Buenas Prácticas Educativas

Explorando la magia de GeoGebra y Python: PyGgb. Visualizaciones matemáticas interactivas para el aula

Comparte MatemáTICas: 1,1,2,3,5,8,13,...
En el proceso de aprendizaje de las matemáticas, la visualización y la interacción son clave para entender conceptos complejos. Asimismo facilita sobremanera la labor docente, como apoyo a las explicaciones. En los últimos meses, he estado disfrutando muchísimo de la combinación de dos herramientas poderosas: GeoGebra y Python. Juntas no solo nos permiten crear construcciones geométricas dinámicas y precisas, sino que también nos abren la puerta a explorar las matemáticas de forma más creativa e interactiva.
 

GeoGebra + Python: PyGgb

GeoGebra es ya una herramienta esencial en nuestras clases de matemáticas, conocida por su capacidad para modelar y explorar conceptos de forma visual. Pero al combinarla con Python, un lenguaje de programación accesible y potente, las posibilidades se multiplican. Esta combinación nos permite automatizar procesos, crear animaciones complejas y generar visualizaciones que de otra manera serían más difíciles de elaborar.

Fuente: @GeoGebra en X

Acceso al entorno de programación PyGgb

Basta introducir la url: https://geogebra.org/python/index.html y dar rienda suelta a tu imaginación. 

Tablero de ajedrez

8 aplicaciones prácticas para el aula

A continuación, os comparto algunos de los proyectos que he desarrollado y que he publicado en mi canal de YouTube. Cada uno de estos vídeos muestra cómo podemos usar esta combinación para crear visualizaciones matemáticas interactivas y atractivas que pueden llevar nuestras clases a otro nivel:

  • 1. Serie de polígonos regulares con GeoGebra + Python
    En este vídeo, exploro cómo generar una serie de polígonos regulares utilizando GeoGebra y Python. Es una forma excelente de mostrar la simetría y las propiedades geométricas de estos polígonos de manera visual y dinámica.

  • 2. Diseños geométricos variados con GeoGebra + Python
    Aquí podéis ver cómo usamos GeoGebra y Python para crear diseños geométricos variados y estéticamente atractivos. Es una oportunidad fantástica para que los alumnos vean cómo las matemáticas también pueden ser arte.

  • 3. Cicloide con GeoGebra + Python
    En este vídeo, construyo una cicloide, una curva generada por un punto en el borde de un círculo que rueda a lo largo de una línea recta. Es una aplicación perfecta para enseñar sobre curvas y sus propiedades tanto en cinemática como en geometría (sentido de la medida y espacial).

  • 4. Representación de rectas y tabla de valores: Ecuación explícita y=mx+n con GeoGebra + Python
    Este proyecto es ideal para mostrar la relación entre la ecuación de una recta y su representación gráfica, resaltando la importancia de las conexiones intramatemáticas, viendo el saber matemático como un todo integrado. Además, se genera automáticamente una tabla de valores, lo que facilita la comprensión de la pendiente y la intersección.

  • 5. Diseños geométricos variados: Cuadrados marchosos con GeoGebra + Python
    Aquí presento un diseño geométrico dinámico donde los cuadrados parecen «bailar» al ritmo de la programación. Es un recurso genial para captar la atención de los estudiantes y mostrar la belleza de la geometría dinámica. Un ejemplo claro del enfoque STEAM en el aula de Matemáticas

  • 6. Parábola y arte reglado con GeoGebra + Python
    Este vídeo explora cómo construir una parábola y cómo esta se puede utilizar para crear patrones geométricos atractivos. Es una excelente manera de conectar conceptos algebraicos con aplicaciones geométricas.

  • 7. Teselación hexagonal: Panal de abejas con GeoGebra + Python
    En este proyecto, exploro la teselación hexagonal, mostrando cómo se forma un panal de abejas. Es una forma perfecta de introducir a los estudiantes en conceptos de simetría, teselación y sus aplicaciones en la naturaleza.

  • 8. Diseños geométricos: Rotación de segmentos con GeoGebra + Python
    Finalmente, en este vídeo muestro cómo la rotación de segmentos puede generar patrones geométricos interesantes. Es ideal para discutir temas como la rotación y la simetría en el aula.

