Música y matemáticas se dan la mano en el cuadrado infinito (The infinite square)

Comparte MatemáTICas: 1,1,2,3,5,8,13,...

Una partitura que parece un juego. Un dibujo que suena. Un cuadrado que no acaba nunca…

Así es The Infinite Square (1975), una obra del compositor cubano-estadounidense Aurelio de la Vega, al que descubrí hace algún tiempo. Aurelio es una de esas mentes que supo entrelazar arte, azar y abstracción con una libertad que parece nacida del mismo espíritu que impulsa a un matemático cuando imagina infinitos caminos en un tablero finito.

Nacido en La Habana en 1925 y fallecido en California en 2022, De la Vega forma parte de esa constelación de creadores que apostaron por una música gráfica. Entre 1975 y 1977 dibujó, coloreó a mano y diseñó un conjunto de partituras que son auténticos paisajes sonoros por descubrir.

The Infinite Square no está compuesta para una formación concreta, sino “para cualquier número de instrumentos y/o voces”. En la versión que puedes escuchar aquí, el cuadrado cobra vida gracias a una flauta, un oboe, un saxofón alto y un clarinete bajo, dibujando un espacio sonoro cambiante, libre, casi como un plano de una ciudad donde las rutas se improvisan.

Y ahí están las matemáticas, sin necesidad de que se aparezcan en foma de números.

  • El cuadrado, representando simetría y estructura.
  • El infinito, concepto matemático que tanto inquieta, al tiempo que seduce.
  • La indeterminación, tan propia de las matemáticas como de la música aleatoria.

Cada interpretación es distinta. Como en la matemática combinatoria, las posibilidades crecen y se expanden. No hay dos cuadrados iguales. No hay un único infinito.

Sin duda alguna nos invita a mirar con los oídos y a escuchar con los ojos convirtiendo al intérprete en creador, y al oyente en coautor, cómplice, de esta nueva creación.

Como ya he comentado en otras entradas de este blog, nos recuerda que las matemáticas también son una forma de arte, y el arte, una forma de pensar con precisión… aunque el camino sea incierto.

🎼 The Infinite Square (1975), de Aurelio de la Vega.🎼 

🎷 Interpretado por Simon Desorgher (flauta), Catherine Pluygers (oboe), Adrian Northover (saxofón alto) e Ian Mitchell (clarinete bajo)

Ya lo veis, cuando matemáticas y música se dan la mano, surgen caminos inesperados. El cuadrado infinito (The infinite square) es un buen ejemplo de ello.

Más contenido matemático en redes sociales

Comparte MatemáTICas: 1,1,2,3,5,8,13,...

Inteligencia Artificial de Claude para docentes. Simulador resolución de triángulos rectángulos elaborado con Claude · IA de Anthropic

Comparte MatemáTICas: 1,1,2,3,5,8,13,...

Los conceptos trigonométricos y la resolución de triángulos representan un pilar fundamental en el último curso de secundaria y bachillerato. Sin embargo, estos conceptos suelen generar dificultades de comprensión para muchos alumnos debido a su naturaleza abstracta. 

El uso de pequeñas calculadoras y artefactos digitales, como los applets interactivos o los simuladores ofrecen una interactividad y ayudan a facilitar a la comprensión a través de la representación visual, obteniendo además retroalimentación inmediata.

Apoyándome en Claude, la inteligencia artificial de Anthropic, he elaborado un simulador para mis alumnos de 4º de ESO, el cual comparto en esta entrada.

Continuando la serie de vídeos relativos al uso didáctico de la IA, en esta nueva entrada comparto un vídeo para trabajar saberes básicos relacionados con el sentido de la medida y el sentido espacial en Matemáticas B de 4º de ESO, aunque también de aplicación en 1º de Bachillerato.

B. Sentido de la medida.

1. Medición.

− Razones trigonométricas de un ángulo agudo y sus relaciones: aplicación a la resolución de problemas.

 

C. Sentido espacial.

1. Figuras geométricas de dos y tres dimensiones.

− Propiedades geométricas de objetos matemáticos y de la vida cotidiana: investigación con programas de geometría dinámica.

