Profesión Docente

Situación de Aprendizaje (SdA): IA para un mundo mejor. Pensamiento computacional, Scratch y Learning ML. #REA con eXeLearning

Comparte MatemáTICas: 1,1,2,3,5,8,13,...

En esta entrada quiero compartir una Situación de Aprendizaje (SdA) que elaboré hace casi dos años con la magnífica herramienta eXeLearning, para iniciar al alumnado en el uso de la IA, a través del Pensamiento Computacional, mostrando técnicas de Aprendizaje Automático, Machine Learning, haciendo uso de las herramientas Learning ML y Scratch.

SdA: IA para un mundo mejor

Mediante el trabajo en el aula con esta SdA pretendo introducir la Inteligencia Artificial (IA) y el Machine Learning (ML) al alumnado de ESO y Bachillerato. La misma presenta un enfoque práctico y guiado, paso a paso, facilitando la comprensión de conceptos complejos a través de ejemplos concretos, comprensibles por todos los alumnos, y el uso de herramientas visuales como Scratch y Learning ML. La inclusión de instrumentos de evaluación como las rúbricas presentes en el REA tienen la finalidad tiene la intención de ayudar a estimar de alguna manera, medir, el aprendizaje de los alumnos y asegurar un proceso educativo efectivo.

Se recomienda analizar con mayor profundidad todos el contenido del REA; enlaces a videos, así como explorar a fondo la SdA para obtener una visión más completa.

Quisiera destacar que el uso de la inteligencia artificial (IA), específicamente el Aprendizaje Automático (Machine Learning o ML) en Educación, a edades tempranas es posible a software educativo gratuitos; Scratch y la herramienta Learning ML.

Temas principales

  • Introducción a la programación con Scratch: Se destaca a Scratch como una herramienta ideal para iniciar a cualquier persona en la programación. Se mencionan sus características principales: lenguaje visual por bloques, comunidad online para compartir proyectos, fomento del pensamiento creativo y el trabajo colaborativo. 
  • Bloques de programación en Scratch: Se describe la función de los diferentes bloques de código en Scratch: Movimiento, Apariencia, Sonido, Control y Sensores. Se ejemplifica su uso para controlar objetos, crear animaciones, interactuar con el usuario y más. 
  • La importancia de los algoritmos: Se define un algoritmo como un conjunto de instrucciones ordenadas para obtener un resultado específico. Se menciona al matemático persa Al-Juarismi como el origen del término «algoritmo». 
  • Creación de modelos de IA con Learning ML: Se explica el proceso de generar un modelo de clasificación de datos en Learning ML, haciendo hincapié en la importancia de la cantidad y calidad de los datos. 
  • Aplicaciones prácticas de LearningML, en Matemáticas y en Biología (STEM): Se presentan dos ejemplos concretos de cómo usar Learning ML para:
  1. Predecir el cuadrante de un punto dadas sus coordenadas: Se describe el proceso de entrenar un modelo con datos de coordenadas y su cuadrante correspondiente, para luego probar su capacidad de predicción con nuevas coordenadas. 
  2. Clasificar flores Iris según sus características: Se detalla el uso de un conjunto de datos famoso sobre flores Iris para entrenar un modelo que clasifique nuevas flores en base a la longitud y anchura de sus sépalos y pétalos. 
  • Evaluación del aprendizaje: Se propone una rúbrica para evaluar el aprendizaje de los estudiantes en proyectos de IA, abarcando aspectos como la comprensión de la función de la IA, la importancia de los datos y la capacidad de desarrollar y programar una IA. 

Otros aspectos importantes del REA

  • La importancia del orden en la programación: Un algoritmo implica la realización de una instrucciones ordenadas.
  • El aprendizaje automático como reconocimiento de patrones: A partir de los datos introducidos, busca patrones entre ellos.
  • La potencia de la IA para predecir y clasificar: En los ejemplos se muestra la potencia de las herramientas sobre cómo son capaces de aprender y de obtener los patrones que les permite predecir.
  • El valor educativo de experimentar con datos erróneos: «Puede haber datos que sean erróneos, que estén contaminados. Pues ahí es donde realmente estaría la potencia didáctica y el trabajo en el aula con el alumnado».

Enlace al Recurso Educativo Abierto (REA) con la Situación de Aprendizaje (SdA)

https://luismiglesias.es/iaparaunmundomejor/SA/index.html 

Playlist en Youtube: Uso didáctico de la IA

Más contenido matemático en redes sociales
Comparte MatemáTICas: 1,1,2,3,5,8,13,...

Material del Taller: «Integración de GeoGebra y Phyton: PyGgb» en el V Día Nacional Geogebra · FESPM

Comparte MatemáTICas: 1,1,2,3,5,8,13,...

Los pasados días 4 y 5 de octubre tuvo lugar en la Facultad de Educación del Campus de Cuenca de la Universidad de Castilla La Mancha, el V Día Nacional Geogebra, organizado por la Federación Española de Sociedades de Profesores de Matemáticas (FESPM), con el apoyo de distintas administraciones.

