Razonamiento matemático

Juego de algebra pictórica para promover el razonamiento matemático, con Geogebra. Sistemas de ecuaciones 3×3

Comparte MatemáTICas: 1,1,2,3,5,8,13,...
Comparto este applet interactivo elaborado con GeoGebra, para introducir a los alumnos en la resolución de sistemas de ecuaciones lineales con tres incógnitas mediante puzles lógicos. Este recurso facilita la comprensión de estos sistemas de forma visual e intuitiva, a partir de representaciones pictóricas, promoviendo el razonamiento matemático.

Su uso es sencillo: los alumnos pueden interactuar con los elementos del applet para encontrar las soluciones que satisfacen todas las ecuaciones del sistema. Además, el applet permite generar múltiples actividades de forma aleatoria, ofreciendo una variedad ilimitada de ejercicios para reforzar el aprendizaje.

Con un diseño limpio y claro, permite colocarlo a pantalla completa pulsando el cuadrado con borde discontinuo ubicado en la esquina inferior derecha.

Este recurso es de gran utilidad para enseñar y aprender la resolución de sistemas de ecuaciones lineales con tres incógnitas de forma interactiva y atractiva. Una de las principales ventajas de este juego es que permite a los alumnos experimentar de forma lúdica y aprender sin temor a cometer errores. Los alumnos pueden probar diferentes estrategias y recibir retroalimentación inmediata. Esto enriquece su razonamiento matemático y refuerza su confianza en la resolución de problemas.

Juego de algebra pictórica. Sistemas de ecuaciones 3×3

 

Enlace a la actividad en geogebra.org

Más contenido matemático en redes sociales

Comparte MatemáTICas: 1,1,2,3,5,8,13,...

Transformemos juntos nuestras concepciones docentes sobre la resolución de problemas matemáticos

Comparte MatemáTICas: 1,1,2,3,5,8,13,...

La transformación de nuestras concepciones como docentes es una tarea continua y esencial para mejorar la calidad educativa en el aula. Nuestras creencias y prácticas impactan directamente en cómo nuestros alumnos aprenden matemáticas y perciben su utilidad.

En el nuevo marco normativo, autonómico andaluz y estatal, derivado de la implantación de la LOMLOE, la resolución de problemas se posiciona como una herramienta metodológica clave, no solo para enseñar contenidos, sino también para desarrollar el razonamiento, la comunicación y la autonomía de nuestros alumnos.

Durante mi intervención en las Jornadas para el Impulso del Razonamiento Matemático en Andalucía, celebradas en Málaga y Córdoba hace un par de semanas, reflexionamos, entre otros aspectos, sobre cómo nuestras concepciones sobre los problemas pueden influir sobre la manera en qué los enseñamos, qué tipo de problemas enseñamos y cómo/qué aprenden nuestros alumnos.

El nuevo currículo de Matemáticas derivado de la implantación de la LOMLOE tiene como líneas principales en la definición de las competencias específicas de matemáticas la resolución de problemas y las destrezas socioafectivas. En la introducción de la materia se recoge literalmente:

La investigación en didáctica ha demostrado que el rendimiento en matemáticas puede mejorar si se cuestionan los prejuicios y se desarrollan emociones positivas hacia las matemáticas. Por ello, el dominio de destrezas socioafectivas como identificar y manejar emociones, afrontar los desafíos, mantener la motivación y la perseverancia y desarrollar el autoconcepto, entre otras, permitirá al alumnado aumentar su bienestar general, construir resiliencia y prosperar como estudiante de matemáticas.

Por otro lado, resolver problemas no es solo un objetivo del aprendizaje de las matemáticas, sino que también es una de las principales formas de aprender matemáticas. En la resolución de problemas destacan procesos como su interpretación, la traducción al lenguaje matemático, la aplicación de estrategias matemáticas, la evaluación del proceso y la comprobación de la validez de las soluciones. Relacionado con la resolución de problemas se encuentra el pensamiento computacional. Este incluye el análisis de datos, la organización lógica de los mismos, la búsqueda de soluciones en secuencias de pasos ordenados y la obtención de soluciones con instrucciones que puedan ser ejecutadas por una herramienta tecnológica programable, una persona o una combinación de ambas, lo cual amplía la capacidad de resolver problemas y promueve el uso eficiente de recursos digitales.

