Competencias Clave

Artículo en Huelva Información · ChatGPT ya hace los deberes. Ahora toca rediseñar la educación

Comparte MatemáTICas: 1,1,2,3,5,8,13,...

El debate sobre el papel de la inteligencia artificial en la educación sigue creciendo y, con él, la necesidad de una reflexión serena y con sentido pedagógico sobre cómo acompañar a nuestros estudiantes en esta nueva era. Fruto de esta preocupación, y también de la convicción de que es momento de construir con criterio, no de censurar por miedo, el periódico Huelva Información publicó el pasado domingo 15 de junio un artículo, tribuna de mi autoría, titulado ChatGPT ya hace los deberes. Ahora toca rediseñar la educación.

Pues esto mismo. Que ChatGPT ya hace los deberes… ahora el reto es rediseñar el sentido de las tareas escolares.

¿Podemos convertir los deberes en experiencias que inviten a pensar, crear, comunicar, emocionar… y no solo a repetir?

En el citado artículo hago una llamada a repensar, con ética y pedagogía, qué significa, en mi opinión, aprender en tiempos de IA.

 

Creo que ha llegado el momento de repensar el tipo de tareas y experiencias de aprendizaje que ofrecemos a nuestros estudiantes. En lugar de seguir proponiendo ejercicios mecánicos y fácilmente replicables por una máquina, es hora de impulsar tareas que fomenten:

  • la comprensión profunda,
  • la comunicación razonada y crítica,
  • la aplicación creativa del conocimiento,
  • la conexión con el entorno y con los desafíos reales.

Pienso que debemos convertir la educación en un proceso auténtico, donde la IA puede sumar pero nunca reemplazar el valor insustituible del pensamiento humano y de la interacción significativa entre personas (docentes-estudiantes).

Tal como subrayo en el texto, el foco debe estar en cómo utilizamos estas tecnologías para empoderar al alumnado, para enriquecer la docencia y para hacer de la escuela un espacio aún más relevante en este nuevo contexto educativo derivado del aterrizaje de la IA. Porque, al fin y al cabo, el reto no es solo tecnológico sino profundamente educativo y ético.

Si deseas leer el artículo completo, puedes acceder a la versión digital publicada aquí: “ChatGPT ya hace los deberes. Ahora toca rediseñar la educación” – Huelva Información.

ChatGPT ya hace los deberes, ahora toca rediseñar la educación

La irrupción de la inteligencia artificial es una oportunidad ahora para afrontar una transformación del trabajo escolar

Luis Miguel Iglesias Albarrán – Licenciado en Ciencias Matemáticas por la Universidad de Sevilla, profesor y director del IES San Antonio de Bollullos Par del Condado.

Durante generaciones, los deberes escolares han sido una extensión del aula. Copiar definiciones, resolver ejercicios rutinarios o memorizar fechas, han ocupado tardes enteras. Pero el mundo ha cambiado. Hoy, en cuestión de segundos y sin apenas esfuerzo, proporcionando una simple instrucción (prompt) a ChatGPT, Gemini o similares, un alumno puede obtener: una redacción, un problema resuelto o un resumen, con una sorprendente corrección formal y un estilo adaptado a su nivel. Pero lo más inquietante, o fascinante, es que la IA seguirá mejorando, haciendo cada vez más difícil saber si una tarea la ha hecho un alumno o una máquina.

¿Tienen sentido entonces los deberes tal como los conocemos? La irrupción de la IA ha cuestionado una práctica que parecía intocable. Pero el problema no es la tecnología, sino el tipo de tareas. Si siguen siendo repetitivas y mecánicas están abocadas a la obsolescencia, porque la IA las resuelve más rápida, mejor, sin cansancio… y con cero estrés.

Tal vez no deban desaparecer, o quizás sí, si solo contribuyen a agravar desigualdades de partida por razones socioeconómicas, o por circunstancias personales o familiares del alumnado. Pero ese es otro debate, muy necesario, vinculado a la equidad y al papel de la educación como verdadero ascensor social.

