NCTM

Transformemos juntos nuestras concepciones docentes sobre la resolución de problemas matemáticos

Comparte MatemáTICas: 1,1,2,3,5,8,13,...

La transformación de nuestras concepciones como docentes es una tarea continua y esencial para mejorar la calidad educativa en el aula. Nuestras creencias y prácticas impactan directamente en cómo nuestros alumnos aprenden matemáticas y perciben su utilidad.

En el nuevo marco normativo, autonómico andaluz y estatal, derivado de la implantación de la LOMLOE, la resolución de problemas se posiciona como una herramienta metodológica clave, no solo para enseñar contenidos, sino también para desarrollar el razonamiento, la comunicación y la autonomía de nuestros alumnos.

Durante mi intervención en las Jornadas para el Impulso del Razonamiento Matemático en Andalucía, celebradas en Málaga y Córdoba hace un par de semanas, reflexionamos, entre otros aspectos, sobre cómo nuestras concepciones sobre los problemas pueden influir sobre la manera en qué los enseñamos, qué tipo de problemas enseñamos y cómo/qué aprenden nuestros alumnos.

El nuevo currículo de Matemáticas derivado de la implantación de la LOMLOE tiene como líneas principales en la definición de las competencias específicas de matemáticas la resolución de problemas y las destrezas socioafectivas. En la introducción de la materia se recoge literalmente:

La investigación en didáctica ha demostrado que el rendimiento en matemáticas puede mejorar si se cuestionan los prejuicios y se desarrollan emociones positivas hacia las matemáticas. Por ello, el dominio de destrezas socioafectivas como identificar y manejar emociones, afrontar los desafíos, mantener la motivación y la perseverancia y desarrollar el autoconcepto, entre otras, permitirá al alumnado aumentar su bienestar general, construir resiliencia y prosperar como estudiante de matemáticas.

Por otro lado, resolver problemas no es solo un objetivo del aprendizaje de las matemáticas, sino que también es una de las principales formas de aprender matemáticas. En la resolución de problemas destacan procesos como su interpretación, la traducción al lenguaje matemático, la aplicación de estrategias matemáticas, la evaluación del proceso y la comprobación de la validez de las soluciones. Relacionado con la resolución de problemas se encuentra el pensamiento computacional. Este incluye el análisis de datos, la organización lógica de los mismos, la búsqueda de soluciones en secuencias de pasos ordenados y la obtención de soluciones con instrucciones que puedan ser ejecutadas por una herramienta tecnológica programable, una persona o una combinación de ambas, lo cual amplía la capacidad de resolver problemas y promueve el uso eficiente de recursos digitales.

En este nuevo paradigma curricular, reforzado aún más si cabe en Andalucía con las Instrucciones de Razonamiento Matemático (18 junio 2024), se hace necesario poner la mirada en lo que la investigación educativa ha caracterizado como concepciones docentes sobre la resolución de problemas matemáticos.

Este artículo surge de los comentarios positivos que me han trasladado, por diferentes vías y redes sociales, muchos compañeros y compañeras de diferentes colegios e institutos de la geografía andaluza que acudieron a alguna de las jornadas o que han visto las grabaciones de las mismas, así como del interés común mostrado por la resolución de problemas y las concepciones que tenemos sobre ellas. Me reitero en mi opinión, como profesor de matemáticas e investigador en didáctica de la matemática, que este aspecto es crucial porque las concepciones afectan directamente tanto al proceso de enseñanza como al aprendizaje de nuestros alumnos.

Esta entrada en «el sitio de mi recreo», que no es otro que este blog de Matemáticas, no pretende ser más que una invitación a reflexionar, a compartir estrategias y a avanzar hacia una enseñanza más centrada en la resolución de problemas como eje vertebrador del aprendizaje matemático.

Ahora bien, como en todo proceso de transformación, debemos comenzar con una mirada instrospectiva, autocrítica y abierta al cambio, pilares básicos para construir una práctica docente más reflexiva, inclusiva y eficaz. 

A continuación planteo y ofrezco algunas respuestas y reflexiones que espero sean de utilidad para que ¡¡sigamos avanzando juntos!!

Ya me contarás tu opinión. Me interesa y mucho. 

Elaboración propia con DALL-E

PREGUNTAS, RESPUESTAS Y REFLEXIONES SOBRE LAS CONCEPCIONES DEL PROFESORADO SOBRE LA RESOLUCIÓN DE PROBLEMAS 

1. ¿Por qué es importante estudiar las concepciones del profesorado sobre la resolución de problemas?