En este nuevo paradigma curricular, reforzado aún más si cabe en Andalucía con las Instrucciones de Razonamiento Matemático (18 junio 2024), se hace necesario poner la mirada en lo que la investigación educativa ha caracterizado como concepciones docentes sobre la resolución de problemas matemáticos.

Este artículo surge de los comentarios positivos que me han trasladado, por diferentes vías y redes sociales, muchos compañeros y compañeras de diferentes colegios e institutos de la geografía andaluza que acudieron a alguna de las jornadas o que han visto las grabaciones de las mismas, así como del interés común mostrado por la resolución de problemas y las concepciones que tenemos sobre ellas. Me reitero en mi opinión, como profesor de matemáticas e investigador en didáctica de la matemática, que este aspecto es crucial porque las concepciones afectan directamente tanto al proceso de enseñanza como al aprendizaje de nuestros alumnos.

Esta entrada en «el sitio de mi recreo», que no es otro que este blog de Matemáticas, no pretende ser más que una invitación a reflexionar, a compartir estrategias y a avanzar hacia una enseñanza más centrada en la resolución de problemas como eje vertebrador del aprendizaje matemático.

Ahora bien, como en todo proceso de transformación, debemos comenzar con una mirada instrospectiva, autocrítica y abierta al cambio, pilares básicos para construir una práctica docente más reflexiva, inclusiva y eficaz. 

A continuación planteo y ofrezco algunas respuestas y reflexiones que espero sean de utilidad para que ¡¡sigamos avanzando juntos!!

Ya me contarás tu opinión. Me interesa y mucho. 

Elaboración propia con DALL-E

PREGUNTAS, RESPUESTAS Y REFLEXIONES SOBRE LAS CONCEPCIONES DEL PROFESORADO SOBRE LA RESOLUCIÓN DE PROBLEMAS 

1. ¿Por qué es importante estudiar las concepciones del profesorado sobre la resolución de problemas?

Es crucial porque estas concepciones determinan cómo enseñamos y cómo los alumnos aprenden. Creencias erróneas, a menudo relacionadas con una formación deficiente, pueden limitar el uso de estrategias efectivas y perpetuar prácticas poco centradas en el desarrollo del pensamiento matemático.

2. ¿Qué tipo de concepciones erróneas sobre la resolución de problemas se detectan?

Actualmente, se identifican los siguientes problemas comunes:

  • Expectativas sobre los alumnos. Subestimación de las capacidades de los alumnos para resolver problemas.
  • Gestión del aula. Dedicamos poco tiempo a la resolución de problemas, priorizando algoritmos y cálculo mecánico.
  • Diversidad cultural. La diversidad, especialmente las dificultades lingüísticas, es vista como una barrera en lugar de una oportunidad.
  • Estrategias matemáticas. Desconocemos y no enseñamos de manera explícita estrategias heurísticas, modelización o aspectos del pensamiento computacional como metodología de resolución de problemas.
  • Comunicación. Aunque reconocemos su importancia, no fomentamos que los alumnos expliquen sus procesos; ni oralmente ni por escrito.
  • Causas de las dificultades. A menudo atribuimos las dificultades a factores externos, en lugar de reflexionar sobre la metodología. 
  • Relevancia del proceso. Consideramos la resolución de problemas como secundaria, sin priorizar el desarrollo de habilidades matemáticas profundas.

3. ¿Qué factores favorecen la transformación de concepciones erróneas?

Los siguientes elementos resultan fundamentales para este proceso de transformación:

  • Toma de conciencia. Observar cómo nuestros alumnos resuelven problemas con éxito y emplean estrategias diversas.
  • Reflexión sistemática y continuada. Revisar y autoevaluar nuestras prácticas docentes.
  • Contraste de metodologías. Experimentar nuevas formas de trabajar, uso de distintas estrategias de resolución de problemas, modelización, investigación guiada, trabajo por proyectos, aprendizaje cooperativo,…

4. ¿Cómo influye la diversidad cultural en la resolución de problemas?

Aunque puede ser un reto, la diversidad cultural presente en nuestras aulas y en nuestros centros educativos es una riqueza que, bien gestionada, favorece el aprendizaje.

Las estrategias cooperativas, el trabajo en equipo en grupos heterogéneos y mixtos, la aceptación de la crítica razonada, el fomento de la perseverancia y una cultura de aprendizaje a partir del error, ayudan a superar barreras lingüísticas y promueven el intercambio de ideas desde diferentes perspectivas.