Fueron dos días intensos de aprendizaje y compartiendo con colegas de todo el territorio nacional en torno a la mejora de la Educación Matemática con ayuda de esta potente herramienta digital y los excelentes recursos digitales compartidos por la comunidad docente mundial. 

Libro Geogebra. Material del Taller sobre PyGgb

 
PyGgb es una herramienta aún en estado embrionario, pero con una potencialidad didáctica increíble, como pudimos ver durante el desarrollo del taller y se puede comprobar en el libro Geogebra que elaboré expresamente para el mismo el cual os comparto a continuación:
T3-V-DNG-TALLER-PYTHON-GEOGEBRA-PYGGB-LUIS-MIGUEL-IGLESIAS-ALBARRAN-5
T3-V-DNG-TALLER-PYTHON-GEOGEBRA-PYGGB-LUIS-MIGUEL-IGLESIAS-ALBARRAN-1
T3-V-DNG-TALLER-PYTHON-GEOGEBRA-PYGGB-LUIS-MIGUEL-IGLESIAS-ALBARRAN-2
T3-V-DNG-TALLER-PYTHON-GEOGEBRA-PYGGB-LUIS-MIGUEL-IGLESIAS-ALBARRAN-3
T3-V-DNG-TALLER-PYTHON-GEOGEBRA-PYGGB-LUIS-MIGUEL-IGLESIAS-ALBARRAN-4

INTEGRACIÓN DE GEOGEBRA Y PYTHON: PYGGB. EXPLORANDO NUEVAS FRONTERAS EN LA ENSEÑANZA Y EN EL APRENDIZAJE DE LAS MATEMÁTICAS
Luis Miguel Iglesias Albarrán
luismiglesias@gmail.com · https://luismiglesias.es
IES San Antonio (Bollullos Par del Condado – Huelva) · España

Nivel educativo: Educación Secundaria Obligatoria y Bachillerato

Palabras clave: GeoGebra, Python, Pensamiento Computacional, Competencias Específicas

Resumen
En el marco del V Día GeoGebra en España, presentamos PyGgb, una poderosa combinación de GeoGebra y Python que abre nuevas posibilidades para la Enseñanza y para el Aprendizaje de las Matemáticas. GeoGebra es una herramienta ampliamente utilizada por la comunidad educativa matemática, y de otras disciplinas, a nivel mundial, para visualizar y apoyar las explicaciones facilitando la comprensión e interpretación de los conceptos matemáticos, modelizar fenómenos y situaciones de la vida real,… Por otra parte, Python es un lenguaje de programación versátil y popular en la ciencia de datos y la automatización. La herramienta PyGgb es un puente que conecta estas dos potentes herramientas, permitiendo a los usuarios, en nuestro caso profesores y alumnos, aprovechar lo mejor de ambos mundos.

Libro Geogebra: https://www.geogebra.org/m/mzzmnwus

Fotos de momentos del evento y con amigos

VDNGGBFESPM-luismiglesias-07
VDNGGBFESPM-luismiglesias-01
VDNGGBFESPM-luismiglesias-05
VDNGGBFESPM-luismiglesias-09
VDNGGBFESPM-luismiglesias-03
« de 4 »

Las palabras de mi amigo Juan Martínez-Tébar Giménez, merecen mención especial: «De Huelva me encantan las gambas 🦐, el jamón 🐖 y Luismi 🧑‍💻» 🤗.

 
 
En resumidas cuentas, regresé con la mochila 🎒 cargada de aprendizajes, libros y buenos momentos de convivencia con los colegas de las sociedades de profesores de matemáticas del país.

Enlaces de interés

Más contenido matemático en redes sociales

Comparte MatemáTICas: 1,1,2,3,5,8,13,...

Taller: «Integración de GeoGebra y Phyton: PyGgb» en el V Día Nacional Geogebra · FESPM

Comparte MatemáTICas: 1,1,2,3,5,8,13,...

Los próximos días 4 y 5 de octubre tendrá lugar en Cuenca el V Día Nacional Geogebra, organizado por la Federación Española de Sociedades de Profesores de Matemáticas (FESPM), con el apoyo de distintas administraciones. Serán dos días intensos compartiendo con colegas de todo el territorio nacional en torno a esta potente y versátil herramienta, fundamental para el desarrollo de los procesos de Enseñanza-Aprendizaje en las aulas de todo el mundo.