Ventajas pedagógicas

Incorporar Python en el uso de GeoGebra no solo añade una capa técnica interesante, sino que también introduce a los alumnos a la programación de una manera intuitiva y orientada a resultados, artefactos digitales concretos que pueden ser perfectamente el producto final de Situaciones de Aprendizaje competenciales. Esto no solo refuerza sus habilidades matemáticas, sino que también desarrolla competencias digitales que son cada vez más necesarias en el mundo actual.

 

Os animo a que veáis los vídeos que he compartido y que consideréis cómo estas herramientas podrían integrarse en vuestras clases. La combinación de GeoGebra y Python tiene el potencial de transformar la enseñanza de las matemáticas, haciendo que conceptos abstractos sean más tangibles y atractivos para los estudiantes.

Seguiré explorando nuevas formas de aprovechar esta potente combinación y compartiendo mis descubrimientos. ¡No os perdáis las próximas publicaciones y, como siempre, estaré encantado de conocer vuestras experiencias y comentarios!

Más contenido matemático en redes sociales

Comparte MatemáTICas: 1,1,2,3,5,8,13,...

Matemáticas con herramientas digitales. Problema geométrico: dos cuadrados y un rectángulo, con Geogebra

Comparte MatemáTICas: 1,1,2,3,5,8,13,...

Navegando por la red me topé con este bonito problema:

«Dos cuadrados y un rectángulo. ¿Cuánto vale el área del rectángulo?»

Tras analizarlo con detalle y resolverlo usando un poco de trigonometría me di cuenta que era bastante más rico de lo que aparentaba y que escondía un bonito invariante geométrico relacionado con él área del cuadrado inicial, independientemente de cuales fueran las áreas de los cuadrados adyacentes dibujados. 

Y, en efecto, con ayuda de este magnífico software de geometría dinámica, Geogebra, pude certificar que era cierta mi observación. 

Es por ello por lo que he pensado que tal vez sería de utilidad para otros compañeros docentes que quieran trabajarlo en el aula. 

Bien como problema aislado, para analizar en detalle y promover un escenario de conjeturas (razonamiento y prueba), para seguir el protocolo de construcción y que los alumnos realicen construcciones del problema con diferentes tamaños, compartan sus resultados y conjeturen,…

Applet interactivo en Geogebra.org

Applet interactivo en Geogebra.org

Pulsa para colocar a pantalla completa (esquina inferior derecha) y pulsa el botón de reproducir (play)

 

Vídeo con explicación del problema e interacción con el applet

 

Espero que resulte de utilidad. Ya me contarás qué te parece y si te ha funcionado en el aula. 

Saludos y feliz domingo 😉

Más contenido matemático en redes sociales

Comparte MatemáTICas: 1,1,2,3,5,8,13,...

Matemáticas con herramientas digitales. Posición relativa de rectas en el plano: resolución analítica (hoja de cálculo) y gráfica (Geogebra)

Comparte MatemáTICas: 1,1,2,3,5,8,13,...

En esta entrada comparto un ejercicio de estudio de la posición relativa de dos rectas en el plano, apoyado en dos herramientas digitales:

  1. Para la resolución analítica hemos usado la Hoja de cálculo de Google.
  2. Para la resolución gráfica hemos usado la archiconocida Geogebra.

Esta doble resolución favorece la comprensión por parte de nuestro alumnado, así ha ocurrido en Matemáticas B de 4º de ESO, y es por ello por lo que os lo he querido dejar por aquí. Al disponer de la representación gráfica y enfrentarla con la resolución analítica, favorece la conexión intra-matemática entre la ecuación, el significado de los distintos coeficientes y la representación gráfica de la recta. 

Posición relativa de rectas en el plano – Resolución gráfica (Pulsar para acceder a Geogebra)

Esto puede ser utilizado para enseñar, proyectando en la Pizarra Digital, o para que el alumnado elabore sus propios productos digitales, favoreciendo el aprendizaje significativo y el desarrollo competencial del mismo.

Espero que resulte de utilidad. Ya me contarás qué te parece y si te ha funcionado en el aula. 

Saludos y buen finde 😉

Más contenido matemático en redes sociales

Comparte MatemáTICas: 1,1,2,3,5,8,13,...

Vídeos de geometría analítica. Hallar vectores y comprobar si son equipolentes, analítica y gráficamente

Comparte MatemáTICas: 1,1,2,3,5,8,13,...