Lo que sí urge es transformarlos. En lugar de una veintena de operaciones combinadas o una ficha de ecuaciones sin contexto, se podría pedir una explicación didáctica, enriquecida con voz e imágenes, que evidenciara comprensión y capacidad de aplicación en situaciones reales (presupuestos, recetas, estadísticas…). Dicha explicación incluiría, además del proceso seguido, su utilidad y aplicación en varias situaciones problemáticas de la vida cotidiana. Este tipo de tareas no pueden ser resueltas ni defendidas en clase por una IA, porque exigen pensar, comunicar, conectar ideas y emocionar al explicar. Se trata de pasar de la ejecución mecánica al aprendizaje competencial: saber, saber hacer y saber ser, de forma integrada. En este contexto, enfoques como LingMáTICas, que vinculan lengua, matemáticas y TIC, se antojan de gran valor para formar alumnado que razone y se exprese de forma crítica y creativa.

«(Acerca de los deberes escolares) Tal vez no deban desaparecer, o quizás sí, si solo contribuyen a agravar desigualdades»

Este nuevo paradigma, lejos de restar valor al profesorado, realza su papel como mediador imprescindible entre el saber y el verdadero sentido de la educación. Con la formación específica adecuada y el compromiso profesional históricamente demostrado, basta recordar el extraordinario esfuerzo desarrollado en el contexto pandémico de la Covid-19, estará más que capacitado para asumir este reto.

No se trata de competir con la IA, sino de usarla como aliada, con criterio pedagógico y sentido ético, en la atención a la diversidad del alumnado y en la realización de tareas administrativas. Yerran quienes, por desconocimiento o con una intención insana, reducen el debate a IA vs. profesorado. Porque la IA puede corregir una redacción, pero no detectar la inseguridad con la que fue escrita; puede resolver una ecuación, pero no saber si se comprendió el problema; puede sugerir ideas, pero no contagiar entusiasmo. Esta tarea, profundamente humana, sigue estando en manos de quienes educan desde la cercanía, el conocimiento y la vocación.

«La IA puede sugerir ideas, pero no contagiar entusiasmo, como quien educa en la cercanía»

Eso sí, conviene lanzar una advertencia. El uso de estas tecnologías exige formación a la par que prudencia. Son herramientas potentes que llevan aparejadas riesgos éticos, sesgos o usos perjudiciales. Las grandes corporaciones tecnológicas deben garantizar la privacidad y regular su funcionamiento y, desde la escuela, debemos trabajar con alumnado y familias en un proceso alfabetizador para incidir en los aspectos éticos y legales derivados de su uso, promoviendo una cultura digital crítica, segura y responsable para aprovechar todo su potencial, sin desviarnos de los fines educativos que deben guiar su uso.

Para las familias, esta transformación supone también una oportunidad. Durante décadas, los deberes han sido fuente de conflictos y ansiedad en los hogares. La IA podría aliviar esa tensión y ayudar a pasar del control al acompañamiento y del deber impuesto al interés compartido por aprender. Se trata de recuperar la conversación, la curiosidad, así como el valor de preguntar y de descubrir juntos.

Más que hablar del fin de los deberes deberíamos hablar de su renovación profunda. No aporta nada seguir pidiendo al alumnado deberes que una máquina ya realiza en segundos y que bastaría con copiar las respuestas a prompts sencillos con una IA, sin que medie ningún proceso real de comprensión ni de aprendizaje. Hay que proponer desafíos auténticos, tareas abiertas, proyectos en los que se impliquen emocionalmente, que les permitan pensar, comunicarse y poner en juego lo aprendido.

Hace más de medio siglo, Paulo Freire escribió que “enseñar no es transferir conocimiento, sino crear las posibilidades para su producción o construcción”. Esa idea, plasmada con mucha antelación a que contáramos con una IA conversacional como ChatGPT u otras análogas, cobra hoy día más sentido que nunca. La Educación no consiste en acumular respuestas, sino en aprender a hacer preguntas. Y eso, por mucho que avance la tecnología, seguirá dependiendo de la inteligencia humana: de la que piensa, siente, duda, comunica… y educa.