Además compartir buenos ratos de tertulia matemática con los compañeros, aprender en sus talleres y conferencias, tendré la oportunidad de impartir un taller, en la mañana del sábado día 5, sobre PyGGb =  Python + Geogebra

INTEGRACIÓN DE GEOGEBRA Y PYTHON: PYGGB. EXPLORANDO NUEVAS FRONTERAS EN LA ENSEÑANZA Y EN EL APRENDIZAJE DE LAS MATEMÁTICAS
Luis Miguel Iglesias Albarrán
luismiglesias@gmail.com · https://luismiglesias.es
IES San Antonio (Bollullos Par del Condado – Huelva) · España

Nivel educativo: Educación Secundaria Obligatoria y Bachillerato

Palabras clave: GeoGebra, Python, Pensamiento Computacional, Competencias Específicas

Resumen
En el marco del V Día GeoGebra en España, presentamos PyGgb, una poderosa combinación de GeoGebra y Python que abre nuevas posibilidades para la Enseñanza y para el Aprendizaje de las Matemáticas. GeoGebra es una herramienta ampliamente utilizada por la comunidad educativa matemática, y de otras disciplinas, a nivel mundial, para visualizar y apoyar las explicaciones facilitando la comprensión e interpretación de los conceptos matemáticos, modelizar fenómenos y situaciones de la vida real,… Por otra parte, Python es un lenguaje de programación versátil y popular en la ciencia de datos y la automatización. La herramienta PyGgb es un puente que conecta estas dos potentes herramientas, permitiendo a los usuarios, en nuestro caso profesores y alumnos, aprovechar lo mejor de ambos mundos.

ENTRADA SOBRE PyGgb EN MATEMÁTICAS: 1,1,2,3,5,8,13,…

 

 

INFORMACIÓN DE LA FESPM SOBRE LOS DÍAS GEOGEBRA

Durante los últimos años se han venido celebrando distintas actividades de formación que tenían como tema de trabajo el uso de este software con fines didácticos, para dar a conocer las posibilidades que a lo largo de sus sucesivas versiones ha ido incorporando.

En particular han sido numerosas las actividades realizadas en torno al programa GeoGebra, tanto en cada Comunidad Autónoma como de carácter más general, entre las que cabe mencionar el Día GeoGebra Iberoamericano celebrado en Madrid en 2017, el I Congreso Internacional GeoGebra de Córdoba, en 2023, o el último Día GeoGebra estatal celebrado en Albacete en 2018.

Desde la FESPM consideramos que es el momento de retomar esta última actividad, aprovechando el éxito del pasado I Congreso internacional, que tendrá continuidad en 2025 con una nueva edición, que en este caso se celebrará en Portugal.

La convocatoria de un Día GeoGebra con carácter estatal servirá para retomar la coordinación entre los distintos Institutos de GeoGebra creados en las distintas comunidades autónomas, con el objetivo de aunar esfuerzos para lograr que se siga trabajando para generalizar el uso de este software como recurso en el aula, de manera que se puedan aprovechar las posibilidades didácticas que ofrece para promover un cambio metodológico en la enseñanza de las matemáticas en los diferentes niveles educativos, desde Educación Infantil hasta Universidad.

Con estos objetivos se propone la celebración de una nueva edición estatal del Día GeoGebra, que tendrá lugar en Cuenca, durante los días 4 y 5 de octubre de 2024.

Enlace a web FESPM: Descarga la convocatoria aquí

Enlace a web FESPM: Descarga el programa aquí

 
Comparte MatemáTICas: 1,1,2,3,5,8,13,...

Estrenando el nuevo modelo de OpenAI: o1-preview. Resolviendo con ChatGPT un problema de Matemáticas II de la Prueba de Acceso a la Universidad EBAU

Comparte MatemáTICas: 1,1,2,3,5,8,13,...
 
En los dos últimos años he ido compartiendo diversas entradas sobre el uso de la Inteligencia Artificial (IA) en el ámbito educativo. Entradas relacionadas con materiales y propuestas didácticas o presentaciones de ponencias realizadas en distintos foros educativos. 
 
Tomando como punto de partida la necesaria alfabetización básica en Pensamiento Computacional y Algorítmico, continuando con el Aprendizaje Automático, aspectos éticos y legales, hasta llegar a propuestas educativas de uso de la IA Generativa, principalmente para docentes por razones obvias de limitaciones de uso para edades tempranas, reflexionando continuamente sobre el camino andado, atento a su evolución y a sus posibilidades didácticas. 
 
En este artículo sobre la #InteligenciaArtificial en el ámbito educativo, publicado a de finales de abril de este mismo año en el Periódico Magisterio: La IA en las aulas, una nueva ecuación para modelar el futuro educativo, presentaba la integración de la Inteligencia Artificial (IA) en las aulas como un desafío similar a la resolución de un problema matemático abierto, destacando cómo la IA puede revolucionar la educación mediante la personalización del aprendizaje, la reducción de la carga burocrática de los docentes y facilitar la creación de entornos educativos más accesibles. Al mismo tiempo, señalaba algunos de los retos que conlleva esta desafío, como la brecha digital, los sesgos inherentes a los algoritmos y la importancia de mantener la interacción humana en el proceso educativo.
 
En esta entrada comparto la primera de mis interacciones con el nuevo modelo lanzado hace unos días por OpenAI, el cual da un salto cualitativo importante en el apartado de razonamiento, crucial para el trabajo en nuestra materia. 
 