Hallar vectores y comprobar si son equipolentes (analíticamente)

Manuales

Más contenido matemático en redes sociales

Comparte MatemáTICas: 1,1,2,3,5,8,13,...

Geogebra Math Practice, una excelente aplicación para trabajar el sentido algebraico, fruto de la alianza entre Geogebra y Graspable Math

Comparte MatemáTICas: 1,1,2,3,5,8,13,...

A finales del 2020, escribí una entrada titulada:

Graspable Math y Geogebra; aliadas extraordinarias para enseñar y aprender matemáticas en contextos presenciales discontinuos. 5 tareas resueltas en vídeos sobre funciones lineales, afines, paralelismo y ecuaciones de la recta, la cual comenzaba así:

Los lectores asiduos de este rincón virtual matemático conocen sobradamente mi predilección por estas dos poderosas herramientas digitales. En mi opinión, indispensables ambas para la enseñanza y el aprendizaje de la matemática en el siglo XXI, siendo especialmente útiles en los contextos de enseñanza-aprendizaje semipresencial y a distancia especialmente extendidos con motivo de la COVID-19.

Aprovecho estas líneas para invitarte a visitar las distintas publicaciones sobre propuestas didácticas para trabajar en el aula y los materiales que he compartido sobre ambas en los últimos años:

Pues bien, si juntamos ambas, el resultado no puede ser catalogado de otro modo que excelente.

Como muestra de ello comparto en esta entrada 5 tareas resueltas paso a paso, en otros tantos vídeos, con ayuda de Geogebra y Graspable Math. 

Estos materiales los desarrollé para mis estudiantes de Matemáticas de 3º de ESO (14-15 años) para trabajar en modalidad online durante el cierre de los centros educativos españoles, periodo de la suspensión de la actividad docente presencial (marzo-junio 2020), con motivo de la COVID-19.

Espero te animes a usar los vídeos con tu alumnado si los consideras de utilidad 

(…)

Puedes acceder al contenido completo pulsando más abajo:

Pues bien, esa alianza sigue dando frutos. Y muy buenos además. Ese es el motivo que me trae hoy a escribir estas líneas.

Como Geogebra Ambassador y como usuario habitual y elaborador de diverso material con Graspable Math, además de alpha tester de la herramienta con acceso a funcionalidades experimentales en fase de desarrollo es una gran alegría mostraros la herramienta Geogebra Math Practice. 

 

Geogebra Math Practice, una herramienta para la práctica algebraica con ayuda de GeoGebra

GeoGebra Math Practice ayuda a los estudiantes en su trabajo paso a paso en la resolución de ejercicios de álgebra. Combina el Solver Engine interno de GeoGebra y la tecnología Graspable Math basada en investigaciones para proporcionar notación interactiva, sugerencias adaptativas y comentarios en tiempo real que permiten a los estudiantes explorar diferentes caminos en el proceso de resolución, ayudándoles a ganar en confianza, favoreciendo la fluidez de los procedimientos y la comprensión conceptual. 

2.png

GeoGebra Math Practice es una colaboración entre GeoGebra y Graspable Math , y es de uso gratuito para profesores y estudiantes.

Recursos de práctica de matemáticas para el Centro de ayuda.png

 

Animación interactiva. Ejemplo de resolución de ecuación con Geogebra Math Practice

APA-ecuación lineal de un paso.gif

Estas son las características clave de GeoGebra Math Practice :

  • Utiliza la notación dinámica de Graspable Math para manipular y resolver problemas algebraicos con gestos (tocar y arrastrar) y animaciones interactivas.
  • Obtén sugerencias visuales y conceptuales para cada uno de los pasos, proporcionadas por Solver Engine de GeoGebra.
  • Obtén comentarios instantáneos sobre cada paso.
  • Reescribe libremente el problema con el teclado matemático virtual de GeoGebra.
  • Practica problemas similares para profundizar en tu comprensión de las habilidades clave.

Tipos de ejercicios relacionados con el sentido algebraico que se pueden trabajar actualmente con Geogebra Math Practice (GMP).