Playlist Youtube. Uso didáctico de la IA

Más contenido matemático en redes sociales

Comparte MatemáTICas: 1,1,2,3,5,8,13,...

Cita: el cerebro existe para resolver problemas

Comparte MatemáTICas: 1,1,2,3,5,8,13,...

 

El cerebro existe para resolver problemas. Es su razón de ser.

Luis M. Iglesias (2025) · MatemáTICas: 1,1,2,3,5,8,13,…

Solo el ejercicio mantiene vivas las capacidades mentales.
Las matemáticas no son solo números: son una forma de pensar, de entender el mundo… de abordar sus problemas y proponer soluciones.
Porque aprender a pensar también es aprender a vivir.
 

Video 🎞️

La capacidad 🧠 de los cuervos 🐦‍⬛ para resolver problemas es 🔝
Comparte MatemáTICas: 1,1,2,3,5,8,13,...

Desarrollo del sentido espacial, y de la medida. Tarea de Suelo Bajo y Techo Alto (SBTA), a partir de interactiva manipulativa con Polypad

Comparte MatemáTICas: 1,1,2,3,5,8,13,...

En esta entrada comparto una sencilla actividad interactiva de clasificación de polígonos, a través de sus representaciones.

Arrastra cada polígono a su casilla: Triángulo, Cuadrilátero, Pentágono o Hexágono.

Esta actividad:

  • Desarrolla el sentido espacial y geométrico, al pedir a los alumnos que distingan polígonos según sus lados y vértices.

  • Favorece la observación y la clasificación visual, habilidades básicas del pensamiento geométrico.

  • Potencia la expresión oral y la argumentación cuando los alumnos verbalizan sus decisiones.

  • Integra el uso de una herramienta digital manipulativa (Polypad).

  • Esta sencilla actividad puede dar pie, posteriormente, a hablar de aspectos como la concavidad y convexidad, intentar generar polígonos regulares correspondientes a cada una de ellas con área similar,… deducir que la suma de los ángulos interiores es igual a S=180·(n-2), siendo n el número de lados a partir de la triangulación de las figuras (para facilitar esto pueden hacerlo con los polígonos regulares, luego irregulares convexos, …). De esta manera estaríamos convirtiendo la misma en una Tarea de tipo Suelo Bajo y Techo Alto.

Espero sea de utilidad para vuestro trabajo a pie de aula y para acompañar a vuestros aprendices en el desarrollo del sentido espacial y el de la medida (ángulos, área,…).

Canva Polypad

 

 

Polypad – Identificar polígonos

 

Comparte MatemáTICas: 1,1,2,3,5,8,13,...

Cita: el valor de un buen problema de matemáticas

Comparte MatemáTICas: 1,1,2,3,5,8,13,...

Un buen problema vale más por las ideas que despierta que por la respuesta que guarda.

Luis M. Iglesias (2025) · MatemáTICas: 1,1,2,3,5,8,13,…

Comparte MatemáTICas: 1,1,2,3,5,8,13,...

Música y matemáticas se dan la mano en el cuadrado infinito (The infinite square)

Comparte MatemáTICas: 1,1,2,3,5,8,13,...

Una partitura que parece un juego. Un dibujo que suena. Un cuadrado que no acaba nunca…

Así es The Infinite Square (1975), una obra del compositor cubano-estadounidense Aurelio de la Vega, al que descubrí hace algún tiempo. Aurelio es una de esas mentes que supo entrelazar arte, azar y abstracción con una libertad que parece nacida del mismo espíritu que impulsa a un matemático cuando imagina infinitos caminos en un tablero finito.

Nacido en La Habana en 1925 y fallecido en California en 2022, De la Vega forma parte de esa constelación de creadores que apostaron por una música gráfica. Entre 1975 y 1977 dibujó, coloreó a mano y diseñó un conjunto de partituras que son auténticos paisajes sonoros por descubrir.

The Infinite Square no está compuesta para una formación concreta, sino “para cualquier número de instrumentos y/o voces”. En la versión que puedes escuchar aquí, el cuadrado cobra vida gracias a una flauta, un oboe, un saxofón alto y un clarinete bajo, dibujando un espacio sonoro cambiante, libre, casi como un plano de una ciudad donde las rutas se improvisan.