Ejemplo práctico. Resolviendo un problema del examen de Acceso a la Universidad con el nuevo modelo de OpenAI: o1-preview

Como he comentado, OpenAI ha lanzado recientemente un nuevo modelo llamado o1, el primero de una serie de modelos centrados en el «razonamiento». Este modelo ha sido entrenado para resolver preguntas complejas de manera más rápida que un humano, y se acompaña de una versión más ligera, llamada o1-mini, que es más económica y accesible. Si habías oído hablar o leído sobre el modelo Strawberry, ya está aquí. Este es el tan esperado modelo.

Para OpenAI, o1 representa un paso importante hacia la inteligencia artificial de tipo humano. Según indican en las notas de prensa publicadas, en términos prácticos, ha demostrado ser más eficaz en la escritura de código y en la resolución de problemas multietapa, comparado con modelos anteriores. Sin embargo, este modelo es más caro y más lento de utilizar en comparación con GPT-4o. OpenAI ha decidido denominar este lanzamiento como una “vista previa” (de ahí lo del 1 y preview) para resaltar lo incipiente que aún es.

Para ilustrar el potencial de o1-preview, vamos a ponerlo a prueba con un problema real de matemáticas extraído de la EBAU 23-24, del examen de Matemáticas II de Acceso a la Universidad de la Comunidad de Madrid. El problema es el siguiente:

Fuente: ebaumatematicas.com
Os comparto un vídeo con la interacción que he tenido y comentando cómo ha abordado la resolución y, también, el enlace a la conversación que he mantenido con ChatGPT: o1-preview.
 

 
 
Reflexión

El modelo o1-preview ha sido capaz de resolver este problema planteando y resolviendo un sistema de 3 ecuaciones con 3 incógnitas, paso a paso, aplicando técnicas de resolución y detallándolo completamente, para acabar incluso comprobando la validez de las soluciones obtenidas. Y todo ello, en 14 segundos. Sí, puede parecer demasiado tiempo desde el punto de vista computacional, y lo saben en OpenAI. Pero no me digáis que no es prometedor. Este resultado no solo demuestra la capacidad del modelo para manejar problemas matemáticos de distintas etapas educativas y categorías, sino que también subraya su utilidad como herramienta de apoyo en la enseñanza y en la preparación y aprendizaje de nuestros estudiantes, en su día a día, y para este tipo de exámenes.

El lanzamiento de o1-preview marca un hito importante en el uso de inteligencia artificial para la resolución de problemas complejos, acercándonos cada vez más a un futuro donde las máquinas puedan asistir de manera más natural a los humanos en tareas intelectuales avanzadas.

Playlist Youtube. Uso didáctico de la IA

Más contenido matemático en redes sociales

Comparte MatemáTICas: 1,1,2,3,5,8,13,...

Explorando la magia de GeoGebra y Python: PyGgb. Visualizaciones matemáticas interactivas para el aula

Comparte MatemáTICas: 1,1,2,3,5,8,13,...
En el proceso de aprendizaje de las matemáticas, la visualización y la interacción son clave para entender conceptos complejos. Asimismo facilita sobremanera la labor docente, como apoyo a las explicaciones. En los últimos meses, he estado disfrutando muchísimo de la combinación de dos herramientas poderosas: GeoGebra y Python. Juntas no solo nos permiten crear construcciones geométricas dinámicas y precisas, sino que también nos abren la puerta a explorar las matemáticas de forma más creativa e interactiva.
 

GeoGebra + Python: PyGgb

GeoGebra es ya una herramienta esencial en nuestras clases de matemáticas, conocida por su capacidad para modelar y explorar conceptos de forma visual. Pero al combinarla con Python, un lenguaje de programación accesible y potente, las posibilidades se multiplican. Esta combinación nos permite automatizar procesos, crear animaciones complejas y generar visualizaciones que de otra manera serían más difíciles de elaborar.

Fuente: @GeoGebra en X

Acceso al entorno de programación PyGgb

Basta introducir la url: https://geogebra.org/python/index.html y dar rienda suelta a tu imaginación. 

Tablero de ajedrez

8 aplicaciones prácticas para el aula

A continuación, os comparto algunos de los proyectos que he desarrollado y que he publicado en mi canal de YouTube. Cada uno de estos vídeos muestra cómo podemos usar esta combinación para crear visualizaciones matemáticas interactivas y atractivas que pueden llevar nuestras clases a otro nivel:

  • 1. Serie de polígonos regulares con GeoGebra + Python
    En este vídeo, exploro cómo generar una serie de polígonos regulares utilizando GeoGebra y Python. Es una forma excelente de mostrar la simetría y las propiedades geométricas de estos polígonos de manera visual y dinámica.