Diseño sin título (5).png

GeoGebra Math Practice actualmente es capaz de ayudarte con ejercicios sobre:

  • El orden (jerarquía) de las operaciones
    • Operaciones aritméticas
    • Operaciones con fracciones
    • Operaciones con potencias
  • Expresiones algebraicas
    • Desarrollo (distribución) de expresiones algebraicas.
    • Simplificación de expresiones fraccionarias
  • Polinomios
    • Reescribir a forma estándar
    • Sumar y restar polinomios
    • División por monomios
  • Ecuaciones lineales
    • Ecuaciones lineales de 1 paso, 2 pasos y varios pasos
    • Resolver ecuaciones lineales con múltiples o ninguna solución.

También puede utilizar GeoGebra Math Practice con otros ejemplos y tipos de ejercicios pero es posible que no recibas sugerencias ni comentarios precisos. Durante los próximos meses se espera que sigan ampliando la funcionalidad y se puedan realizar más tipos de ejercicios.

 

Acceso a Geogebra Math Practice: https://www.geogebra.org/mathpractice/es-ES  
 
Acceso a Geogebra Math Practice: https://www.geogebra.org/mathpractice/es-ES  
 

Vídeos

Manuales

Más contenido matemático en redes sociales

Comparte MatemáTICas: 1,1,2,3,5,8,13,...

(Vídeo) Conferencia en el XXVII Congreso Nacional de Matemática Educativa de Guatemala. Aprender y enseñar matemáticas con manipulativos virtuales

Comparte MatemáTICas: 1,1,2,3,5,8,13,...

El pasado 24 de noviembre del recién terminado 2023, disfruté impartiendo la Conferencia «Aprender y enseñar matemáticas con manipulativos virtuales» en el XXVII Congreso Nacional de Matemática Educativa, evento de referencia en nuestro querido país hermano de Guatemala, organizado por la Unidad de Modelación Matemática e Investigación de la Facultad de Ingeniería de la Universidad de San Carlos de Guatemala.

El evento contó con la participación de 44 ponentes de 8 países, Guatemala, México, Costa Rica, Estados Unidos de Norteamérica, Perú, Panamá, El Salvador y España, de forma virtual, con un total de 50 talleres y 6 conferencias plenarias acerca de la enseñanza y aprendizaje de esta materia en todos los niveles educativos. El mismo contó con la participación de 420 docentes.

Quiero expresar mi agradecimiento, por la confianza renovada y el respeto y cariño mostrado hacia mi trabajo, a todos los miembros del Comité Organizador del Congreso, con especial énfasis en la Dra. Mayra Castillo y el Dr. Julio Ricardo Castillo por todo el apoyo que me han dado, antes, durante y tras el evento.

El pase de diapositivas requiere JavaScript.

Comparto a continuación el enlace al evento en Facebook donde se encuentra en el vídeo de mi Conferencia «Aprender y enseñar matemáticas con manipulativos virtuales» donde, durante más de dos horas, reflexioné, compartí e interactué con los profesores participantes, proponiendo diferentes actividades matemáticas basadas en materiales manipulativos, simulando una situación real de clase a distancia, explicitando propuestas metodológicas, favoreciendo el razonamiento y la argumentación matemática.

Aprender y enseñar matemáticas con manipulativos virtuales

XXVII Congreso Nacional de Matemática Educativa de Guatemala

Más contenido matemático en redes sociales

Comparte MatemáTICas: 1,1,2,3,5,8,13,...

Estrella numérica

Comparte MatemáTICas: 1,1,2,3,5,8,13,...

Espero que disfrutes con el siguiente reto numérico.

Piensa y prepara una estrategia para abordarlo antes de lanzarte a probar a ciegas…

Ya me contarás cómo te ha ido.

 
Luis Miguel Iglesias. Estrella numérica (CC BY-SA)

¡¡Salud, feliz Navidad y próspero 2024 cargadito de Matemáticas!!

Comparte MatemáTICas: 1,1,2,3,5,8,13,...

(Vídeo) Ponencia: Inteligencia Artificial aplicada al contexto educativo y consideraciones éticas · II Congreso Internacional de Innovación Educativa de @EducaAnd

Comparte MatemáTICas: 1,1,2,3,5,8,13,...