4. Visualización, razonamiento y modelización geométrica.

− Modelos geométricos: representación y explicación de relaciones numéricas y algebraicas en situaciones diversas.

− Modelización de elementos geométricos con herramientas tecnológicas como programas de geometría dinámica, realidad aumentada….

− Elaboración y comprobación de conjeturas sobre propiedades geométricas mediante programas de geometría dinámica u otras herramientas.

En esta ocasión vamos a presentar un simulador para resolver triángulos rectángulos. Os dejo a continuación enlace al mismo y un pequeño vídeo explicativo mostrando su uso. Espero que os guste y os resulte de utilidad para vuestras clases. Estaré encantado de leer tus comentarios aquí en el blog, en Youtube o en otras redes sociales.

Características del simulador de triángulos rectángulos y fundamento didáctico 

El simulador presenta las siguientes funcionalidades:

  • Interfaz intuitiva para introducir al menos dos valores conocidos del triángulo.
  • Cálculo automático de todos los elementos restantes del triángulo rectángulo.
  • Visualización dinámica que se actualiza según los datos introducidos.
  • Representación gráfica clara con etiquetas de ángulos y longitudes.
  • Información complementaria sobre definiciones geométricas relevantes.
  • Aplicación práctica del Teorema de Pitágoras y relaciones trigonométricas.

Simulador resolución de triángulos rectángulos elaborado con Claude · IA de Anthropic

Pulsa en la imagen o aquí para acceder y usar el simulador 

Si consideras interesante este ejemplo puedes suscribirte al blog para estar informado por correo electrónico de las nuevas publicaciones o a mi canal de Youtube donde iré publicando todo aquello que me sea posible compartir para sacarle partido a la IA en el aula.

Seguiré informando de los avances 🙂

Ya me contarás qué te han parecido estas propuestas de aprendizaje y enseñanza apoyadas en la Inteligencia Artificial Generativa, en este caso de Claude, así como en los otros de ChatGPT,…

Seguimos…

Más contenido matemático en redes sociales

Comparte MatemáTICas: 1,1,2,3,5,8,13,...

Vídeo: Problemas de ecuaciones de primer grado con una incógnita · Diagrama de cinta

Comparte MatemáTICas: 1,1,2,3,5,8,13,...

En esta entrada comparto un vídeo mostrando el proceso de resolución de un problema en el que usamos una ecuación de primer grado con una variable (incógnita), apoyado en un recurso extraordinariamente visual como el diagrama de cinta.

Vídeo explicativo

Aprovecho la ocasión para compartir una entrada anterior sobre este recurso. 

Diagramas de cinta y ecuaciones asociadas. Sentido algebraico. Desmos

MÁS CONTENIDO MATEMÁTICO EN REDES SOCIALES

Comparte MatemáTICas: 1,1,2,3,5,8,13,...

Vídeo y applet GeoGebra. Producto de binomios algebraicos · Representación usando un modelo de área

Comparte MatemáTICas: 1,1,2,3,5,8,13,...

Comparto vídeo y applet interactivo de GeoGebra, diseñado para facilitar que los alumnos comprendan el producto de binomios algebraicos mediante un modelo de área. Este recurso permite construir monomios y binomios, y explorar su producto de forma visual e intuitiva.

El modelo de área ofrece una representación gráfica que ayuda a los estudiantes a visualizar cómo se combinan los términos al multiplicar binomios, facilitando así la comprensión de las propiedades algebraicas involucradas.

Los alumnos pueden interactuar con los deslizadores del applet modificando los valores de los coeficientes para construir diferentes binomios y observar en tiempo real cómo se forman los productos correspondientes. Además, el recurso se plantea preguntas abiertas que invitan a reflexionar sobre la relación entre las partes del modelo de área y el producto de los binomios, fomentando el pensamiento crítico y la autoevaluación.​

Con un diseño limpio y claro, una de las principales ventajas de este recurso es que permite a los alumnos experimentar de forma lúdica y aprender sin temor a cometer errores, ya que pueden probar diferentes estrategias y recibir retroalimentación inmediata. Esto enriquece su razonamiento matemático y refuerza su confianza en la resolución de problemas.​

Este recurso es muy útil para enseñar y aprender el producto de binomios algebraicos de forma interactiva y atractiva.