  • 2. Diseños geométricos variados con GeoGebra + Python
    Aquí podéis ver cómo usamos GeoGebra y Python para crear diseños geométricos variados y estéticamente atractivos. Es una oportunidad fantástica para que los alumnos vean cómo las matemáticas también pueden ser arte.

  • 3. Cicloide con GeoGebra + Python
    En este vídeo, construyo una cicloide, una curva generada por un punto en el borde de un círculo que rueda a lo largo de una línea recta. Es una aplicación perfecta para enseñar sobre curvas y sus propiedades tanto en cinemática como en geometría (sentido de la medida y espacial).

  • 4. Representación de rectas y tabla de valores: Ecuación explícita y=mx+n con GeoGebra + Python
    Este proyecto es ideal para mostrar la relación entre la ecuación de una recta y su representación gráfica, resaltando la importancia de las conexiones intramatemáticas, viendo el saber matemático como un todo integrado. Además, se genera automáticamente una tabla de valores, lo que facilita la comprensión de la pendiente y la intersección.

  • 5. Diseños geométricos variados: Cuadrados marchosos con GeoGebra + Python
    Aquí presento un diseño geométrico dinámico donde los cuadrados parecen «bailar» al ritmo de la programación. Es un recurso genial para captar la atención de los estudiantes y mostrar la belleza de la geometría dinámica. Un ejemplo claro del enfoque STEAM en el aula de Matemáticas

  • 6. Parábola y arte reglado con GeoGebra + Python
    Este vídeo explora cómo construir una parábola y cómo esta se puede utilizar para crear patrones geométricos atractivos. Es una excelente manera de conectar conceptos algebraicos con aplicaciones geométricas.

  • 7. Teselación hexagonal: Panal de abejas con GeoGebra + Python
    En este proyecto, exploro la teselación hexagonal, mostrando cómo se forma un panal de abejas. Es una forma perfecta de introducir a los estudiantes en conceptos de simetría, teselación y sus aplicaciones en la naturaleza.

  • 8. Diseños geométricos: Rotación de segmentos con GeoGebra + Python
    Finalmente, en este vídeo muestro cómo la rotación de segmentos puede generar patrones geométricos interesantes. Es ideal para discutir temas como la rotación y la simetría en el aula.

Ventajas pedagógicas

Incorporar Python en el uso de GeoGebra no solo añade una capa técnica interesante, sino que también introduce a los alumnos a la programación de una manera intuitiva y orientada a resultados, artefactos digitales concretos que pueden ser perfectamente el producto final de Situaciones de Aprendizaje competenciales. Esto no solo refuerza sus habilidades matemáticas, sino que también desarrolla competencias digitales que son cada vez más necesarias en el mundo actual.

 

Os animo a que veáis los vídeos que he compartido y que consideréis cómo estas herramientas podrían integrarse en vuestras clases. La combinación de GeoGebra y Python tiene el potencial de transformar la enseñanza de las matemáticas, haciendo que conceptos abstractos sean más tangibles y atractivos para los estudiantes.

Seguiré explorando nuevas formas de aprovechar esta potente combinación y compartiendo mis descubrimientos. ¡No os perdáis las próximas publicaciones y, como siempre, estaré encantado de conocer vuestras experiencias y comentarios!

Más contenido matemático en redes sociales

Comparte MatemáTICas: 1,1,2,3,5,8,13,...

Artículo en Periódico Magisterio · La IA en las aulas, una nueva ecuación para modelar el futuro educativo

Comparte MatemáTICas: 1,1,2,3,5,8,13,...
Hoy quiero compartir con vosotros e invitaros a leer este artículo sobre la #InteligenciaArtificial en el ámbito educativo, una colaboración que he realizado para el Periódico Magisterio: La IA en las aulas, una nueva ecuación para modelar el futuro educativo 👨‍💻👩‍💻, decano de la prensa educativa española, desde 1866 informando sobre el sector de la educación.
 
En él presento la integración de la Inteligencia Artificial (IA) en las aulas como un desafío similar a la resolución de un problema matemático abierto, destacando cómo la IA puede revolucionar la educación mediante la personalización del aprendizaje, la reducción de la carga burocrática de los docentes y facilitar la creación de entornos educativos más accesibles. Al mismo tiempo, señalo alguno de los retos que conlleva, como la brecha digital, los sesgos inherentes a los algoritmos y la importancia de mantener la interacción humana en el proceso educativo.

Para abordar este desafío, recomiendo desglosar el problema en subproblemas más manejables, identificar fortalezas y obstáculos, y analizar las necesidades individuales de los estudiantes. Subrayo que la implementación de la IA requiere una estrategia multidimensional que involucra: la adaptación de currículos, la formación docente y la mejora de la infraestructura/dotación tecnológica, así como la necesidad de establecer políticas de privacidad de datos.

Finalmente, hago hincapié en que la integración de la IA no debe verse como un punto final, sino un proceso continuo que requiere la participación de todos los actores educativos. A través de la evaluación constante de los resultados, las estrategias deben ajustarse para equilibrar la innovación tecnológica con las necesidades humanas y mantener un enfoque abierto.

