propuesta:

  • Instalación de Guadalinex Slim en 12 ultraportátiles de Escuela TIC 2.0, únicos medios con
    los que contamos para que puedan trabajar los alumnos.
  • Reunión de preparación previa en el seno del departamento y de seguimiento periódico
    posterior.
  • Cuadrante para poder desarrollar E1, sin interferir en el trabajo en la asignatura TIC que
    hace uso de estos portátiles.

ha sido realmente exigente y compleja, aunque volviendo al comienzo de mi valoración: EL ESFUERZO MERECE LA PENA.

Quiero realizar una crítica constructiva: a los centros experimentales, como los nuestros en esta experiencia, debería llegar dotación necesaria para realizar con garantías el pilotaje, ya sea ordenadores o kits para laboratorios,… o cualquier otra experimentación, el cual ayudaría a su éxito y posterior adopción a nivel de centro.

El formato de la hora del código propuesto es muy adecuado. Las tareas han estado bien seleccionadas, la herramienta está muy depurada, es bastante robusta e intuitiva y los resultados alcanzados, en muchos casos en apenas 30 minutos, son muy esperanzadores y animan a seguir en esta línea.

Tan solo una muestra de alumnos/as del centro habían trabajado con anterioridad con programación por bloques, Scratch, Papá Noel de Google,… y no hicieron alusión comparativa a ambas en ningún momento, aunque en unas tareas determinadas, si que conectaron funcionalidades trabajadas con ambas herramientas.

Experimento E2. Experimento sobre adquisición de competencias
Durante dos sesiones llevé a cabo E2 con 17 alumnos/as, en Matemáticas Académicas de 3º de ESO.
– Poner en marcha E2 en el aula fue sencillo debido a la experiencia previa acumulada con E1.
– El módulo que usé e2s3 (Experimento 2 para 3º de ESO) estaba muy bien diseñado, con tareas que van aumentando su complejidad de manera gradual por casi todos los contenidos de Estadística, los cuales trabajamos a comienzos de curso (en nuestro centro comenzamos en 3º y 4º por Estadística
y Probabilidad). A pesar de que la notación usada era ligeramente diferente a la trabajada en clase, nosotros usamos hi (Hi) en lugar de ni (Ni), no supuso mayor problema.

Enseguida captaron la relación columna de tabla – fila/lista/array en Toolbox y el patrón de las tareas:

  • la primera correcta
  • la segunda a corregir algo
  • la tercera a escribir código aprendiendo de las anteriores.

No requirieron realizar ninguna consulta en internet sobre algún concepto o parámetro
estadístico, hicieron un buen uso del tip cuando lo requirieron, estaba muy bien colocada
la ayuda al servicio de los alumnos en los momentos clave, y además las tareas iban
andamiando (semiconstruidas) sobre las anteriores.

 

Conclusiones/propuestas/sugerencias

A diferencia de E1, en E2 sí he podido apreciar con esta pequeña muestra una correlación
fuerte y positiva entre los rendimientos escolares (calificación en Matemáticas) y el ritmo y
la corrección con el que realizaban los distintos retos computacionales de e2s3, aunque
considero que es muy poco tiempo y pocos alumnos para extraer conclusiones acerca de
los aprendizajes.

– En la línea apuntada anteriormente, algún alumno llegó a visibilizar completamente el proceso afirmando «si yo preparo bien un programa en Toolbox, puede hacer las tareas por mí».

– Ha faltado una prueba escrita manual para ver el incremental del aprendizaje alcanzado tras introducir esta batería de tareas con Toolbox.

– También me gustaría probar Toolbox en distintos escenarios:

  1. Que los alumnos realicen tareas con ordenador de manera combinada conforme avanza la asignatura. (Tareas de Estadística con Toolbox, mientras se trabaja el bloque de Estadística en la asignatura).
    2. Desde el punto de vista del docente, como apoyo al proceso de enseñanza, usándolo con PDI/proyector.
    3. Combinando partes escritas con partes con ordenador en tareas/exámenes.

(Escrito a final del curso pasado – junio 2018) El curso próximo esperamos contar con medios informáticos suficientes, más allá de los 12 ultraportátiles de la Escuela TIC 2.0, año 2011, con los que contamos actualmente, para poder ofertar y desarrollar las materias TIC y la optativa que hemos diseñado desde el Departamento, «Matemáticas con ordenador». Tras los resultados obtenidos consideramos que Toolbox se ha ganado ser miembro de pleno derecho del conjunto de herramientas a usar en esa asignatura.

Agradecimiento a todos los coordinadores del pilotaje en los distintos centros por compartir vuestras experiencias a pie de aula; he aprendido mucho de ellas, al equipo UMA por la idea y el desarrollo de tan potente, robusta y versátil herramienta y a la D.G. de Innovación por apostar por ella y por confiar en nosotros para este pilotaje.

Ejemplo de tarea ToolboX

Acerca de ToolboX

La herramienta informática ToolboX (desarrollada en la Universidad de Málaga, en proyecto comandado por Francisco J. Vico, Catedrático en Ciencias de la Computación e IA de la ETS Ingeniería Informática – Universidad de Málaga) disponible en Guadalinex, tiene un amplio potencial como recurso educativo para enseñar a programar y adquirir competencias en la enseñanza preuniversitaria. Cabe destacar su carácter abierto, gratuito, la flexibilidad para que el docente adapte o incorpore nuevos contenidos, en función de sus necesidades y la facilidad de uso tanto en el aula como en el hogar por parte de los estudiantes.

En definitiva, un excelente recurso para ver como la programación ayuda a adquirir competencias, a través del trabajo con diferentes problegramas (problemas + programas), que seguiré utilizando con mis alumnos en el aula y a la cual invito a uniros.
ToolboX en nuestra clase.
Algunas imágenes tomadas durante las sesiones de trabajo con Toolbox en el aula realizando E1 y E2.

Más información
Web de ToolboX

 

Nota: Esta entrada la tenía pendiente desde final del curso pasado, junio’18, y por un motivo u otro la he ido postergando. Mi reciente paso por el I Congreso Iberoamericano de Docentes me ha animado a escribir. Creo que puede ser de utilidad para muchos otros docentes del contexto iberoamericano que quieran introducir el pensamiento computacional en sus aulas y, de manera especial, para los docentes de los más de 500 centros andaluces que han iniciado su andadura durante el presente curso en el programa PRODIG.

Comparte MatemáTICas: 1,1,2,3,5,8,13,...

Formulario de Probabilidad

Comparte MatemáTICas: 1,1,2,3,5,8,13,...

En esta entrada os comparto formulario elaborado con Google Drive con cuestiones relativas a lo estudiado en clase sobre Probabilidad.

#FelizAprendizaje y buen fin de semana.

 

Comparte MatemáTICas: 1,1,2,3,5,8,13,...

1/a + 1/b = 1/2018 – Resolución algebraica y comprobación con Scratch

Comparte MatemáTICas: 1,1,2,3,5,8,13,...

Esta tarde, @fleonsotelo nos planteaba en timeline de Twitter el siguiente problema:

Tras un rato de diversión 🙂 (aunque no lo creas, los matemáticos disfrutamos con estas cosas), he dado con las soluciones (comparto el proceso de resolución paso a paso):


1/a+1/b=1/2018.pdf

y he elaborado un pequeño programa en Scratch que nos permite comprobar que son correctas:

 

Comparte MatemáTICas: 1,1,2,3,5,8,13,...
WP2Social Auto Publish Powered By : XYZScripts.com