Los días 15 y 16 de diciembre de 2023 se ha celebrado el II Congreso Internacional de Innovación Educativa de la Consejería de Desarrollo Educativo y Formación Profesional de la Junta de Andalucía en el Palacio de Ferias y Congresos de Málaga (FYCMA). Bajo el lema “De la innovación a la transformación”, el encuentro ha reunido a 400 docentes y grandes referentes en el sector de la educación para reflexionar sobre cómo la innovación educativa se traduce en la transformación de nuestra sociedad.

Este evento coge el relevo del I Congreso Internacional de Innovación Educativa que tuvo lugar en noviembre de 2021. El encuentro surgió como una apuesta decidida por parte de la Consejería de Desarrollo Educativo y Formación Profesional para que la educación siga avanzando por la senda de la innovación. Durante el congreso, que se celebró el 19 y 20 de noviembre de 2021 en Málaga, se abordó el papel que la innovación tiene en los centros educativos andaluces, así como los retos de la sociedad actual y futura.

En esta ocasión, la Dirección General de Tecnologías Avanzadas y Transformación Educativa, centro directivo encargado de organizar el evento, ha continuado este camino a través de ponencias, comunicaciones, mesas redondas y talleres en torno a los siguientes objetivos:

  1. La transformación digital educativa: desarrollo de la competencia digital, inteligencia artificial, pensamiento computacional, Objetos Digitales Educativos, etc.
  2. La promoción de entornos sostenibles y saludables: higiene digital, inteligencia emocional, educación medioambiental y para la sostenibilidad, etc.
  3. La promoción de la cultura y la alfabetización mediática: fomento de la lectura y de la escritura, la creatividad, el emprendimiento y el flamenco.
  4. La internacionalización del sistema educativo: la proyección exterior, la acreditación lingüística del alumnado menor de edad, programas de movilidad europea, etc.

Agradezco desde estas líneas la invitación de la Dirección General de Tecnologías Avanzadas y Transformación Educativa de la Consejería de Desarrollo Educativo y Formación Profesional para participar como ponente en este gran evento de la innovación educativa del sistema educativo andaluz, y más aún el confiarme el despliegue de un tema de candente actualidad, y de tanta relevancia para el devenir de la educación. Espero que haya sido de ayuda para los compañeros asistentes y para aquellos que vean la grabación. 

Descripción

Mi intervención ha estado enmarcada en el objetivo 1 del congreso, la transformación digital educativa.

Concretamente he tratado: 

  • el uso didáctico de la Inteligencia Artificial, para enseñar y para aprender
  • el pensamiento computacional y el aprendizaje automático como eslabones principales del proceso alfabetizador en el ámbito de la IA
  • los objetos Digitales Educativos, y de manera especial los Recursos Educativos Abiertos (REA)
  • el nuevo marco curricular vigente derivado de la implantación de la LOMLOE
  • el desarrollo de la competencia digital docente, con afectación al Marco de Referencia de la Competencia Digital Docente (MRCDD), al incorporar nuevas ciber-capacidades cruciales para esta nueva era, tanto en la formación inicial como permanente del profesorado, y,
  • los aspectos éticos a tener en consideración para el abordaje de la IA en el ámbito educativo, con menores. 

Título: IA aplicada al contexto educativo y consideraciones éticas

Descripción: El desarrollo exponencial de la Inteligencia Artificial (IA) tendrá consecuencias impredecibles e imposibles de estimar en nuestras sociedades, no en las próximas décadas, sino en los próximos años. Es por ello por lo que la incorporación en los currículos educativos no puede demorarse en exceso puesto que nuestros jóvenes ya están usando la IA: sin formación, supervisión, ni control. La Unión Europea ya está en ello y, previsiblemente, hará recomendaciones a sus estados miembros en el corto-medio plazo. En esta comunicación aportaré ideas o posibles enfoques para su introducción en el ámbito educativo; apostando por un abordaje poliédrico que considere a la comunidad educativa en su conjunto, con especial énfasis en los procesos formativos de los docentes, para favorecer una construcción sólida del proceso alfabetizador dirigido a nuestro alumnado.

El pase de diapositivas requiere JavaScript.

 

 

Vídeo

Sobre el congreso

El II Congreso Internacional de Innovación Educativa de la Consejería de Desarrollo Educativo y Formación Profesional de la Junta de Andalucía se celebra el viernes 15 y sábado 16 de diciembre de 2023 en el Palacio de Ferias y Congresos de Málaga (FYCMA). Bajo el lema “De la innovación a la transformación”, el encuentro congrega a 400 docentes y grandes referentes en el sector de la educación que reflexionarán sobre cómo la innovación educativa se traduce en la transformación de nuestra sociedad.