 

Periódico Magisterio · La IA en las aulas, una nueva ecuación para modelar el futuro educativo

INTELIGENCIA ARTIFICIAL Y EDUCACIÓN Con el apoyo de SEK Education Group

La IA en las aulas, una nueva ecuación para modelar el futuro educativo

El profesor de Educación Secundaria de Matemáticas y director del IES San Antonio, Luis Miguel Iglesias Albarrán, aborda el desafío, y plasma las oportunidades, de la integración de la IA en educación.
 
REDACCIÓN Jueves, 25 de abril de 2024
 

La irrupción de la Inteligencia Artificial nos ha situado ante una era de cambio y exploración global. La Educación no puede ni debe mantenerse al margen. Hay que aprovechar esta coyuntura para seguir dando pasos en el proceso de transformación educativa y digital, mediante escenarios de innovación controlados, y avanzar tanto en calidad como en equidad educativa.

“Abordar la integración de la inteligencia artificial (IA) en el ámbito educativo puede compararse con la resolución de un interesante problema matemático abierto” cita el profesor de Matemáticas Luis Miguel Iglesias Albarrán. Desde su experiencia explica como “en matemáticas estamos habituados a enfrentar desafíos que requieren no solo de conocimientos y destrezas, sino también de creatividad, ciertas dosis de perseverancia e ingenio y de una visión integral para encontrar soluciones eficaces a los mismos”.

Como ya se ha anticipado, la adopción e integración con aprovechamiento de la IA en Educación plantea un problema que moviliza un amplio conjunto de variables. Estas hay que identificarlas, interpretarlas y combinarlas para maximizar su potencial, al tiempo que hay que trabajar para minimizar, e incluso neutralizar, algunos de los riesgos asociados.

Planteamiento del problema

La ecuación resultante de la modelización matemática para la resolución de este problema nos presenta a la IA como una herramienta potencialmente revolucionaria para: personalizar el aprendizaje, atender a las diferencias individuales de los alumnos, reducir la carga burocrática de los docentes, automatizar tareas administrativas, facilitar nuevos escenarios de enseñanza-aprendizaje y hacer la educación más accesible para todos.

Sin embargo, no podemos obviar que el otro miembro de la ecuación incluye factores como: la brecha digital, los sesgos que presentan estos sistemas de aprendizaje automático, la veracidad y fiabilidad de la información que proporciona, la privacidad y autoría de los datos e información que maneja, así como la ética de la IA.

La clave estará en equilibrar la innovación tecnológica con las necesidades humanas

“Por si fuera poco, a todo ello hay que añadir la necesidad de mantener una interacción humana significativa en el proceso de aprendizaje ya que, aunque la IA tiene el potencial de transformar y enriquecer el aprendizaje de muchas maneras, la interacción humana sigue siendo un pilar fundamental de la Educación”, añade Albarrán. Cuidar y mantener este aspecto humano del aprendizaje asegura una experiencia educativa más enriquecedora, “preparando a nuestros jóvenes estudiantes no solo académicamente sino también como miembros empáticos y agentes de cambio de la sociedad”.

Abordando la resolución

“Una vez planteado el problema y con la ecuación por delante, para abordar la resolución de este desafío, debemos desglosar el problema en subproblemas del mismo tipo pero de menor tamaño. A su vez, en cada subproblema o etapa debemos identificar las fortalezas que podamos aprovechar, los obstáculos que debamos superar, así como estar preparados para los que puedan surgir durante el proceso”, aclara Albarrán.

Tenemos ante nosotros un camino repleto de oportunidades para innovar y transformar cómo aprendemos y cómo enseñamos

A la hora de abordar la implantación de la IA en un contexto educativo, hay que tratar de conseguir metas intermedias. Esto implica analizar las necesidades individuales del alumnado, la infraestructura tecnológica disponible, tanto en los centros educativos como en los hogares, así como las competencias digitales de todos los agentes implicados. Todo ello, teniendo presente permanentemente las limitaciones de edad para usar estas herramientas, atendiendo a la legislación vigente.

Aplicación de estrategias

De igual manera que en un problema matemático diferentes enfoques o abordajes pueden llevarnos a la solución, la implementación de la IA en el ámbito educativo requiere de una estrategia multidimensional. Esto incluye desde la adaptación de los currículos a itinerarios de formación docente, pasando por el desarrollo de una infraestructura tecnológica, hasta la creación de políticas de privacidad y seguridad de datos.

La integración efectiva de la IA en Educación no debe ser vista como un punto final, sino como un proceso continuo e iterativo de aprendizaje.

Las administraciones educativas, los claustros de profesorado y las comunidades educativas en su conjunto, deben participar en este nuevo horizonte educativo.

