El cerebro existe para resolver problemas. Es su razón de ser.
Video 



El cerebro existe para resolver problemas. Es su razón de ser.
Un buen problema vale más por las ideas que despierta que por la respuesta que guarda.
Luis M. Iglesias (2025) · MatemáTICas: 1,1,2,3,5,8,13,…
Una partitura que parece un juego. Un dibujo que suena. Un cuadrado que no acaba nunca…
Así es The Infinite Square (1975), una obra del compositor cubano-estadounidense Aurelio de la Vega, al que descubrí hace algún tiempo. Aurelio es una de esas mentes que supo entrelazar arte, azar y abstracción con una libertad que parece nacida del mismo espíritu que impulsa a un matemático cuando imagina infinitos caminos en un tablero finito.
Nacido en La Habana en 1925 y fallecido en California en 2022, De la Vega forma parte de esa constelación de creadores que apostaron por una música gráfica. Entre 1975 y 1977 dibujó, coloreó a mano y diseñó un conjunto de partituras que son auténticos paisajes sonoros por descubrir.
The Infinite Square no está compuesta para una formación concreta, sino “para cualquier número de instrumentos y/o voces”. En la versión que puedes escuchar aquí, el cuadrado cobra vida gracias a una flauta, un oboe, un saxofón alto y un clarinete bajo, dibujando un espacio sonoro cambiante, libre, casi como un plano de una ciudad donde las rutas se improvisan.
Y ahí están las matemáticas, sin necesidad de que se aparezcan en foma de números.
Cada interpretación es distinta. Como en la matemática combinatoria, las posibilidades crecen y se expanden. No hay dos cuadrados iguales. No hay un único infinito.
Sin duda alguna nos invita a mirar con los oídos y a escuchar con los ojos convirtiendo al intérprete en creador, y al oyente en coautor, cómplice, de esta nueva creación.
Como ya he comentado en otras entradas de este blog, nos recuerda que las matemáticas también son una forma de arte, y el arte, una forma de pensar con precisión… aunque el camino sea incierto.
🎼 The Infinite Square (1975), de Aurelio de la Vega.🎼
🎷 Interpretado por Simon Desorgher (flauta), Catherine Pluygers (oboe), Adrian Northover (saxofón alto) e Ian Mitchell (clarinete bajo)
Ya lo veis, cuando matemáticas y música se dan la mano, surgen caminos inesperados. El cuadrado infinito (The infinite square) es un buen ejemplo de ello.
El nuevo currículo de Matemáticas de la LOMLOE, tiene como líneas principales en la definición de las competencias específicas de matemáticas: la resolución de problemas y las destrezas socioafectivas.
En la introducción de la materia se recoge literalmente:
La investigación en didáctica ha demostrado que el rendimiento en matemáticas puede mejorar si se cuestionan los prejuicios y se desarrollan emociones positivas hacia las matemáticas. Por ello, el dominio de destrezas socioafectivas como identificar y manejar emociones, afrontar los desafíos, mantener la motivación y la perseverancia y desarrollar el autoconcepto, entre otras, permitirá al alumnado aumentar su bienestar general, construir resiliencia y prosperar como estudiante de matemáticas.
Por otro lado, resolver problemas no es solo un objetivo del aprendizaje de las matemáticas, sino que también es una de las principales formas de aprender matemáticas. En la resolución de problemas destacan procesos como su interpretación, la traducción al lenguaje matemático, la aplicación de estrategias matemáticas, la evaluación del proceso y la comprobación de la validez de las soluciones. Relacionado con la resolución de problemas se encuentra el pensamiento computacional. Este incluye el análisis de datos, la organización lógica de los mismos, la búsqueda de soluciones en secuencias de pasos ordenados y la obtención de soluciones con instrucciones que puedan ser ejecutadas por una herramienta tecnológica programable, una persona o una combinación de ambas, lo cual amplía la capacidad de resolver problemas y promueve el uso eficiente de recursos digitales.
En este nuevo paradigma curricular se hace necesario poner la mirada en lo que la investigación educativa ha caracterizado como buenos resolutores de problemas, así como aquellos alumnos que presentan dificultades a la hora para resolver problemas matemáticos.
Mostrar presentación: Ejercicios vs. Problemas · MatemáTICas: 1,1,2,3,5,8,13,…
Más contenido matemático en redes sociales
Los pasados días 4 y 5 de octubre tuvo lugar en la Facultad de Educación del Campus de Cuenca de la Universidad de Castilla La Mancha, el V Día Nacional Geogebra, organizado por la Federación Española de Sociedades de Profesores de Matemáticas (FESPM), con el apoyo de distintas administraciones.