5. ¿Qué papel desempeña la comunicación en la enseñanza de la resolución de problemas?

Como se puede ver en diversos ejemplos en la presentación que usé, este es un aspecto fundamental y muy presente en mi aula, ya que considero que la comunicación es fundamental para que nuestros alumnos verbalicen sus ideas, compartan estrategias y construyan conocimiento colectivo.

Es de vital importancia dedicar tiempo para fomentar el diálogo y el debate matemático en el aula. 

6. ¿Qué estrategias didácticas mejoran la gestión del aula durante la resolución de problemas?

Entre las más efectivas destacan:

  • Asignar tiempo suficiente a la resolución de problemas.
  • Organizar el trabajo en pequeños grupos.
  • Proporcionar materiales manipulativos.
  • Enseñar estrategias específicas de resolución.
  • Fomentar el debate y la exposición de ideas.

7. ¿Es posible cambiar las concepciones del profesorado sobre la relevancia de la resolución de problemas?

Sí, es posible. Mostrar cómo la resolución de problemas introduce conceptos nuevos, desarrolla el pensamiento matemático y beneficia a nuestros alumnos puede transformar nuestra percepción y darle la importancia que merece.

Compartir nuestras prácticas de aula, en entornos presenciales (departamento, área, grupos de trabajo, jornadas, congresos,…) o virtuales (a través de blogs, redes sociales,…) es una buena opción. Doy fe de ello.

8. ¿Qué se necesita, que aspectos so para lograr una transformación de las concepciones?

Es imprescindible:

  • Espacios para reflexionar y planificar en equipo.
  • Formación continua en didáctica de la matemática.
  • Formación en gestión y dinámicas del aula, así como en aspectos cognitivos y no cognitivos del aprendizaje.
  • Un cambio en la cultura escolar que valore el análisis de la práctica docente y el desarrollo profesional.

FUENTES

  • Real Decreto 217/2022, de 29 de marzo, por el que se establece la ordenación y las enseñanzas mínimas de la Educación Secundaria Obligatoria.
  • Orden de 30 de mayo de 2023, por la que se desarrolla el currículo correspondiente a la etapa de Educación Secundaria Obligatoria en la Comunidad Autónoma de Andalucía, se regulan determinados aspectos de la atención a la diversidad y a las diferencias individuales, se establece la ordenación de la evaluación del proceso de aprendizaje del alumnado y se determina el proceso de tránsito entre las diferentes etapas educativas.
  • Instrucciones sobre las medidas para el fomento del Razonamiento Matemático a través del planteamiento y la resolución de retos y problemas en Educación Infantil, Educación Primaria y Educación Secundaria Obligatoria en Andalucía
  • Pastells, A. A. (2012). Proceso de transformación de las concepciones del Profesorado sobre la resolución de Problemas matemáticos. Enseñanza de las Ciencias. Revista de investigación y experiencias didácticas, 30(3), 71-88.

Comparte MatemáTICas: 1,1,2,3,5,8,13,...

Presentación usada en las Jornadas de Impulso del Razonamiento Matemático en Andalucía

Comparte MatemáTICas: 1,1,2,3,5,8,13,...

El pasado martes 29 de octubre, en el Salón de Actos de la Facultad de Derecho de la Universidad de Málaga, y el lunes 4 de noviembre, en el Salón de Actos del Rectorado de la Universidad de Córdoba, se se han celebrado sendas jornadas para el profesorado de Andalucía Oriental y Andalucía Occidental.

Estas jornadas, impulsadas por la Dirección General de Innovación Educativa y Formación del Profesorado, y organizadas por los CEP de Málaga y de Córdoba han versado sobre las Instrucciones de Razonamiento Matemático (18 junio 2024),  con presentación institucional a cargo del DG de Innovación y Formación del Profesorado,  D. Francisco Javier Franco Fernández, y han constado de ponencias para las distintas etapas y mesas redondas.

En total han asistido más de 800 docentes de todas las provincias andaluzas, profesores y profesoras que imparten matemáticas en las distintas etapas educativas; Infantil, Primaria, Secundaria y Bachillerato. 