Para conseguir este balance, Albarrán explica que “la revisión y evaluación constante de los resultados, en el seno de los órganos colegiados y de gobierno de nuestros centros educativos, son esenciales para asegurarnos de que estamos en el camino correcto. Así como durante la realización de las tareas matemáticas revisamos nuestros razonamientos y cálculos y ajustamos nuestras estrategias según sea necesario, en la implementación de la IA en Educación debemos tener una mentalidad abierta”.

Playlist Youtube. Uso didáctico de la IA

Más contenido matemático en redes sociales

Comparte MatemáTICas: 1,1,2,3,5,8,13,...

Artículo sobre este blog en El Recreo Diario · ‘MatemáTICas: 1,1,2,3,5,8,13,…’: 15 años mejorando el aprendizaje en las aulas

Comparte MatemáTICas: 1,1,2,3,5,8,13,...

Hoy traigo a este espacio una bonita publicación que dedica El Recreo Diario (Periódico escolar, educativo y cultural) a esta bitácora virtual matemática, con motivo de su 15 cumpleaños.

Agradecido y sorprendido, he recordado los inicios de este blog, que coincidieron con un bonito periodo, época dorada de la blogosfera educativa y efervescencia y consolidación de la Web 2.0 educativa.

El Recreo Diario · ‘MatemáTICas: 1,1,2,3,5,8,13,…’: 15 años mejorando el aprendizaje en las aulas

El blog ‘MatemáTICas: 1,1,2,3,5,8,13,…‘, del reconocido profesor onubense de matemáticas Luis Miguel Iglesias Albarrán, cumple este jueves 14 de marzo, Día Internacional de las Matemáticas, la friolera de 15 años, una efemérides y un número redondo que bien merecen una mención especial en este periódico educativo sobre este blog que tanto bien ha hecho y hace por la didáctica de esta materia, con lo que, de paso, El Recreo Diario también quiere promover un impulso a la recuperación de la blogosfera educativa, tan escasa en la actualidad.

Funcionario de carrera del cuerpo de profesores de Enseñanza Secundaria de la especialidad de Matemáticas, Luis Miguel Iglesias Albarrán es actualmente el director del IES San Antonio de Bollullos Par del Condado (Huelva), una responsabilidad que ejerce después de una amplísima trayectoria en la que ha sido profesor de Didáctica de la Matemática en la Universidad de Huelva y que le ha llevado a participar y coordinar Proyectos de Investigación Educativa (PIV) y Elaboración de Materiales Curriculares (PEM) de la Consejería de Desarrollo Educativo y Formación Profesional.

 

«Por desgracia apenas quedan espacios de aquella blogosfera educativa, generada con la Web 2.0 y el nacimiento de redes sociales como Twitter, hoy X, que estén en activo», destaca el autor del blog ‘MatemáTICas: 1,1,2,3,5,8,13,…’, que aboga por «recuperar, recordar, homenajear y, por qué no, hacer llamamiento para continuar con los blogs para difundir los ricos productos finales de las situaciones de aprendizaje competenciales que se desarrollan en las escuelas en el contexto LOMLOE», prosigue el profesor en declaraciones realizadas a El Recreo Diario.

Autor de diversas publicaciones como artículos, monográficos y capítulos de libros sobre didáctica, innovación y tecnología educativa para enseñar y aprender, Luis Miguel Iglesias Albarrán ha participado en los últimos años en el diseño del currículo de Matemáticas LOMLOE a nivel nacional; en el Proyecto REA/DUA Andalucía, como coordinador técnico del proyecto y persona experta en Gestión de Objetos Digitales Educativos (ODE); en el Proyecto Situaciones de Aprendizaje Matemáticas INTEF-MEFP y el proyecto EDIA-CEDEC; en el grupo de trabajo encargado del ‘Análisis del Marco Común de la Competencia Digital Docente (CDD) y el asesoramiento de las actividades formativas que proporcional al personal docente lo distintos niveles de progresión de la Competencia Digital Docente’; o en el Proyecto europeo FAIaS (Fomentando la Inteligencia Artificial en las Escuelas), entre otros.

 

Más contenido matemático en redes sociales

Comparte MatemáTICas: 1,1,2,3,5,8,13,...

Ejercicio interactivo. Identifica el número secreto con pistas

Comparte MatemáTICas: 1,1,2,3,5,8,13,...

 

Comparte MatemáTICas: 1,1,2,3,5,8,13,...

(Vídeo) Conferencia en el XXVII Congreso Nacional de Matemática Educativa de Guatemala. Aprender y enseñar matemáticas con manipulativos virtuales

Comparte MatemáTICas: 1,1,2,3,5,8,13,...

El pasado 24 de noviembre del recién terminado 2023, disfruté impartiendo la Conferencia «Aprender y enseñar matemáticas con manipulativos virtuales» en el XXVII Congreso Nacional de Matemática Educativa, evento de referencia en nuestro querido país hermano de Guatemala, organizado por la Unidad de Modelación Matemática e Investigación de la Facultad de Ingeniería de la Universidad de San Carlos de Guatemala.