Fueron dos días intensos de aprendizaje y compartiendo con colegas de todo el territorio nacional en torno a la mejora de la Educación Matemática con ayuda de esta potente herramienta digital y los excelentes recursos digitales compartidos por la comunidad docente mundial.
INTEGRACIÓN DE GEOGEBRA Y PYTHON: PYGGB. EXPLORANDO NUEVAS FRONTERAS EN LA ENSEÑANZA Y EN EL APRENDIZAJE DE LAS MATEMÁTICAS
Luis Miguel Iglesias Albarrán
lu***********@***il.com · https://luismiglesias.es
IES San Antonio (Bollullos Par del Condado – Huelva) · EspañaNivel educativo: Educación Secundaria Obligatoria y Bachillerato
Palabras clave: GeoGebra, Python, Pensamiento Computacional, Competencias Específicas
Resumen
En el marco del V Día GeoGebra en España, presentamos PyGgb, una poderosa combinación de GeoGebra y Python que abre nuevas posibilidades para la Enseñanza y para el Aprendizaje de las Matemáticas. GeoGebra es una herramienta ampliamente utilizada por la comunidad educativa matemática, y de otras disciplinas, a nivel mundial, para visualizar y apoyar las explicaciones facilitando la comprensión e interpretación de los conceptos matemáticos, modelizar fenómenos y situaciones de la vida real,… Por otra parte, Python es un lenguaje de programación versátil y popular en la ciencia de datos y la automatización. La herramienta PyGgb es un puente que conecta estas dos potentes herramientas, permitiendo a los usuarios, en nuestro caso profesores y alumnos, aprovechar lo mejor de ambos mundos.Libro Geogebra: https://www.geogebra.org/m/mzzmnwus
Las palabras de mi amigo Juan Martínez-Tébar Giménez, merecen mención especial: «De Huelva me encantan las gambas , el jamón
y Luismi
»
.
Los próximos días 4 y 5 de octubre tendrá lugar en Cuenca el V Día Nacional Geogebra, organizado por la Federación Española de Sociedades de Profesores de Matemáticas (FESPM), con el apoyo de distintas administraciones. Serán dos días intensos compartiendo con colegas de todo el territorio nacional en torno a esta potente y versátil herramienta, fundamental para el desarrollo de los procesos de Enseñanza-Aprendizaje en las aulas de todo el mundo.
Además compartir buenos ratos de tertulia matemática con los compañeros, aprender en sus talleres y conferencias, tendré la oportunidad de impartir un taller, en la mañana del sábado día 5, sobre PyGGb = Python + Geogebra.
INTEGRACIÓN DE GEOGEBRA Y PYTHON: PYGGB. EXPLORANDO NUEVAS FRONTERAS EN LA ENSEÑANZA Y EN EL APRENDIZAJE DE LAS MATEMÁTICAS
Luis Miguel Iglesias Albarrán
lu***********@***il.com · https://luismiglesias.es
IES San Antonio (Bollullos Par del Condado – Huelva) · EspañaNivel educativo: Educación Secundaria Obligatoria y Bachillerato
Palabras clave: GeoGebra, Python, Pensamiento Computacional, Competencias Específicas
Resumen
En el marco del V Día GeoGebra en España, presentamos PyGgb, una poderosa combinación de GeoGebra y Python que abre nuevas posibilidades para la Enseñanza y para el Aprendizaje de las Matemáticas. GeoGebra es una herramienta ampliamente utilizada por la comunidad educativa matemática, y de otras disciplinas, a nivel mundial, para visualizar y apoyar las explicaciones facilitando la comprensión e interpretación de los conceptos matemáticos, modelizar fenómenos y situaciones de la vida real,… Por otra parte, Python es un lenguaje de programación versátil y popular en la ciencia de datos y la automatización. La herramienta PyGgb es un puente que conecta estas dos potentes herramientas, permitiendo a los usuarios, en nuestro caso profesores y alumnos, aprovechar lo mejor de ambos mundos.
ENTRADA SOBRE PyGgb EN MATEMÁTICAS: 1,1,2,3,5,8,13,…
INFORMACIÓN DE LA FESPM SOBRE LOS DÍAS GEOGEBRA
Durante los últimos años se han venido celebrando distintas actividades de formación que tenían como tema de trabajo el uso de este software con fines didácticos, para dar a conocer las posibilidades que a lo largo de sus sucesivas versiones ha ido incorporando.
En particular han sido numerosas las actividades realizadas en torno al programa GeoGebra, tanto en cada Comunidad Autónoma como de carácter más general, entre las que cabe mencionar el Día GeoGebra Iberoamericano celebrado en Madrid en 2017, el I Congreso Internacional GeoGebra de Córdoba, en 2023, o el último Día GeoGebra estatal celebrado en Albacete en 2018.