Este evento coge el relevo del I Congreso Internacional de Innovación Educativa que tuvo lugar en noviembre de 2021. El encuentro surgió como una apuesta decidida por parte de la Consejería de Desarrollo Educativo y Formación Profesional para que la educación siga avanzando por la senda de la innovación. Durante el congreso, que se celebró el 19 y 20 de noviembre de 2021 en Málaga, se abordó el papel que la innovación tiene en los centros educativos andaluces, así como los retos de la sociedad actual y futura.

En esta ocasión, la Dirección General de Tecnologías Avanzadas y Transformación Educativa, centro directivo encargado de organizar el evento, continúa con este camino a través de ponencias, comunicaciones, mesas redondas y talleres en torno a los siguientes objetivos:

  • La transformación digital educativa: desarrollo de la competencia digital, inteligencia artificial, pensamiento computacional, Objetos Digitales Educativos, etc.
  • La promoción de entornos sostenibles y saludables: higiene digital, inteligencia emocional, educación medioambiental y para la sostenibilidad, etc.
  • La promoción de la cultura y la alfabetización mediática: fomento de la lectura y de la escritura, la creatividad, el emprendimiento y el flamenco.
  • La internacionalización del sistema educativo: la proyección exterior, la acreditación lingüística del alumnado menor de edad, programas de movilidad europea, etc.

Estas áreas temáticas giran, a su vez, alrededor de los centros de interés del nuevo Programa para la Innovación y Mejora del Aprendizaje, Programa CIMA, lanzado por la Dirección General de Tecnologías Avanzadas y Transformación Educativa para el curso 2023 -2024. Este programa se define como una herramienta pedagógica para impulsar la innovación y transformación del proyecto educativo del centro (PE) desde el análisis, reflexión y evaluación participativa garantizando la mejora continua y la personalización de los procesos según los centros de interés y necesidades del centro.

En este sentido, el Congreso será, además, un espacio para compartir experiencias y visibilizar la labor de los centros educativos andaluces. Por ello, más de 20 centros compartirán sus experiencias de éxito en innovación educativa. Además, durante las jornadas del Congreso se reconocerá la labor de centros y docentes a través de la entrega de Premios al Mérito en la Educación en la Comunidad Autónoma de Andalucía (curso 2022-2023) y los Premios para el reconocimiento a centros bilingües y plurilingües de Andalucía con buenas prácticas docentes en enseñanza bilingüe (curso 2022-2023).

El II Congreso Internacional de Innovación Educativa de la Consejería de Desarrollo Educativo y Formación Profesional de la Junta de Andalucía se presenta como una estrategia financiada por el Plan de Recuperación, Transformación y Resiliencia, cuyo objetivo es impulsar la transición ecológica, la transformación digital, la cohesión social y territorial y la igualdad de género.

Más contenido matemático en redes sociales

Comparte MatemáTICas: 1,1,2,3,5,8,13,...

Conferencia Magistral «Enseñar y aprender matemáticas en modalidad híbrida» en el XVI Congreso Internacional de Metodología de la Ciencia y de la Investigación para la Educación de México

Comparte MatemáTICas: 1,1,2,3,5,8,13,...

La Asociación Mexicana de Metodología de la Ciencia y de la Investigación, A. C. y la Universidad Guadalupe Victoria ha convocado a especialistas en metodología de la ciencia, en metodología de la investigación, en investigación científica y tecnológica, en investigación educativa, educadores, pedagogos, autoridades educativas, líderes y responsables de proyectos de investigación en centros educativos, científicos de la educación, tomadores de decisiones en el ámbito científico-educativo, padres de familia, estudiantes y a todo los interesados en la generación, uso y aplicación de las nuevas tendencias de la metodología de la ciencia, de la metodología de la investigación, de los lineamientos y políticas actuales de la educación a interactuar y dialogar en el espacio del 16º Congreso Internacional de Metodología de la Ciencia y de la Investigación para la Educación, que se ha realizado en Modalidad Híbrida (Presencial y en línea) en las instalaciones de la Universidad Guadalupe Victoria, en Multunchac, Campeche, Cam., México, del 26 al 28 de octubre de 2023, con el tema “Metodologías para el aprendizaje y el conocimiento en la Modalidad Híbrida” («Methodologies for learning and knowledge in the Hybrid Modality»).