Y ahí están las matemáticas, sin necesidad de que se aparezcan en foma de números.

  • El cuadrado, representando simetría y estructura.
  • El infinito, concepto matemático que tanto inquieta, al tiempo que seduce.
  • La indeterminación, tan propia de las matemáticas como de la música aleatoria.

Cada interpretación es distinta. Como en la matemática combinatoria, las posibilidades crecen y se expanden. No hay dos cuadrados iguales. No hay un único infinito.

Sin duda alguna nos invita a mirar con los oídos y a escuchar con los ojos convirtiendo al intérprete en creador, y al oyente en coautor, cómplice, de esta nueva creación.

Como ya he comentado en otras entradas de este blog, nos recuerda que las matemáticas también son una forma de arte, y el arte, una forma de pensar con precisión… aunque el camino sea incierto.

🎼 The Infinite Square (1975), de Aurelio de la Vega.🎼 

🎷 Interpretado por Simon Desorgher (flauta), Catherine Pluygers (oboe), Adrian Northover (saxofón alto) e Ian Mitchell (clarinete bajo)

Ya lo veis, cuando matemáticas y música se dan la mano, surgen caminos inesperados. El cuadrado infinito (The infinite square) es un buen ejemplo de ello.

Más contenido matemático en redes sociales

Comparte MatemáTICas: 1,1,2,3,5,8,13,...

Inteligencia Artificial de Claude para docentes. Simulador resolución de triángulos rectángulos elaborado con Claude · IA de Anthropic

Comparte MatemáTICas: 1,1,2,3,5,8,13,...

Los conceptos trigonométricos y la resolución de triángulos representan un pilar fundamental en el último curso de secundaria y bachillerato. Sin embargo, estos conceptos suelen generar dificultades de comprensión para muchos alumnos debido a su naturaleza abstracta. 

El uso de pequeñas calculadoras y artefactos digitales, como los applets interactivos o los simuladores ofrecen una interactividad y ayudan a facilitar a la comprensión a través de la representación visual, obteniendo además retroalimentación inmediata.

Apoyándome en Claude, la inteligencia artificial de Anthropic, he elaborado un simulador para mis alumnos de 4º de ESO, el cual comparto en esta entrada.

Continuando la serie de vídeos relativos al uso didáctico de la IA, en esta nueva entrada comparto un vídeo para trabajar saberes básicos relacionados con el sentido de la medida y el sentido espacial en Matemáticas B de 4º de ESO, aunque también de aplicación en 1º de Bachillerato.

B. Sentido de la medida.

1. Medición.

− Razones trigonométricas de un ángulo agudo y sus relaciones: aplicación a la resolución de problemas.

 

C. Sentido espacial.

1. Figuras geométricas de dos y tres dimensiones.

− Propiedades geométricas de objetos matemáticos y de la vida cotidiana: investigación con programas de geometría dinámica.

4. Visualización, razonamiento y modelización geométrica.

− Modelos geométricos: representación y explicación de relaciones numéricas y algebraicas en situaciones diversas.

− Modelización de elementos geométricos con herramientas tecnológicas como programas de geometría dinámica, realidad aumentada….

− Elaboración y comprobación de conjeturas sobre propiedades geométricas mediante programas de geometría dinámica u otras herramientas.

En esta ocasión vamos a presentar un simulador para resolver triángulos rectángulos. Os dejo a continuación enlace al mismo y un pequeño vídeo explicativo mostrando su uso. Espero que os guste y os resulte de utilidad para vuestras clases. Estaré encantado de leer tus comentarios aquí en el blog, en Youtube o en otras redes sociales.

Características del simulador de triángulos rectángulos y fundamento didáctico 

El simulador presenta las siguientes funcionalidades:

  • Interfaz intuitiva para introducir al menos dos valores conocidos del triángulo.
  • Cálculo automático de todos los elementos restantes del triángulo rectángulo.
  • Visualización dinámica que se actualiza según los datos introducidos.
  • Representación gráfica clara con etiquetas de ángulos y longitudes.
  • Información complementaria sobre definiciones geométricas relevantes.
  • Aplicación práctica del Teorema de Pitágoras y relaciones trigonométricas.