Es crucial porque estas concepciones determinan cómo enseñamos y cómo los alumnos aprenden. Creencias erróneas, a menudo relacionadas con una formación deficiente, pueden limitar el uso de estrategias efectivas y perpetuar prácticas poco centradas en el desarrollo del pensamiento matemático.

2. ¿Qué tipo de concepciones erróneas sobre la resolución de problemas se detectan?

Actualmente, se identifican los siguientes problemas comunes:

  • Expectativas sobre los alumnos. Subestimación de las capacidades de los alumnos para resolver problemas.
  • Gestión del aula. Dedicamos poco tiempo a la resolución de problemas, priorizando algoritmos y cálculo mecánico.
  • Diversidad cultural. La diversidad, especialmente las dificultades lingüísticas, es vista como una barrera en lugar de una oportunidad.
  • Estrategias matemáticas. Desconocemos y no enseñamos de manera explícita estrategias heurísticas, modelización o aspectos del pensamiento computacional como metodología de resolución de problemas.
  • Comunicación. Aunque reconocemos su importancia, no fomentamos que los alumnos expliquen sus procesos; ni oralmente ni por escrito.
  • Causas de las dificultades. A menudo atribuimos las dificultades a factores externos, en lugar de reflexionar sobre la metodología. 
  • Relevancia del proceso. Consideramos la resolución de problemas como secundaria, sin priorizar el desarrollo de habilidades matemáticas profundas.

3. ¿Qué factores favorecen la transformación de concepciones erróneas?

Los siguientes elementos resultan fundamentales para este proceso de transformación:

  • Toma de conciencia. Observar cómo nuestros alumnos resuelven problemas con éxito y emplean estrategias diversas.
  • Reflexión sistemática y continuada. Revisar y autoevaluar nuestras prácticas docentes.
  • Contraste de metodologías. Experimentar nuevas formas de trabajar, uso de distintas estrategias de resolución de problemas, modelización, investigación guiada, trabajo por proyectos, aprendizaje cooperativo,…

4. ¿Cómo influye la diversidad cultural en la resolución de problemas?

Aunque puede ser un reto, la diversidad cultural presente en nuestras aulas y en nuestros centros educativos es una riqueza que, bien gestionada, favorece el aprendizaje.

Las estrategias cooperativas, el trabajo en equipo en grupos heterogéneos y mixtos, la aceptación de la crítica razonada, el fomento de la perseverancia y una cultura de aprendizaje a partir del error, ayudan a superar barreras lingüísticas y promueven el intercambio de ideas desde diferentes perspectivas.

5. ¿Qué papel desempeña la comunicación en la enseñanza de la resolución de problemas?

Como se puede ver en diversos ejemplos en la presentación que usé, este es un aspecto fundamental y muy presente en mi aula, ya que considero que la comunicación es fundamental para que nuestros alumnos verbalicen sus ideas, compartan estrategias y construyan conocimiento colectivo.

Es de vital importancia dedicar tiempo para fomentar el diálogo y el debate matemático en el aula. 

6. ¿Qué estrategias didácticas mejoran la gestión del aula durante la resolución de problemas?

Entre las más efectivas destacan:

  • Asignar tiempo suficiente a la resolución de problemas.
  • Organizar el trabajo en pequeños grupos.
  • Proporcionar materiales manipulativos.
  • Enseñar estrategias específicas de resolución.
  • Fomentar el debate y la exposición de ideas.

7. ¿Es posible cambiar las concepciones del profesorado sobre la relevancia de la resolución de problemas?

Sí, es posible. Mostrar cómo la resolución de problemas introduce conceptos nuevos, desarrolla el pensamiento matemático y beneficia a nuestros alumnos puede transformar nuestra percepción y darle la importancia que merece.

Compartir nuestras prácticas de aula, en entornos presenciales (departamento, área, grupos de trabajo, jornadas, congresos,…) o virtuales (a través de blogs, redes sociales,…) es una buena opción. Doy fe de ello.

8. ¿Qué se necesita, que aspectos so para lograr una transformación de las concepciones?

Es imprescindible:

  • Espacios para reflexionar y planificar en equipo.
  • Formación continua en didáctica de la matemática.
  • Formación en gestión y dinámicas del aula, así como en aspectos cognitivos y no cognitivos del aprendizaje.
  • Un cambio en la cultura escolar que valore el análisis de la práctica docente y el desarrollo profesional.