He tenido el gusto de participar en la mesa redonda moderada por D. Agustín Carrillo de Albornoz, SAEM Thales y Secretario General de la FESPM, junto a mis compañeros D.ª Belén Sepúlveda, D. Juan Antonio Reyes y D. Guillermo Cotrino.

Estoy encantando de que se potencie el razonamiento matemático y la resolución de problemas en Andalucía, muy feliz por el impulso de la Consejería de Desarrollo Educativo y la Formación Profesional con estas jornadas así como con el resto de actuaciones que desarrollarán las Instrucciones y agradecido por participar en las mismas aportando mi granito de arena.

Os comparto el material en el que he apoyado mi intervención por si fuera de utilidad, tanto para los docentes que han participado en las Jornadas, como para aquellos compañeros y compañeras que no han podido asistir.

Enlace a la presentación

Tweets de las Jornadas de los CEP de Málaga y Córdoba

Vídeos de la Jornadas de Córdoba y Málaga

Imágenes de ambas Jornadas

El pase de diapositivas requiere JavaScript.

Más contenido matemático en redes sociales

Comparte MatemáTICas: 1,1,2,3,5,8,13,...

Factorización de expresiones algebraicas cuadráticas usando azulejos algebraicos con Geogebra

Comparte MatemáTICas: 1,1,2,3,5,8,13,...

Comparto este applet interactivo realizado con Geogebra. Se trata de un manipulativo virtual de mucha utilidad para facilitar la comprensión de nuestros alumnos sobre el proceso de factorización de polinomios cuadráticos (trinomios del tipo ax^2+bx+c) de manera visual, gracias a esta excelente y clara representación.

Sencillo de usar, basta arrastrar el deslizador, además de permitir generar múltiples actividades de manera aleatoria pulsando en el botón OTRO POLINOMIO.

Con un diseño limpio y claro, permite colocarlo a pantalla completa pulsando el cuadrado con borde discontinuo ubicado en la esquina inferior derecha.

Factorización de expresiones algebraicas cuadráticas usando azulejos algebraicos (fichas algebraicas)

Enlace a la actividad en geogebra.org

Más contenido matemático en redes sociales

Comparte MatemáTICas: 1,1,2,3,5,8,13,...

Estrenando el nuevo modelo de OpenAI: o1-preview. Resolviendo con ChatGPT un problema de Matemáticas II de la Prueba de Acceso a la Universidad EBAU

Comparte MatemáTICas: 1,1,2,3,5,8,13,...
 
En los dos últimos años he ido compartiendo diversas entradas sobre el uso de la Inteligencia Artificial (IA) en el ámbito educativo. Entradas relacionadas con materiales y propuestas didácticas o presentaciones de ponencias realizadas en distintos foros educativos. 
 
Tomando como punto de partida la necesaria alfabetización básica en Pensamiento Computacional y Algorítmico, continuando con el Aprendizaje Automático, aspectos éticos y legales, hasta llegar a propuestas educativas de uso de la IA Generativa, principalmente para docentes por razones obvias de limitaciones de uso para edades tempranas, reflexionando continuamente sobre el camino andado, atento a su evolución y a sus posibilidades didácticas. 
 
En este artículo sobre la #InteligenciaArtificial en el ámbito educativo, publicado a de finales de abril de este mismo año en el Periódico Magisterio: La IA en las aulas, una nueva ecuación para modelar el futuro educativo, presentaba la integración de la Inteligencia Artificial (IA) en las aulas como un desafío similar a la resolución de un problema matemático abierto, destacando cómo la IA puede revolucionar la educación mediante la personalización del aprendizaje, la reducción de la carga burocrática de los docentes y facilitar la creación de entornos educativos más accesibles. Al mismo tiempo, señalaba algunos de los retos que conlleva esta desafío, como la brecha digital, los sesgos inherentes a los algoritmos y la importancia de mantener la interacción humana en el proceso educativo.
 
En esta entrada comparto la primera de mis interacciones con el nuevo modelo lanzado hace unos días por OpenAI, el cual da un salto cualitativo importante en el apartado de razonamiento, crucial para el trabajo en nuestra materia. 
 