Simulador resolución de triángulos rectángulos elaborado con Claude · IA de Anthropic

Pulsa en la imagen o aquí para acceder y usar el simulador 

Si consideras interesante este ejemplo puedes suscribirte al blog para estar informado por correo electrónico de las nuevas publicaciones o a mi canal de Youtube donde iré publicando todo aquello que me sea posible compartir para sacarle partido a la IA en el aula.

Seguiré informando de los avances 🙂

Ya me contarás qué te han parecido estas propuestas de aprendizaje y enseñanza apoyadas en la Inteligencia Artificial Generativa, en este caso de Claude, así como en los otros de ChatGPT,…

Seguimos…

Más contenido matemático en redes sociales

Comparte MatemáTICas: 1,1,2,3,5,8,13,...

Vídeo: Problemas de ecuaciones de primer grado con una incógnita · Diagrama de cinta

Comparte MatemáTICas: 1,1,2,3,5,8,13,...

En esta entrada comparto un vídeo mostrando el proceso de resolución de un problema en el que usamos una ecuación de primer grado con una variable (incógnita), apoyado en un recurso extraordinariamente visual como el diagrama de cinta.

Vídeo explicativo

Aprovecho la ocasión para compartir una entrada anterior sobre este recurso. 

Diagramas de cinta y ecuaciones asociadas. Sentido algebraico. Desmos

MÁS CONTENIDO MATEMÁTICO EN REDES SOCIALES

Comparte MatemáTICas: 1,1,2,3,5,8,13,...

Vídeo y applet GeoGebra. Producto de binomios algebraicos · Representación usando un modelo de área

Comparte MatemáTICas: 1,1,2,3,5,8,13,...

Comparto vídeo y applet interactivo de GeoGebra, diseñado para facilitar que los alumnos comprendan el producto de binomios algebraicos mediante un modelo de área. Este recurso permite construir monomios y binomios, y explorar su producto de forma visual e intuitiva.

El modelo de área ofrece una representación gráfica que ayuda a los estudiantes a visualizar cómo se combinan los términos al multiplicar binomios, facilitando así la comprensión de las propiedades algebraicas involucradas.

Los alumnos pueden interactuar con los deslizadores del applet modificando los valores de los coeficientes para construir diferentes binomios y observar en tiempo real cómo se forman los productos correspondientes. Además, el recurso se plantea preguntas abiertas que invitan a reflexionar sobre la relación entre las partes del modelo de área y el producto de los binomios, fomentando el pensamiento crítico y la autoevaluación.​

Con un diseño limpio y claro, una de las principales ventajas de este recurso es que permite a los alumnos experimentar de forma lúdica y aprender sin temor a cometer errores, ya que pueden probar diferentes estrategias y recibir retroalimentación inmediata. Esto enriquece su razonamiento matemático y refuerza su confianza en la resolución de problemas.​

Este recurso es muy útil para enseñar y aprender el producto de binomios algebraicos de forma interactiva y atractiva.

Os animo a usarlo, tanto a profesores como a alumnos y familias, aprovechando las oportunidades que ofrece para reforzar el aprendizaje del álgebra.

Vídeo. Producto de binomios algebraicos – Representación usando un modelo de área

Enlace al vídeo en Youtube. Canal MatemáTICas: 1,1,2,3,5,8,13,…

Applet Geogebra. Producto de binomios algebraicos – Representación usando un modelo de área

Enlace a la actividad en geogebra.org

Más contenido matemático en redes sociales

Comparte MatemáTICas: 1,1,2,3,5,8,13,...

Vídeo: Problemas de ecuaciones de primer grado con una incógnita · Balanza

Comparte MatemáTICas: 1,1,2,3,5,8,13,...

En esta entrada comparto un vídeo mostrando el proceso de resolución de un problema en el que usamos una ecuación de primer grado con una variable (incógnita), apoyado en un recurso extraordinariamente visual como la balanza.