 
Desde estas líneas agradezco la invitación recibida desde México, en la persona de D. Noel Ángulo primeramente y, por parte de, D. Ángel Eduardo Vargas Garza, como Coordinador General del Comité Organizador del citado Congreso, para impartir la Conferencia Magistral «Enseñar y aprender matemáticas en modalidad híbrida”.
 
 
‘La Asociación Mexicana de Metodología de la Ciencia y de la Investigación A. C., reconociendo su amplia trayectoria académica e interés en participar en la proyección de los profesionales de la Metodología de la Ciencia y de la Investigación Educativa, tiene el agrado de invitarle a participar en el “Décimo Sexto Congreso Internacional de Metodología de la Ciencia y de la Investigación para la Educación”, con la Video Conferencia Magistral: «Enseñar y aprender matemáticas en modalidad híbrida”.’

 

Ha sido un honor, un verdadero placer, compartir y aprender en este Congreso con centenares de colegas del contexto mexicano en particular, e iberoamericano en general. Por último quisiera destacar la excelente organización por parte de la AMCCI, de la Universidad Guadalupe Victoria, y el resto de entidades colaboradoras.

 
 

El pase de diapositivas requiere JavaScript.

Más contenido matemático en redes sociales

Comparte MatemáTICas: 1,1,2,3,5,8,13,...

Desarrollo del sentido numérico a través de ‘Una bonita relación numérica: a, b, MCD(a,b) y MCM(a,b)’

Comparte MatemáTICas: 1,1,2,3,5,8,13,...

Esta mañana me preguntó un compañero, docente de otra comunidad autónoma, a través de un mensaje privado en uno de mis perfiles en RRSS, que si le podía dar ideas para trabajar el sentido numérico en 1º-2º ESO. Se me vino a la cabeza unas cuantas pero, como sabéis… el tiempo es oro y, desafortunadamente, no dispongo de tiempo para escribir algo nuevo. Así que, tras la calma de esta tarde, he pensado en compartirle y, al mismo tiempo, dejar por aquí para todos una de las propuestas didácticas recogidas en la secuencia competencial de una Situación de Aprendizaje consistente en un plan de trabajo formativo para ayudar a los centros que quieran formar a sus alumnos a modo de preparación previa a la creación de su Círculo Matemático Computacional (CMC).

 

Propuesta didáctica: Una bonita relación numérica

De igual manera que las personas tenemos bonitas relaciones de amistad, en el mundo de los números también nos encontramos con ellas. 

Ya habéis visto cómo, usando un algoritmo clásico ‘famoso’, el Algoritmo de Euclides, podéis obtener el Máximo Común Divisor de dos números, siguiendo una secuencia ordenada de pasos, ya sea manualmente o con ayuda de un ordenador. 

En esta actividad vamos a seguir trabajando con el Máximo Común Divisor (MCD), también con el Mínimo Común Múltiplo (MCM), y vais a descubrir y profundizar en la comprensión de estos dos conceptos matemáticos con los que tan familiarizados estamos en las clases de matemáticas. 

Vamos a ver qué relación existe entre el producto de dos números naturales, a·b, y el producto MCD(a,b)·MCM(a,b).

Antes de empezar, observa con atención el siguiente vídeo:

Luis Miguel Iglesias. Una bonita relación numérica: a, b, MCD(a,b) y MCM(a,b) (Licencia estándar de YouTube)

A continuación, trabajando en equipo, resuelve e introduce los valores correctos correspondientes a las casillas representadas con una interrogación (?).


Luis Miguel Iglesias. Una bonita relación (CC BY-SA)

Si te gustó esta tarea para trabajar con tus alumnos el desarrollo del sentido numérico te animo a consultar la SdA Creamos nuestro Círculo Matemático Computacional (CMC), a modificarla, adaptarla para tus alumnos y a compartirla con otros colegas de tu departamento didáctico o conocidos.

¡¡Buen fin de semana. Salud, felicidad y matemáticas!!

Comparte MatemáTICas: 1,1,2,3,5,8,13,...
WP2Social Auto Publish Powered By : XYZScripts.com