Os animo a usarlo, tanto a profesores como a alumnos y familias, aprovechando las oportunidades que ofrece para reforzar el aprendizaje del álgebra.

Vídeo. Producto de binomios algebraicos – Representación usando un modelo de área

Enlace al vídeo en Youtube. Canal MatemáTICas: 1,1,2,3,5,8,13,…

Applet Geogebra. Producto de binomios algebraicos – Representación usando un modelo de área

Enlace a la actividad en geogebra.org

Más contenido matemático en redes sociales

Comparte MatemáTICas: 1,1,2,3,5,8,13,...

Vídeo: Problemas de ecuaciones de primer grado con una incógnita · Balanza

Comparte MatemáTICas: 1,1,2,3,5,8,13,...

En esta entrada comparto un vídeo mostrando el proceso de resolución de un problema en el que usamos una ecuación de primer grado con una variable (incógnita), apoyado en un recurso extraordinariamente visual como la balanza.

Vídeo explicativo

MÁS CONTENIDO MATEMÁTICO EN REDES SOCIALES

Comparte MatemáTICas: 1,1,2,3,5,8,13,...

XIX CEAM Thales Huelva · Matemáticas y Multiculturalidad (12 al 14 de abril de 2025)

Comparte MatemáTICas: 1,1,2,3,5,8,13,...

La Sociedad Andaluza de Educación Matemática Thales, y en particular la delegación de Huelva, te damos la bienvenida a la web de XIX Congreso de Enseñanza y Aprendizaje de las Matemáticas (CEAM) que estamos preparando para celebrar entre el 12 y el 14 de abril de 2025. En el menú de esta web podrás encontrar toda la información relativa al mismo: la sede, los comités, el programa, etc. 

Desde ya te invitamos a que te inscribas y a que envíes tus propuestas de comunicaciones, talleres, pósteres y/o zoco relacionadas con los tópicos del congreso para que puedan ser valoradas por el comité científico (para poder enviar trabajos es necesario estar registrado en la web). Aquí puedes consultar las instrucciones para la presentación de trabajos.

WEB del XIX CEAM

El pase de diapositivas requiere JavaScript.

XIX CEAM: Primer anuncio

La SAEM Thales está preparando su XIX Congreso de Enseñanza y Aprendizaje de Matemáticas (CEAM), que se celebrará en Huelva del 12 al 14 de abril de 2025 y que pondrá su foco en la multiculturalidad del quehacer matemático.

¡¡Esperamos contar con tu presencia!!

Os presentamos el segundo anuncio de nuestro CEAM a la vez que la esta web, que usaremos para informar de todo lo relacionado con él. En este segundo anuncio justificamos el lema del congresoMATEMÁTICAS Y MULTICULTURALIDAD. Una aproximación dinámica, presentamos los comités, los tópicos del congreso, los tipos de trabajos que pueden presentarse en él y el formulario de inscripción en la web (previo al envío de colaboraciones) y las cuotas.

Seguimos…

El tema elegido, “Matemáticas y multiculturalidad”, busca profundizar en la visión de las matemáticas a menudo demasiado positivista, centrada en nuestra Comunidad Autónoma que puede extenderse a España, y algunos países de la UE, en el que se puede afirmar que existe una cierto abandono e ignorancia de las prácticas y saberes culturales y sociales.

Presentamos el tercer anuncio de nuestro 19 CEAM, simultáneamente en la web y en la revista EPSILON. En este tercer anuncio aparece: a) fechas y sede; b) tópicos; c) conferencias plenarias; d) programa provisional; e) programa de acompañantes; f) alojamiento; g) cena de gala; i) segunda edición premios 19 CEAM, TFG y TFM; j) cuotas e inscripción del congreso; k) comité organizador:

Ampliado el plazo de presentación de trabajos hasta el 16 de marzo

¡¡Nos vemos en Huelva!!

Te esperamos… 

Comparte MatemáTICas: 1,1,2,3,5,8,13,...