Desde la FESPM consideramos que es el momento de retomar esta última actividad, aprovechando el éxito del pasado I Congreso internacional, que tendrá continuidad en 2025 con una nueva edición, que en este caso se celebrará en Portugal.
La convocatoria de un Día GeoGebra con carácter estatal servirá para retomar la coordinación entre los distintos Institutos de GeoGebra creados en las distintas comunidades autónomas, con el objetivo de aunar esfuerzos para lograr que se siga trabajando para generalizar el uso de este software como recurso en el aula, de manera que se puedan aprovechar las posibilidades didácticas que ofrece para promover un cambio metodológico en la enseñanza de las matemáticas en los diferentes niveles educativos, desde Educación Infantil hasta Universidad.
Con estos objetivos se propone la celebración de una nueva edición estatal del Día GeoGebra, que tendrá lugar en Cuenca, durante los días 4 y 5 de octubre de 2024.
Navegando por la red me topé con este bonito problema:
«Dos cuadrados y un rectángulo. ¿Cuánto vale el área del rectángulo?»
Tras analizarlo con detalle y resolverlo usando un poco de trigonometría me di cuenta que era bastante más rico de lo que aparentaba y que escondía un bonito invariante geométrico relacionado con él área del cuadrado inicial, independientemente de cuales fueran las áreas de los cuadrados adyacentes dibujados.
Y, en efecto, con ayuda de este magnífico software de geometría dinámica, Geogebra, pude certificar que era cierta mi observación.
Es por ello por lo que he pensado que tal vez sería de utilidad para otros compañeros docentes que quieran trabajarlo en el aula.
Bien como problema aislado, para analizar en detalle y promover un escenario de conjeturas (razonamiento y prueba), para seguir el protocolo de construcción y que los alumnos realicen construcciones del problema con diferentes tamaños, compartan sus resultados y conjeturen,…
Applet interactivo en Geogebra.org
Espero que resulte de utilidad. Ya me contarás qué te parece y si te ha funcionado en el aula.
Saludos y feliz domingo 😉
En esta entrada comparto un ejercicio de estudio de la posición relativa de dos rectas en el plano, apoyado en dos herramientas digitales:
Esta doble resolución favorece la comprensión por parte de nuestro alumnado, así ha ocurrido en Matemáticas B de 4º de ESO, y es por ello por lo que os lo he querido dejar por aquí. Al disponer de la representación gráfica y enfrentarla con la resolución analítica, favorece la conexión intra-matemática entre la ecuación, el significado de los distintos coeficientes y la representación gráfica de la recta.
Posición relativa de rectas en el plano – Resolución gráfica (Pulsar para acceder a Geogebra)
Esto puede ser utilizado para enseñar, proyectando en la Pizarra Digital, o para que el alumnado elabore sus propios productos digitales, favoreciendo el aprendizaje significativo y el desarrollo competencial del mismo.
Espero que resulte de utilidad. Ya me contarás qué te parece y si te ha funcionado en el aula.
Saludos y buen finde 😉
El 12 de mayo es un día de celebración para la comunidad matemática española. Promovido por la Federación Española de Sociedades de Profesores de Matemáticas (FESPM), celebramos un año más el Día Escolar de las Matemáticas.
Este año, el eslogan es «Matemáticas y agricultura» y, como siempre, viene acompañado con un excelente cuadernillo de actividades para trabajar en el aula. Los autores del mismo son Lorenzo J. Blanco Nieto, Juan Guerra Bermejo, Mariano Terrón Villalba, Beatriz Blanco Otano y Antonio Molano Romero, grupo de profesores extremeños, quienes nos muestran diferentes actividades para poder trabajar en torno a esta temática en nuestras clases de matemáticas.
Además de ello, tendrá lugar la conferencia del DEM, que estará a cargo del profesor Lorenzo J. Blanco Nieto. Será el día 10 de mayo, viernes, a las 10:30 de la mañana. La conferencia se incluirá en los actos de celebración del 25 aniversario de la Sociedad de Educación Matemática de la Región de Murcia, SEMRM, y se impartirá en directo desde la Facultad de Matemáticas de la Universidad de Murcia.
La conferencia se podrá seguir en directo a través del siguiente enlace a la plataforma Zoom:
Enlace a la conferencia del DEM 2024: https://us06web.zoom.us/j/88116144875
Tras la conferencia, la SEMRM ha preparado una actividad para el alumnado asistente a la misma en el Campus Espinardo, con actividades relacionadas con la conferencia.
Día Escolar de las Matemáticas
MÁS CONTENIDO MATEMÁTICO EN REDES SOCIALES