Ejemplo práctico. Resolviendo un problema del examen de Acceso a la Universidad con el nuevo modelo de OpenAI: o1-preview

Como he comentado, OpenAI ha lanzado recientemente un nuevo modelo llamado o1, el primero de una serie de modelos centrados en el «razonamiento». Este modelo ha sido entrenado para resolver preguntas complejas de manera más rápida que un humano, y se acompaña de una versión más ligera, llamada o1-mini, que es más económica y accesible. Si habías oído hablar o leído sobre el modelo Strawberry, ya está aquí. Este es el tan esperado modelo.

Para OpenAI, o1 representa un paso importante hacia la inteligencia artificial de tipo humano. Según indican en las notas de prensa publicadas, en términos prácticos, ha demostrado ser más eficaz en la escritura de código y en la resolución de problemas multietapa, comparado con modelos anteriores. Sin embargo, este modelo es más caro y más lento de utilizar en comparación con GPT-4o. OpenAI ha decidido denominar este lanzamiento como una “vista previa” (de ahí lo del 1 y preview) para resaltar lo incipiente que aún es.

Para ilustrar el potencial de o1-preview, vamos a ponerlo a prueba con un problema real de matemáticas extraído de la EBAU 23-24, del examen de Matemáticas II de Acceso a la Universidad de la Comunidad de Madrid. El problema es el siguiente:

Fuente: ebaumatematicas.com
Os comparto un vídeo con la interacción que he tenido y comentando cómo ha abordado la resolución y, también, el enlace a la conversación que he mantenido con ChatGPT: o1-preview.
 

 
 
Reflexión

El modelo o1-preview ha sido capaz de resolver este problema planteando y resolviendo un sistema de 3 ecuaciones con 3 incógnitas, paso a paso, aplicando técnicas de resolución y detallándolo completamente, para acabar incluso comprobando la validez de las soluciones obtenidas. Y todo ello, en 14 segundos. Sí, puede parecer demasiado tiempo desde el punto de vista computacional, y lo saben en OpenAI. Pero no me digáis que no es prometedor. Este resultado no solo demuestra la capacidad del modelo para manejar problemas matemáticos de distintas etapas educativas y categorías, sino que también subraya su utilidad como herramienta de apoyo en la enseñanza y en la preparación y aprendizaje de nuestros estudiantes, en su día a día, y para este tipo de exámenes.

El lanzamiento de o1-preview marca un hito importante en el uso de inteligencia artificial para la resolución de problemas complejos, acercándonos cada vez más a un futuro donde las máquinas puedan asistir de manera más natural a los humanos en tareas intelectuales avanzadas.

Playlist Youtube. Uso didáctico de la IA

Más contenido matemático en redes sociales

Comparte MatemáTICas: 1,1,2,3,5,8,13,...

Vídeos de geometría analítica. Hallar vectores y comprobar si son equipolentes, analítica y gráficamente

Comparte MatemáTICas: 1,1,2,3,5,8,13,...

Hallar vectores y comprobar si son equipolentes (analíticamente)

Manuales

Más contenido matemático en redes sociales

Comparte MatemáTICas: 1,1,2,3,5,8,13,...

Geogebra Math Practice, una excelente aplicación para trabajar el sentido algebraico, fruto de la alianza entre Geogebra y Graspable Math

Comparte MatemáTICas: 1,1,2,3,5,8,13,...

A finales del 2020, escribí una entrada titulada:

Graspable Math y Geogebra; aliadas extraordinarias para enseñar y aprender matemáticas en contextos presenciales discontinuos. 5 tareas resueltas en vídeos sobre funciones lineales, afines, paralelismo y ecuaciones de la recta, la cual comenzaba así:

Los lectores asiduos de este rincón virtual matemático conocen sobradamente mi predilección por estas dos poderosas herramientas digitales. En mi opinión, indispensables ambas para la enseñanza y el aprendizaje de la matemática en el siglo XXI, siendo especialmente útiles en los contextos de enseñanza-aprendizaje semipresencial y a distancia especialmente extendidos con motivo de la COVID-19.

Aprovecho estas líneas para invitarte a visitar las distintas publicaciones sobre propuestas didácticas para trabajar en el aula y los materiales que he compartido sobre ambas en los últimos años:

Pues bien, si juntamos ambas, el resultado no puede ser catalogado de otro modo que excelente.

Como muestra de ello comparto en esta entrada 5 tareas resueltas paso a paso, en otros tantos vídeos, con ayuda de Geogebra y Graspable Math. 