Artículo en Revista Uno de Graó · LingMáTICas. Estrategias de comunicación para fomentar el razonamiento matemático y la resolución de problemas

Comparte MatemáTICas: 1,1,2,3,5,8,13,...
Queridos amigos, asomo por aquí para compartir una buena noticia. Hace unos días recibí el nº 106 de la revista Uno de GRAÓ, especializada en Didáctica de las Matemáticas desde 1994, en el cual se incluye uno de mis últimos trabajos.
 
Concretamente se trata un artículo que lleva por título: «LingMáTICas. Estrategias de comunicación para fomentar el razonamiento matemático y la resolución de problemas» (pp. 44-53), estrechamente relacionado con la propuesta metodológica que vengo desarrollando en el aula desde hace casi dos décadas.
 

LingMáTICas. Estrategias de comunicación para fomentar el razonamiento matemático y la resolución de problemas

Este artículo presenta LingMáTICas, una metodología educativa desarrollada por Luis Miguel Iglesias que integra la competencia lingüística en el aula de matemáticas con el apoyo de las TIC. En este marco plantea una propuesta para su implantación en el aula que promueve el discurso y el diálogo como herramientas clave para mejorar la comunicación, el razonamiento matemático y fomentar un ambiente colaborativo de aprendizaje. LingMáTICas y la citada propuesta se alinean con las competencias específicas del currículo LOMLOE, facilitando la resolución de problemas, la argumentación y la representación de ideas matemáticas. A través de ejemplos de preguntas categorizadas, el artículo ilustra cómo fomentar la reflexión, la metacognición y la interacción productiva en el aula. El corolario final, a modo de llamada ala acción, invita a los profesores a implementar LingMáTICas, resaltando su eficacia en la enseñanza inclusiva y su capacidad para mejorar la comprensión matemática a través del lenguaje.

El pase de diapositivas requiere JavaScript.

 

Este tipo de noticias, recargan el tanque de combustible emocional y animan a seguir…
 

Sobre Uno 

Uno es una revista especializada en la didáctica de las matemáticas, publicada por la editorial Graó. Su objetivo principal es contribuir al desarrollo profesional del profesorado de matemáticas, ofreciendo contenidos teóricos y prácticos que faciliten el trabajo diario en el aula. La revista sirve como un espacio para la autoformación y el intercambio de propuestas didácticas, permitiendo trasladar ideas educativas innovadoras a la práctica escolar. En sus páginas, se pueden encontrar contenidos específicos sobre matemáticas desde una perspectiva interdisciplinaria y globalizadora, así como propuestas basadas en metodologías innovadoras como STEAM o gamificación. También aborda temas como la educación matemática y el desarrollo sostenible, juegos matemáticos y la evaluación de la competencia matemática.

Uno está dirigida al profesorado de matemáticas de todas las etapas educativas, especialmente de educación secundaria y bachillerato, así como a estudiantes del Máster de Secundaria, el grado de Magisterio y el grado de Pedagogía. Además, es de interés para centros de formación del profesorado y bancos de recursos didácticos, y para todas aquellas personas que desean descubrir propuestas y recursos matemáticos innovadores.

Acerca de LingMáTICas

Los lectores de este blog conocen bien mi predilección por vincular lengua y matemáticas. Ello me llevó hace más de una década a bautizarla. Es decir, a buscar un término, un palabro, con el que poder categorizarlas. Le llamé LingMáTICas.

Así, definí LingMáTICas como el conjunto de propuestas didácticas, contextos de aprendizaje, encaminados a fortalecer la competencia lingüística, en todos sus ámbitos, desde el aula de matemáticas, con ayuda de la tecnología (TIC).

Definición de LingMáTICas. Luis M. Iglesias

Más contenido matemático en redes sociales

Comparte MatemáTICas: 1,1,2,3,5,8,13,...

Juego de algebra pictórica para promover el razonamiento matemático, con Geogebra. Sistemas de ecuaciones 3×3

Comparte MatemáTICas: 1,1,2,3,5,8,13,...
Comparto este applet interactivo elaborado con GeoGebra, para introducir a los alumnos en la resolución de sistemas de ecuaciones lineales con tres incógnitas mediante puzles lógicos. Este recurso facilita la comprensión de estos sistemas de forma visual e intuitiva, a partir de representaciones pictóricas, promoviendo el razonamiento matemático.