FUENTES

  • Real Decreto 217/2022, de 29 de marzo, por el que se establece la ordenación y las enseñanzas mínimas de la Educación Secundaria Obligatoria.
  • Orden de 30 de mayo de 2023, por la que se desarrolla el currículo correspondiente a la etapa de Educación Secundaria Obligatoria en la Comunidad Autónoma de Andalucía, se regulan determinados aspectos de la atención a la diversidad y a las diferencias individuales, se establece la ordenación de la evaluación del proceso de aprendizaje del alumnado y se determina el proceso de tránsito entre las diferentes etapas educativas.
  • Instrucciones sobre las medidas para el fomento del Razonamiento Matemático a través del planteamiento y la resolución de retos y problemas en Educación Infantil, Educación Primaria y Educación Secundaria Obligatoria en Andalucía
  • Pastells, A. A. (2012). Proceso de transformación de las concepciones del Profesorado sobre la resolución de Problemas matemáticos. Enseñanza de las Ciencias. Revista de investigación y experiencias didácticas, 30(3), 71-88.

Comparte MatemáTICas: 1,1,2,3,5,8,13,...

Presentación usada en las Jornadas de Impulso del Razonamiento Matemático en Andalucía

Comparte MatemáTICas: 1,1,2,3,5,8,13,...

El pasado martes 29 de octubre, en el Salón de Actos de la Facultad de Derecho de la Universidad de Málaga, y el lunes 4 de noviembre, en el Salón de Actos del Rectorado de la Universidad de Córdoba, se se han celebrado sendas jornadas para el profesorado de Andalucía Oriental y Andalucía Occidental.

Estas jornadas, impulsadas por la Dirección General de Innovación Educativa y Formación del Profesorado, y organizadas por los CEP de Málaga y de Córdoba han versado sobre las Instrucciones de Razonamiento Matemático (18 junio 2024),  con presentación institucional a cargo del DG de Innovación y Formación del Profesorado,  D. Francisco Javier Franco Fernández, y han constado de ponencias para las distintas etapas y mesas redondas.

En total han asistido más de 800 docentes de todas las provincias andaluzas, profesores y profesoras que imparten matemáticas en las distintas etapas educativas; Infantil, Primaria, Secundaria y Bachillerato. 

He tenido el gusto de participar en la mesa redonda moderada por D. Agustín Carrillo de Albornoz, SAEM Thales y Secretario General de la FESPM, junto a mis compañeros D.ª Belén Sepúlveda, D. Juan Antonio Reyes y D. Guillermo Cotrino.

Estoy encantando de que se potencie el razonamiento matemático y la resolución de problemas en Andalucía, muy feliz por el impulso de la Consejería de Desarrollo Educativo y la Formación Profesional con estas jornadas así como con el resto de actuaciones que desarrollarán las Instrucciones y agradecido por participar en las mismas aportando mi granito de arena.

Os comparto el material en el que he apoyado mi intervención por si fuera de utilidad, tanto para los docentes que han participado en las Jornadas, como para aquellos compañeros y compañeras que no han podido asistir.

Enlace a la presentación

Tweets de las Jornadas de los CEP de Málaga y Córdoba

Vídeos de la Jornadas de Córdoba y Málaga

Imágenes de ambas Jornadas

El pase de diapositivas requiere JavaScript.

Más contenido matemático en redes sociales

Comparte MatemáTICas: 1,1,2,3,5,8,13,...

8 prácticas de enseñanza esenciales para una Educación Matemática eficaz. Nuevo currículo de Matemáticas LOMLOE

Comparte MatemáTICas: 1,1,2,3,5,8,13,...

El nuevo currículo de Matemáticas derivado de la implantación de la LOMLOE supone un cambio de paradigma en muchos aspectos. Es normal que plantee dudas y que genere incertidumbre a la hora de abordar su implementación en el aula.

Poniendo la mirada más allá de la nomenclatura específica de la norma (Competencias Específicas, Saberes Básicos, Situaciones de Aprendizaje,…), os comparto unas recomendaciones que el Consejo Nacional de Profesores de Matemáticas (NCTM) de los EEUU publicó allá por 2014, en el marco de sus Principios para la Acción. Se trata de 8 prácticas de enseñanza que son esenciales para una educación matemática eficaz y que pueden serte de utilidad en tu trabajo en el aula a partir del próximo mes de septiembre.

Prácticas de enseñanza de las matemáticas

1. Establecer metas matemáticas centradas en el aprendizaje.

Una enseñanza efectiva de las matemáticas establece metas matemáticas claras de lo que están aprendiendo los estudiantes, sitúa las metas en una progresión de aprendizaje, y utiliza dichas objetivos para guiar las decisiones instruccionales.