Estos materiales los desarrollé para mis estudiantes de Matemáticas de 3º de ESO (14-15 años) para trabajar en modalidad online durante el cierre de los centros educativos españoles, periodo de la suspensión de la actividad docente presencial (marzo-junio 2020), con motivo de la COVID-19.

Espero te animes a usar los vídeos con tu alumnado si los consideras de utilidad 

(…)

Puedes acceder al contenido completo pulsando más abajo:

Pues bien, esa alianza sigue dando frutos. Y muy buenos además. Ese es el motivo que me trae hoy a escribir estas líneas.

Como Geogebra Ambassador y como usuario habitual y elaborador de diverso material con Graspable Math, además de alpha tester de la herramienta con acceso a funcionalidades experimentales en fase de desarrollo es una gran alegría mostraros la herramienta Geogebra Math Practice. 

 

Geogebra Math Practice, una herramienta para la práctica algebraica con ayuda de GeoGebra

GeoGebra Math Practice ayuda a los estudiantes en su trabajo paso a paso en la resolución de ejercicios de álgebra. Combina el Solver Engine interno de GeoGebra y la tecnología Graspable Math basada en investigaciones para proporcionar notación interactiva, sugerencias adaptativas y comentarios en tiempo real que permiten a los estudiantes explorar diferentes caminos en el proceso de resolución, ayudándoles a ganar en confianza, favoreciendo la fluidez de los procedimientos y la comprensión conceptual. 

2.png

GeoGebra Math Practice es una colaboración entre GeoGebra y Graspable Math , y es de uso gratuito para profesores y estudiantes.

Recursos de práctica de matemáticas para el Centro de ayuda.png

 

Animación interactiva. Ejemplo de resolución de ecuación con Geogebra Math Practice

APA-ecuación lineal de un paso.gif

Estas son las características clave de GeoGebra Math Practice :

  • Utiliza la notación dinámica de Graspable Math para manipular y resolver problemas algebraicos con gestos (tocar y arrastrar) y animaciones interactivas.
  • Obtén sugerencias visuales y conceptuales para cada uno de los pasos, proporcionadas por Solver Engine de GeoGebra.
  • Obtén comentarios instantáneos sobre cada paso.
  • Reescribe libremente el problema con el teclado matemático virtual de GeoGebra.
  • Practica problemas similares para profundizar en tu comprensión de las habilidades clave.

Tipos de ejercicios relacionados con el sentido algebraico que se pueden trabajar actualmente con Geogebra Math Practice (GMP).

Diseño sin título (5).png

GeoGebra Math Practice actualmente es capaz de ayudarte con ejercicios sobre:

  • El orden (jerarquía) de las operaciones
    • Operaciones aritméticas
    • Operaciones con fracciones
    • Operaciones con potencias
  • Expresiones algebraicas
    • Desarrollo (distribución) de expresiones algebraicas.
    • Simplificación de expresiones fraccionarias
  • Polinomios
    • Reescribir a forma estándar
    • Sumar y restar polinomios
    • División por monomios
  • Ecuaciones lineales
    • Ecuaciones lineales de 1 paso, 2 pasos y varios pasos
    • Resolver ecuaciones lineales con múltiples o ninguna solución.

También puede utilizar GeoGebra Math Practice con otros ejemplos y tipos de ejercicios pero es posible que no recibas sugerencias ni comentarios precisos. Durante los próximos meses se espera que sigan ampliando la funcionalidad y se puedan realizar más tipos de ejercicios.

 

Acceso a Geogebra Math Practice: https://www.geogebra.org/mathpractice/es-ES  
 
Acceso a Geogebra Math Practice: https://www.geogebra.org/mathpractice/es-ES  
 

Vídeos

Manuales

Más contenido matemático en redes sociales

Comparte MatemáTICas: 1,1,2,3,5,8,13,...

(Vídeo) Conferencia en el XXVII Congreso Nacional de Matemática Educativa de Guatemala. Aprender y enseñar matemáticas con manipulativos virtuales

Comparte MatemáTICas: 1,1,2,3,5,8,13,...

El pasado 24 de noviembre del recién terminado 2023, disfruté impartiendo la Conferencia «Aprender y enseñar matemáticas con manipulativos virtuales» en el XXVII Congreso Nacional de Matemática Educativa, evento de referencia en nuestro querido país hermano de Guatemala, organizado por la Unidad de Modelación Matemática e Investigación de la Facultad de Ingeniería de la Universidad de San Carlos de Guatemala.