Su uso es sencillo: los alumnos pueden interactuar con los elementos del applet para encontrar las soluciones que satisfacen todas las ecuaciones del sistema. Además, el applet permite generar múltiples actividades de forma aleatoria, ofreciendo una variedad ilimitada de ejercicios para reforzar el aprendizaje.

Con un diseño limpio y claro, permite colocarlo a pantalla completa pulsando el cuadrado con borde discontinuo ubicado en la esquina inferior derecha.

Este recurso es de gran utilidad para enseñar y aprender la resolución de sistemas de ecuaciones lineales con tres incógnitas de forma interactiva y atractiva. Una de las principales ventajas de este juego es que permite a los alumnos experimentar de forma lúdica y aprender sin temor a cometer errores. Los alumnos pueden probar diferentes estrategias y recibir retroalimentación inmediata. Esto enriquece su razonamiento matemático y refuerza su confianza en la resolución de problemas.

Juego de algebra pictórica. Sistemas de ecuaciones 3×3

 

Enlace a la actividad en geogebra.org

Más contenido matemático en redes sociales

Comparte MatemáTICas: 1,1,2,3,5,8,13,...

Resolución ecuaciones primer grado (2 pasos – Tipo: ax + b = c) · Balanza · GeoGebra

Comparte MatemáTICas: 1,1,2,3,5,8,13,...

En esta entrada comparto un vídeo mostrando el proceso de resolución ecuaciones de primer grado con una variable (incógnita), apoyado en un recurso extraordinariamente visual como la balanza, con un applet interactivo realizado con Geogebra.

Con él se pretende mostrar al alumnado el proceso de resolución de ecuaciones de primer grado de dos pasos (del tipo ax + b = c). En el vídeo se muestra la interacción con el applet en varios ejemplos.

Vídeo explicativo

MÁS CONTENIDO MATEMÁTICO EN REDES SOCIALES

Comparte MatemáTICas: 1,1,2,3,5,8,13,...

Transformemos juntos nuestras concepciones docentes sobre la resolución de problemas matemáticos

Comparte MatemáTICas: 1,1,2,3,5,8,13,...

La transformación de nuestras concepciones como docentes es una tarea continua y esencial para mejorar la calidad educativa en el aula. Nuestras creencias y prácticas impactan directamente en cómo nuestros alumnos aprenden matemáticas y perciben su utilidad.

En el nuevo marco normativo, autonómico andaluz y estatal, derivado de la implantación de la LOMLOE, la resolución de problemas se posiciona como una herramienta metodológica clave, no solo para enseñar contenidos, sino también para desarrollar el razonamiento, la comunicación y la autonomía de nuestros alumnos.

Durante mi intervención en las Jornadas para el Impulso del Razonamiento Matemático en Andalucía, celebradas en Málaga y Córdoba hace un par de semanas, reflexionamos, entre otros aspectos, sobre cómo nuestras concepciones sobre los problemas pueden influir sobre la manera en qué los enseñamos, qué tipo de problemas enseñamos y cómo/qué aprenden nuestros alumnos.

El nuevo currículo de Matemáticas derivado de la implantación de la LOMLOE tiene como líneas principales en la definición de las competencias específicas de matemáticas la resolución de problemas y las destrezas socioafectivas. En la introducción de la materia se recoge literalmente:

La investigación en didáctica ha demostrado que el rendimiento en matemáticas puede mejorar si se cuestionan los prejuicios y se desarrollan emociones positivas hacia las matemáticas. Por ello, el dominio de destrezas socioafectivas como identificar y manejar emociones, afrontar los desafíos, mantener la motivación y la perseverancia y desarrollar el autoconcepto, entre otras, permitirá al alumnado aumentar su bienestar general, construir resiliencia y prosperar como estudiante de matemáticas.