Vídeo explicativo

MÁS CONTENIDO MATEMÁTICO EN REDES SOCIALES

Comparte MatemáTICas: 1,1,2,3,5,8,13,...

Artículo en Revista Uno de Graó · LingMáTICas. Estrategias de comunicación para fomentar el razonamiento matemático y la resolución de problemas

Comparte MatemáTICas: 1,1,2,3,5,8,13,...
Queridos amigos, asomo por aquí para compartir una buena noticia. Hace unos días recibí el nº 106 de la revista Uno de GRAÓ, especializada en Didáctica de las Matemáticas desde 1994, en el cual se incluye uno de mis últimos trabajos.
 
Concretamente se trata un artículo que lleva por título: «LingMáTICas. Estrategias de comunicación para fomentar el razonamiento matemático y la resolución de problemas» (pp. 44-53), estrechamente relacionado con la propuesta metodológica que vengo desarrollando en el aula desde hace casi dos décadas.
 

LingMáTICas. Estrategias de comunicación para fomentar el razonamiento matemático y la resolución de problemas

Este artículo presenta LingMáTICas, una metodología educativa desarrollada por Luis Miguel Iglesias que integra la competencia lingüística en el aula de matemáticas con el apoyo de las TIC. En este marco plantea una propuesta para su implantación en el aula que promueve el discurso y el diálogo como herramientas clave para mejorar la comunicación, el razonamiento matemático y fomentar un ambiente colaborativo de aprendizaje. LingMáTICas y la citada propuesta se alinean con las competencias específicas del currículo LOMLOE, facilitando la resolución de problemas, la argumentación y la representación de ideas matemáticas. A través de ejemplos de preguntas categorizadas, el artículo ilustra cómo fomentar la reflexión, la metacognición y la interacción productiva en el aula. El corolario final, a modo de llamada ala acción, invita a los profesores a implementar LingMáTICas, resaltando su eficacia en la enseñanza inclusiva y su capacidad para mejorar la comprensión matemática a través del lenguaje.

El pase de diapositivas requiere JavaScript.

 

Este tipo de noticias, recargan el tanque de combustible emocional y animan a seguir…
 

Sobre Uno 

Uno es una revista especializada en la didáctica de las matemáticas, publicada por la editorial Graó. Su objetivo principal es contribuir al desarrollo profesional del profesorado de matemáticas, ofreciendo contenidos teóricos y prácticos que faciliten el trabajo diario en el aula. La revista sirve como un espacio para la autoformación y el intercambio de propuestas didácticas, permitiendo trasladar ideas educativas innovadoras a la práctica escolar. En sus páginas, se pueden encontrar contenidos específicos sobre matemáticas desde una perspectiva interdisciplinaria y globalizadora, así como propuestas basadas en metodologías innovadoras como STEAM o gamificación. También aborda temas como la educación matemática y el desarrollo sostenible, juegos matemáticos y la evaluación de la competencia matemática.

Uno está dirigida al profesorado de matemáticas de todas las etapas educativas, especialmente de educación secundaria y bachillerato, así como a estudiantes del Máster de Secundaria, el grado de Magisterio y el grado de Pedagogía. Además, es de interés para centros de formación del profesorado y bancos de recursos didácticos, y para todas aquellas personas que desean descubrir propuestas y recursos matemáticos innovadores.

Acerca de LingMáTICas

Los lectores de este blog conocen bien mi predilección por vincular lengua y matemáticas. Ello me llevó hace más de una década a bautizarla. Es decir, a buscar un término, un palabro, con el que poder categorizarlas. Le llamé LingMáTICas.

Así, definí LingMáTICas como el conjunto de propuestas didácticas, contextos de aprendizaje, encaminados a fortalecer la competencia lingüística, en todos sus ámbitos, desde el aula de matemáticas, con ayuda de la tecnología (TIC).

Definición de LingMáTICas. Luis M. Iglesias

Más contenido matemático en redes sociales

Comparte MatemáTICas: 1,1,2,3,5,8,13,...
WP2Social Auto Publish Powered By : XYZScripts.com