El evento contó con la participación de 44 ponentes de 8 países, Guatemala, México, Costa Rica, Estados Unidos de Norteamérica, Perú, Panamá, El Salvador y España, de forma virtual, con un total de 50 talleres y 6 conferencias plenarias acerca de la enseñanza y aprendizaje de esta materia en todos los niveles educativos. El mismo contó con la participación de 420 docentes.

Quiero expresar mi agradecimiento, por la confianza renovada y el respeto y cariño mostrado hacia mi trabajo, a todos los miembros del Comité Organizador del Congreso, con especial énfasis en la Dra. Mayra Castillo y el Dr. Julio Ricardo Castillo por todo el apoyo que me han dado, antes, durante y tras el evento.

El pase de diapositivas requiere JavaScript.

Comparto a continuación el enlace al evento en Facebook donde se encuentra en el vídeo de mi Conferencia «Aprender y enseñar matemáticas con manipulativos virtuales» donde, durante más de dos horas, reflexioné, compartí e interactué con los profesores participantes, proponiendo diferentes actividades matemáticas basadas en materiales manipulativos, simulando una situación real de clase a distancia, explicitando propuestas metodológicas, favoreciendo el razonamiento y la argumentación matemática.

Aprender y enseñar matemáticas con manipulativos virtuales

XXVII Congreso Nacional de Matemática Educativa de Guatemala

Más contenido matemático en redes sociales

Comparte MatemáTICas: 1,1,2,3,5,8,13,...

Proyecto MAPS – Caminos matemáticos al pensamiento computacional

Comparte MatemáTICas: 1,1,2,3,5,8,13,...

En esta entrada comparto información sobre este interesante proyecto de investigación educativa, abierto a centros de Andalucía, Aragón y Cataluña, en el que los centros educativos pueden inscribirse hasta el próximo 20 de mayo. 

¿Qué es MAPS – Caminos matemáticos al pensamiento computacional?

MAPS – Caminos matemáticos al pensamiento computacional es un proyecto de investigación educativa sobre el programa de enseñanza de las matemáticas basado en las bases de numeración Exploding Dots. MAPS llevdará a cabo  evaluación de impacto de Exploding Dots sobre el desarrollo del pensamiento computacional del alumnado, estudiando el efecto de trabajar en profundidad los fundamentos aritméticos sobre el fortalecimiento de las distintas componentes de este pensamiento. 

Asimismo, analizaremos los efectos que tiene el empleo de manipulativos virtuales para la descomposición y posicionamiento numérico sobre la ansiedad, la motivación y la capacidad de disfrutar de la actividad matemática de los alumnos de 1º de ESO.

El método de estudio es un RCT, prueba de control aleatorio (Randomized Control Trial), que consiste en tomar una muestra, en nuestro caso 80 centros educativos de Andalucía, Aragón y Cataluña, y de manera aleatoria pero controlada crear 2 grupos semejantes de 40 centros cada uno. El control sirve para que los dos grupos de 40 sean parecidos en cuanto a sus características relevantes (titularidad, urbano/rural, etc). 

El programa se pone en marcha solo en un grupo, el de implementación, y los resultados se comparan con el grupo de control en una prueba final que se hace a todos. Previamente a empezar, y para tener una base de medida, se hace una prueba inicial a los estudiantes de los dos grupos.  

CALENDARIO

#1. Noviembre 2022 – 20 de mayo 2023: Información del proceso a centros interesados. Firma del Memorándum de Entendimiento con centros participantes.

#2. Mayo – Junio 2023: Proceso de aleatorización. Formación docente presencial en Aragón, Andalucía y Cataluña.

 #3. Septiembre-Diciembre 2023: Implementación en aula.

 #4. Abril 2024: Informe de los resultados de la investigación.

¿A qué nos comprometemos como centro educativo?

Debido al tamaño de la muestra y a que los centros educativos se adscriben voluntariamente al programa, es necesario plantear que haya un grupo de control aleatorio para conocer la factibilidad de la investigación y poder realizar el procedimiento de validación de los resultados. El centro se compromete a participar independientemente de haber sido elegido grupo de implementación o grupo de control. En ambos casos el alumnado hará una prueba Pre-test y una post-test sobre pensamiento computacional, que consiste en la resolución de pequeños retos.  