Por otro lado, resolver problemas no es solo un objetivo del aprendizaje de las matemáticas, sino que también es una de las principales formas de aprender matemáticas. En la resolución de problemas destacan procesos como su interpretación, la traducción al lenguaje matemático, la aplicación de estrategias matemáticas, la evaluación del proceso y la comprobación de la validez de las soluciones. Relacionado con la resolución de problemas se encuentra el pensamiento computacional. Este incluye el análisis de datos, la organización lógica de los mismos, la búsqueda de soluciones en secuencias de pasos ordenados y la obtención de soluciones con instrucciones que puedan ser ejecutadas por una herramienta tecnológica programable, una persona o una combinación de ambas, lo cual amplía la capacidad de resolver problemas y promueve el uso eficiente de recursos digitales.

En este nuevo paradigma curricular, reforzado aún más si cabe en Andalucía con las Instrucciones de Razonamiento Matemático (18 junio 2024), se hace necesario poner la mirada en lo que la investigación educativa ha caracterizado como concepciones docentes sobre la resolución de problemas matemáticos.

Este artículo surge de los comentarios positivos que me han trasladado, por diferentes vías y redes sociales, muchos compañeros y compañeras de diferentes colegios e institutos de la geografía andaluza que acudieron a alguna de las jornadas o que han visto las grabaciones de las mismas, así como del interés común mostrado por la resolución de problemas y las concepciones que tenemos sobre ellas. Me reitero en mi opinión, como profesor de matemáticas e investigador en didáctica de la matemática, que este aspecto es crucial porque las concepciones afectan directamente tanto al proceso de enseñanza como al aprendizaje de nuestros alumnos.

Esta entrada en «el sitio de mi recreo», que no es otro que este blog de Matemáticas, no pretende ser más que una invitación a reflexionar, a compartir estrategias y a avanzar hacia una enseñanza más centrada en la resolución de problemas como eje vertebrador del aprendizaje matemático.

Ahora bien, como en todo proceso de transformación, debemos comenzar con una mirada instrospectiva, autocrítica y abierta al cambio, pilares básicos para construir una práctica docente más reflexiva, inclusiva y eficaz. 

A continuación planteo y ofrezco algunas respuestas y reflexiones que espero sean de utilidad para que ¡¡sigamos avanzando juntos!!

Ya me contarás tu opinión. Me interesa y mucho. 

Elaboración propia con DALL-E

PREGUNTAS, RESPUESTAS Y REFLEXIONES SOBRE LAS CONCEPCIONES DEL PROFESORADO SOBRE LA RESOLUCIÓN DE PROBLEMAS 

1. ¿Por qué es importante estudiar las concepciones del profesorado sobre la resolución de problemas?

Es crucial porque estas concepciones determinan cómo enseñamos y cómo los alumnos aprenden. Creencias erróneas, a menudo relacionadas con una formación deficiente, pueden limitar el uso de estrategias efectivas y perpetuar prácticas poco centradas en el desarrollo del pensamiento matemático.

2. ¿Qué tipo de concepciones erróneas sobre la resolución de problemas se detectan?

Actualmente, se identifican los siguientes problemas comunes:

  • Expectativas sobre los alumnos. Subestimación de las capacidades de los alumnos para resolver problemas.
  • Gestión del aula. Dedicamos poco tiempo a la resolución de problemas, priorizando algoritmos y cálculo mecánico.
  • Diversidad cultural. La diversidad, especialmente las dificultades lingüísticas, es vista como una barrera en lugar de una oportunidad.
  • Estrategias matemáticas. Desconocemos y no enseñamos de manera explícita estrategias heurísticas, modelización o aspectos del pensamiento computacional como metodología de resolución de problemas.
  • Comunicación. Aunque reconocemos su importancia, no fomentamos que los alumnos expliquen sus procesos; ni oralmente ni por escrito.
  • Causas de las dificultades. A menudo atribuimos las dificultades a factores externos, en lugar de reflexionar sobre la metodología. 
  • Relevancia del proceso. Consideramos la resolución de problemas como secundaria, sin priorizar el desarrollo de habilidades matemáticas profundas.

3. ¿Qué factores favorecen la transformación de concepciones erróneas?