2. Implementar tareas que promuevan el razonamiento y la resolución de problemas.

La enseñanza efectiva de las matemáticas involucra a los estudiantes en actividades que implican resolver y discutir, aquellas que promueven el razonamiento matemático y la resolución de problemas, y que permiten que emerjan múltiples maneras de abordar los problemas y una variedad de estrategias de resolución.

3. Usar y relacionar representaciones matemáticas.

La enseñanza efectiva de las matemáticas motiva a los estudiantes a hacer conexiones entre diferentes representaciones matemáticas para profundizar en la comprensión de los conceptos y procedimientos matemáticos, y como herramienta para la resolución de problemas.

4. Facilitar un discurso matemático significativo.

La enseñanza efectiva de las matemáticas promueve el diálogo entre los estudiantes, para que ellos puedan construir una comprensión compartida de ideas matemáticas, a través del análisis y comparación de los enfoques y argumentos.

5. Proponer preguntas con un propósito.

Una enseñanza efectiva de las matemáticas utiliza preguntas con el propósito de evaluar y mejorar el razonamiento del estudiante y hacer sentido de ideas y relaciones matemáticas importantes.

6. Lograr competencias procedimentales desde la comprensión conceptual.

Una enseñanza de las matemáticas efectiva logra destrezas en procedimientos matemáticos basándose en la comprensión conceptual, de manea que los estudiantes, en el tiempo, se vuelvan hábiles usando procedimientos de manera flexible, a medida que resuelven problemas contextualizados y matemáticos.

7. Apoyar el esfuerzo productivo en el aprendizaje de las matemáticas.

Una enseñanza de las matemáticas efectiva brinda consistentemente a los estudiantes oportunidades individuales y colectivas, y apoyo necesario para que se involucre en discusiones productivas a medida que se enfrentan con ideas y relaciones matemáticas.

8. Obtener y usar evidencias del pensamiento de los estudiantes.

Una enseñanza de las matemáticas efectiva utiliza evidencia del pensamiento del estudiante para evaluar el progreso de comprensión matemática y ajustar continuamente la enseñanza de la forma que apoye y extienda el aprendizaje.

Vídeo de presentación (en inglés)

Principles to Actions: Defining Core Practices of Teaching Mathematics – National Council of Teachers of Mathematics

Si tienes interés en conocer más, cada una de estas prácticas se examina y describe en profundidad en Taking Action: Implementing Effective Mathematics Teaching Practices (Boston et al., 2017; Huinker & Bill, 2017; Smith et al., 2017). Estos libros, en cada uno de los cursos (grados), son los textos fundamentales para el desarrollo del profesorado y el aprendizaje profesional en estas prácticas.

Reflexión y acciones

A partir de estas 8 prácticas, identificadas como nucleares hace casi una década por una institución de tanto prestigio en el ámbito de la Enseñanza y Aprendizaje de las Matemáticas como el NCTM, te propongo una re-lectura, únicamente del preámbulo de la materia de Matemáticas (Real Decreto 217/2022, de 29 de marzo, por el que se establece la ordenación y las enseñanzas mínimas de la Educación Secundaria Obligatoria), que creo te ayudará a mirar el nuevo currículo con otros ojos y encontrar muchas respuestas a preguntas que te habías planteado. Encontrarás sentido a este nuevo enfoque de matemáticas para el siglo XXI, aceptado, adoptado y recomendado por una amplia mayoría de la comunidad matemática mundial.

Matemáticas

Las matemáticas se encuentran en cualquier actividad humana, desde el trabajo científico hasta las expresiones culturales y artísticas, y forman parte del acervo cultural de nuestra sociedad. El razonamiento, la argumentación, la modelización, el conocimiento del espacio y del tiempo,, la toma de decisiones, la previsión y control de la incertidumbre o el uso correcto de la tecnología digital son características de las matemáticas, pero también la comunicación, la perseverancia, la organización y optimización de recursos, formas y proporciones o la creatividad. Así pues, resulta importante desarrollar en el alumnado las herramientas y saberes básicos de las matemáticas que le permitan desenvolverse satisfactoriamente tanto en contextos personales, académicos y científicos como sociales y laborales.

 

El desarrollo curricular de las matemáticas se fundamenta en los objetivos de la etapa, prestando especial atención a la adquisición de las competencias clave establecidas en el Perfil de salida del alumnado al término de la enseñanza básica. Dicha adquisición es una condición indispensable para lograr el desarrollo personal, social y profesional del alumnado, y constituye el marco de referencia para la definición de las competencias específicas de la materia.