¿Qué beneficios tenemos como centro educativo?

  • Formación gratuita sobre Exploding Dots, un enfoque innovador para el aprendizaje de la aritmética (En Andalucía a concretar ciudad, Barcelona y Zaragoza) a finales de este curso.
  • Materiales didácticos para su implementación.
  • Acreditación como centro investigador.
  • Los docentes participantes podrán formar parte de las siguientes convocatorias de HelloMath! de EduCaixa.
  • Cada escuela contará con una partida económica de 500 € en concepto de gastos derivados en la organización en el centro. 

FORMACIÓN GRATUITA 

  • La formación es gratuita y corre a cargo del equipo del MMACA (Museo de Matemáticas de Cataluña). Se hará de forma presencial.
  • Deberían asistir los profesores que vayan a llevar al aula la metodología el próximo curso.
  • El coste del alojamiento y desplazamiento, en el caso de proceder de otra ubicación geográfica, para la formación será cubierto por EduCaixa, por ser de carácter obligado para la participación en el proyecto.
  • Para los grupos de control, la formación será después de la evaluación postest, en el segundo trimestre del próximo curso.

¿CÓMO INSCRIBIRSE? Y MÁS INFORMACIÓN

  • Este es el formulario para a rellenar para inscribirse (HASTA EL 20 DE MAYO DE 2023): https://yj1podbqtws.typeform.com/expdots
  • Además, es necesario firmar la última hoja del Memorándum de Entendimiento que enviamos cuando los centros quieran entrar en el proyecto.
  • Se puede consultar la información en más profundidad en la web del proyecto
  • Aquí el díptico y el cartel.

Grabación de la presentación que se hizo en Barcelona, el pasado 9 de febrero, con la Master Class de James Tanton.

 

Más contenido matemático en redes sociales

 
Comparte MatemáTICas: 1,1,2,3,5,8,13,...

(Vídeo) Ponencia en el XXVI Congreso Nacional de Matemática Educativa de Guatemala. Menú de degustación de herramientas digitales para enseñar y aprender matemática en un contexto post pandémico

Comparte MatemáTICas: 1,1,2,3,5,8,13,...

El pase de diapositivas requiere JavaScript.

La tarde del pasado viernes, 25 de noviembre, tuve el gusto y el honor de participar en el XXVI Congreso Nacional de Matemática Educativa, un evento organizado por la Unidad de Modelación Matemática e Investigación, de la Facultad de Ingeniería de la Universidad de San Carlos de Guatemala, que se proyecta hacia la sociedad guatemalteca en apoyo a la mejora de la calidad educativa de matemática.

El evento ha contado con la participación de 60 ponentes, de Guatemala, México, Colombia, Panamá, Paraguay, El Salvador, Venezuela y España, de forma virtual, con talleres, foros, conferencias y grupos de reflexión acerca de la enseñanza y aprendizaje de esta materia en todos los niveles educativos, y con la participación de más de 500 docentes.

Quiero expresar mi agradecimiento a todos los miembros del Comité Organizador del Congreso, y de manera especial a la Dra. Mayra Castillo y al Dr. Julio Ricardo Castillo por todo el apoyo que me han dado. Comparto a continuación el enlace al evento en Facebook donde se encuentra en el vídeo de mi ponencia «Menú de degustación de herramientas digitales para enseñar y aprender matemática en un contexto post pandémico» donde, durante algo más de dos horas, reflexioné, compartí e interactué con los profesores participantes, realizando actividades matemáticas, simulando una situación real de clase a distancia con 4 herramientas digitales que en mi opinión son el póker de ases de las herramientas digitales para enseñar y aprender matemáticas en cualquier tipo de entorno; presencial, híbridos/blended/semipresencial y a distancia. Hablo de Geogebra Notas, Desmos, Graspable Math y Mathigon.

Espero que el vídeo sea de utilidad para tu trabajo diario en el aula de matemáticas. Quedo a la espera de tus comentarios 😉

Menú de degustación de herramientas digitales para enseñar y aprender matemática en un contexto post pandémico

XXVI Congreso Nacional de Matemática Educativa de Guatemala

Comparte MatemáTICas: 1,1,2,3,5,8,13,...
WP2Social Auto Publish Powered By : XYZScripts.com