Los siguientes elementos resultan fundamentales para este proceso de transformación:

  • Toma de conciencia. Observar cómo nuestros alumnos resuelven problemas con éxito y emplean estrategias diversas.
  • Reflexión sistemática y continuada. Revisar y autoevaluar nuestras prácticas docentes.
  • Contraste de metodologías. Experimentar nuevas formas de trabajar, uso de distintas estrategias de resolución de problemas, modelización, investigación guiada, trabajo por proyectos, aprendizaje cooperativo,…

4. ¿Cómo influye la diversidad cultural en la resolución de problemas?

Aunque puede ser un reto, la diversidad cultural presente en nuestras aulas y en nuestros centros educativos es una riqueza que, bien gestionada, favorece el aprendizaje.

Las estrategias cooperativas, el trabajo en equipo en grupos heterogéneos y mixtos, la aceptación de la crítica razonada, el fomento de la perseverancia y una cultura de aprendizaje a partir del error, ayudan a superar barreras lingüísticas y promueven el intercambio de ideas desde diferentes perspectivas.

5. ¿Qué papel desempeña la comunicación en la enseñanza de la resolución de problemas?

Como se puede ver en diversos ejemplos en la presentación que usé, este es un aspecto fundamental y muy presente en mi aula, ya que considero que la comunicación es fundamental para que nuestros alumnos verbalicen sus ideas, compartan estrategias y construyan conocimiento colectivo.

Es de vital importancia dedicar tiempo para fomentar el diálogo y el debate matemático en el aula. 

6. ¿Qué estrategias didácticas mejoran la gestión del aula durante la resolución de problemas?

Entre las más efectivas destacan:

  • Asignar tiempo suficiente a la resolución de problemas.
  • Organizar el trabajo en pequeños grupos.
  • Proporcionar materiales manipulativos.
  • Enseñar estrategias específicas de resolución.
  • Fomentar el debate y la exposición de ideas.

7. ¿Es posible cambiar las concepciones del profesorado sobre la relevancia de la resolución de problemas?

Sí, es posible. Mostrar cómo la resolución de problemas introduce conceptos nuevos, desarrolla el pensamiento matemático y beneficia a nuestros alumnos puede transformar nuestra percepción y darle la importancia que merece.

Compartir nuestras prácticas de aula, en entornos presenciales (departamento, área, grupos de trabajo, jornadas, congresos,…) o virtuales (a través de blogs, redes sociales,…) es una buena opción. Doy fe de ello.

8. ¿Qué se necesita, que aspectos so para lograr una transformación de las concepciones?

Es imprescindible:

  • Espacios para reflexionar y planificar en equipo.
  • Formación continua en didáctica de la matemática.
  • Formación en gestión y dinámicas del aula, así como en aspectos cognitivos y no cognitivos del aprendizaje.
  • Un cambio en la cultura escolar que valore el análisis de la práctica docente y el desarrollo profesional.

FUENTES

  • Real Decreto 217/2022, de 29 de marzo, por el que se establece la ordenación y las enseñanzas mínimas de la Educación Secundaria Obligatoria.
  • Orden de 30 de mayo de 2023, por la que se desarrolla el currículo correspondiente a la etapa de Educación Secundaria Obligatoria en la Comunidad Autónoma de Andalucía, se regulan determinados aspectos de la atención a la diversidad y a las diferencias individuales, se establece la ordenación de la evaluación del proceso de aprendizaje del alumnado y se determina el proceso de tránsito entre las diferentes etapas educativas.
  • Instrucciones sobre las medidas para el fomento del Razonamiento Matemático a través del planteamiento y la resolución de retos y problemas en Educación Infantil, Educación Primaria y Educación Secundaria Obligatoria en Andalucía
  • Pastells, A. A. (2012). Proceso de transformación de las concepciones del Profesorado sobre la resolución de Problemas matemáticos. Enseñanza de las Ciencias. Revista de investigación y experiencias didácticas, 30(3), 71-88.

Comparte MatemáTICas: 1,1,2,3,5,8,13,...
WP2Social Auto Publish Powered By : XYZScripts.com