 

Las líneas principales en la definición de las competencias específicas de matemáticas son la resolución de problemas y las destrezas socioafectivas. Además, se abordan la formulación de conjeturas, el razonamiento matemático, el establecimiento de conexiones entre los distintos elementos matemáticos, con otras materias y con la realidad, y la comunicación matemática, todo ello con el apoyo de herramientas tecnológicas.

 

La investigación en didáctica ha demostrado que el rendimiento en matemáticas puede mejorar si se cuestionan los prejuicios y se desarrollan emociones positivas hacia las matemáticas. Por ello, el dominio de destrezas socioafectivas como identificar y manejar emociones, afrontar los desafíos, mantener la motivación y la perseverancia y desarrollar el autoconcepto, entre otras, permitirá al alumnado aumentar su bienestar general, construir resiliencia y prosperar como estudiante de matemáticas.

 

Por otro lado, resolver problemas no es solo un objetivo del aprendizaje de las matemáticas, sino que también es una de las principales formas de aprender matemáticas. En la resolución de problemas destacan procesos como su interpretación, la traducción al lenguaje matemático, la aplicación de estrategias matemáticas, la evaluación del proceso y la comprobación de la validez de las soluciones. Relacionado con la resolución de problemas se encuentra el pensamiento computacional. Este incluye el análisis de datos, la organización lógica de los mismos, la búsqueda de soluciones en secuencias de pasos ordenados y la obtención de soluciones con instrucciones que puedan ser ejecutadas por una herramienta tecnológica programable, una persona o una combinación de ambas, lo cual amplía la capacidad de resolver problemas y promueve el uso eficiente de recursos digitales.

 

Las competencias específicas entroncan y suponen una profundización con respecto a las adquiridas por el alumnado a partir del área de Matemáticas durante la Educación Primaria, proporcionando una continuidad en el aprendizaje de las matemáticas que respeta el desarrollo psicológico y el progreso cognitivo del alumnado. Se relacionan entre sí y han sido agrupadas en torno a cinco bloques competenciales según su naturaleza: resolución de problemas (1 y 2), razonamiento y prueba (3 y 4), conexiones (5 y 6), comunicación y representación (7 y 8) y destrezas socioafectivas (9 y 10). (continúa)

Pese a que los principios realizan unas recomendaciones y los currículos establecen las líneas a seguir, las acciones del profesorado determinan sobremanera el impacto de las mismas. Los Principios para la Acción llaman a que, el éxito en matemáticas para todos, involucrará a los profesores, quienes, entre otras acciones:

  • planifican e implementan la enseñanza efectiva tal y como se describe en las ocho Prácticas de Enseñanza de las Matemáticas descritas.
  • desarrollan socialmente, emocionalmente, y académicamente ambientes seguros para la enseñanza y el aprendizaje de las matemáticasambientes de aprendizaje en los cuales los estudiantes se sienten seguros y confiados en comprometerse unos a otros con sus profesores.
  • evalúan materiales y recursos curriculares para determinar el grado en el cual dichos materiales están alineados con los currículos, asegurando un desarrollo coherente de los temas en y a través de los grados escolares, promueven las prácticas matemáticas, y apoyan la enseñanza efectiva que implementa las Prácticas de Enseñanza de las Matemáticas.
  • incorporan herramientas matemáticas y tecnología como una parte diaria de la clase de matemáticas, reconociendo que los estudiantes debiesen experimentar con “tecnologías para la actividad matemática” y manipulativos físicos o virtuales para explorar ideas matemáticas que son importantes.
  • proveen a los estudiantes de la retroalimentación de sus evaluaciones que sea: descriptiva, precisa, y a tiempo, incluidas sus fortalezas, debilidades, y los pasos necesarios para que progresen hacia las metas de aprendizaje.
  • trabajan colaborativamente con colegas para planificar la enseñanza, resolver desafíos comunes, y darse apoyo mutuo al tomar la responsabilidad colectiva por el aprendizaje del estudiante.

Espero que esta entrada te ayude a profundizar en la comprensión del nuevo currículo y en el rol del docente ante este nuevo paradigma educativo. Quedo a la espera de tus comentarios, aquí o en la redes sociales.

¡Salud y a seguir disfrutando del merecido descanso estival!

Más contenido matemático en redes sociales
Comparte MatemáTICas: 1,1,2,3,5,8,13,...
WP2Social Auto Publish Powered By : XYZScripts.com