El nuevo currículo de Matemáticas de la LOMLOE, tiene como líneas principales en la definición de las competencias específicas de matemáticas: la resolución de problemas y las destrezas socioafectivas.
En la introducción de la materia se recoge literalmente:
La investigación en didáctica ha demostrado que el rendimiento en matemáticas puede mejorar si se cuestionan los prejuicios y se desarrollan emociones positivas hacia las matemáticas. Por ello, el dominio de destrezas socioafectivas como identificar y manejar emociones, afrontar los desafíos, mantener la motivación y la perseverancia y desarrollar el autoconcepto, entre otras, permitirá al alumnado aumentar su bienestar general, construir resiliencia y prosperar como estudiante de matemáticas.
Por otro lado, resolver problemas no es solo un objetivo del aprendizaje de las matemáticas, sino que también es una de las principales formas de aprender matemáticas. En la resolución de problemas destacan procesos como su interpretación, la traducción al lenguaje matemático, la aplicación de estrategias matemáticas, la evaluación del proceso y la comprobación de la validez de las soluciones. Relacionado con la resolución de problemas se encuentra el pensamiento computacional. Este incluye el análisis de datos, la organización lógica de los mismos, la búsqueda de soluciones en secuencias de pasos ordenados y la obtención de soluciones con instrucciones que puedan ser ejecutadas por una herramienta tecnológica programable, una persona o una combinación de ambas, lo cual amplía la capacidad de resolver problemas y promueve el uso eficiente de recursos digitales.
En este nuevo paradigma curricular se hace necesario poner la mirada en lo que la investigación educativa ha caracterizado como buenos resolutores de problemas, así como aquellos alumnos que presentan dificultades a la hora para resolver problemas matemáticos.
Características de los buenos resolutores de problemas
Al elaborar recomendaciones para la enseñanza de la resolución de problemas en matemáticas, muchos investigadores se han fijado en las características de los excelentes solucionadores de problemas (véase, por ejemplo, Erbas & Okur (2012); Jitendra et al. (2015); Lucangeli, Coi, & Bosco (1997); Scheid (1993); Schoenfeld (1992) (2013); Stillman & Galbraith (1998)).
De estos trabajos se deduce que los buenos resolutores de problemas en matemáticas:
- Tienen conocimientos bien conectados y estructurados (no aislados).
- Tienden a centrarse en las características estructurales de los problemas y perciben esas estructuras con rapidez y con precisión.
- Reconocen patrones al dar sentido a los problemas.
- Tienen éxito a la hora de controlar y regular sus esfuerzos.
- Muestran flexibilidad durante la resolución de problemas.
- Tienen una buena capacidad de estimación (predicción).
- Tienden a utilizar procesos potentes relacionados con el contenido (en lugar de los generales).
- Muestran actitudes beneficiosas como la persistencia y la curiosidad.
- Utilizan una serie de estrategias de forma eficaz y son capaces de cambiar de estrategia según sea necesario.
- Utilizan la verificación metacognitiva para asegurarse de que responden a la(s) pregunta(s).
- Son capaces de generar descripciones completas de su trabajo en los problemas.
- Aprenden de cada experiencia de resolución de problemas.
Características de los alumnos que presentan dificultades a la hora para resolver problemas matemáticos.
Por otro lado, trabajos como los de Fuchs et al. (2010), Gersten et al. (2009) y Shin & Bryant (2013);van Garderen, Scheurermann y Jackson (2012); Andersson (2008); Swanson, Jerman y Zheng (2008); Montague & Applegate (1993); Cook & Riser (2005), también nos permiten conocer algunas de las características comunes que presentan los alumnos que tienen dificultades para resolver problemas matemáticos.
- Suelen malinterpretar el lenguaje de los problemas.
- No son capaces de distinguir la información importante de la irrelevante.
- Tienen dificultades para seleccionar los algoritmos adecuados.
- No son capaces de generalizar estrategias entre tipos de problemas.
- Los solucionadores de problemas deficientes tienen problemas para representar la información de los problemas en diagramas u otros modelos, y a menudo se basan en la historia superficial del problema o en estrategias de solución menos sofisticadas como ensayo y error.
- Estos estudiantes pueden tener déficits en la memoria de trabajo y la atención, lo que afecta a su concentración en los aspectos importantes de un problema y seguimiento de la selección de operaciones y la realización de cálculos de varios pasos.
- Los alumnos que resuelven mal los problemas suelen tener lagunas en la comprensión de los conceptos matemáticos, un déficit que les impide establecer conexiones y reconocer patrones. Utilizan menos estrategias metacognitivas para planificar, ejecutar y supervisar su trabajo.
- Los malos resolutores de problemas dedican menos tiempo a comprender el problema y a traducirlo en representaciones útiles. Tienden a «coger los números» y a realizar las operaciones operaciones familiares sin dar sentido al problema y a sus resultados.
El conocimiento obtenido durante los últimos años es de gran valor para los profesores de matemáticas. Disponer de estos catálogos nos permitirán diagnosticar y redirigir la acción didáctica en el aula, para una mejor atención educativa a nuestro alumnado. Espero que sea de utilidad y le saques partido en el aula.
Más contenido matemático en redes sociales
- Youtube: https://www.youtube.com/c/luismiglesias
- Facebook: https://www.facebook.com/matematicas11235813/
- Twitter: http://twitter.com/luismiglesias
- Blog: https://matematicas11235813.luismiglesias.es