El evento contó con la participación de 44 ponentes de 8 países, Guatemala, México, Costa Rica, Estados Unidos de Norteamérica, Perú, Panamá, El Salvador y España, de forma virtual, con un total de 50 talleres y 6 conferencias plenarias acerca de la enseñanza y aprendizaje de esta materia en todos los niveles educativos. El mismo contó con la participación de 420 docentes.

Quiero expresar mi agradecimiento, por la confianza renovada y el respeto y cariño mostrado hacia mi trabajo, a todos los miembros del Comité Organizador del Congreso, con especial énfasis en la Dra. Mayra Castillo y el Dr. Julio Ricardo Castillo por todo el apoyo que me han dado, antes, durante y tras el evento.

El pase de diapositivas requiere JavaScript.

Comparto a continuación el enlace al evento en Facebook donde se encuentra en el vídeo de mi Conferencia «Aprender y enseñar matemáticas con manipulativos virtuales» donde, durante más de dos horas, reflexioné, compartí e interactué con los profesores participantes, proponiendo diferentes actividades matemáticas basadas en materiales manipulativos, simulando una situación real de clase a distancia, explicitando propuestas metodológicas, favoreciendo el razonamiento y la argumentación matemática.

Aprender y enseñar matemáticas con manipulativos virtuales

XXVII Congreso Nacional de Matemática Educativa de Guatemala

Más contenido matemático en redes sociales

Comparte MatemáTICas: 1,1,2,3,5,8,13,...

Inteligencia Artificial de ChatGPT para docentes. Generación de mapa mental. Clasificación de triángulos

Comparte MatemáTICas: 1,1,2,3,5,8,13,...

Continuando la serie de vídeos relativos al uso didáctico de la IA, en esta nueva entrada comparto un vídeo para trabajar saberes básicos relacionados con el sentido de la medida y el sentido espacial.

En esta ocasión vamos a crear un mapa mental. Echemos un vistazo a su definición y alguna de sus características antes de continuar.

Un mapa mental es un diagrama usado para representar palabras, ideas, tareas, lecturas, dibujos, u otros conceptos ligados y dispuestos radicalmente a través de una palabra clave o de una idea central. Los mapas mentales son un método muy eficaz para extraer y memorizar información. Son una forma lógica y creativa de tomar notas, organizar, asociar y expresar ideas, que consiste en cartografiar sus reflexiones sobre un tema. Es representado por medio de dibujos imágenes, o puede no incluir estas y llevar colores para mejor representación del tema.

Un mapa mental es una imagen de distintos elementos, utilizados como puntos clave, que dan información específica de un tema en particular o de la ramificación de varios temas en relación con un punto central. Es también una manifestación gráfica del pensamiento radial donde de un núcleo central se irradian ramas en todas las direcciones cuando asociamos ideas. Es captar en un solo plano toda la información. Los mapas mentales son considerados como apuntes visuales para transmitir mejor el pensamiento, sintetizar conocimientos y lograr un aprendizaje significativo.

Dentro de los mapas mentales se pueden utilizar palabras claves, signos, símbolos, dibujos, códigos y abreviaturas. Con los mapas mentales se aprende a organizar y asociar las ideas. Para entender mejor qué es un mapa mental, imaginemos el plano de una ciudad. El centro de la urbe representa la idea principal; las principales avenidas que llevan al centro representan los pensamientos clave del proceso mental; las calles menores representan los pensamientos secundarios, etc.; las imágenes o formas especiales pueden representar monumentos o ideas especialmente importantes.

Un mapa mental se obtiene y se desarrolla alrededor de una palabra, frase o texto, situado en el centro, para luego derivar ideas, palabras y conceptos, mediante líneas que se trazan hacia alrededor del título; el sentido de estas líneas puede ser horario o antihorario; es un recurso muy efectivo para facilitar el estudio académico. El gran difusor de la idea del mapa mental fue Tony Buzan en 1974, con su libro Use Your Head, donde promueve la nemotecnia y el uso de mapas mentales como herramientas del aprendizaje.

Fuente: Wikipedia

Diferentes versiones en PDF del mapa mental

Inteligencia Artificial de ChatGPT para docentes. Mapa_mental__Clasificación_de_Triángulos_4

Inteligencia Artificial de ChatGPT para docentes. Mapa_mental__Clasificación_de_Triángulos_3

Inteligencia Artificial de ChatGPT para docentes. Mapa_mental__Clasificación_de_Triángulos_2

Inteligencia Artificial de ChatGPT para docentes. Mapa_mental__Clasificación_de_Triángulos_1 

Si consideras interesante este ejemplo puedes suscribirte al blog para estar informado por correo electrónico de las nuevas publicaciones o a mi canal de Youtube donde iré publicando todo aquello que me sea posible compartir para sacarle partido a la IA en el aula.

Seguiré informando de los avances 🙂

Ya me contarás qué te han parecido estas propuestas de aprendizaje y enseñanza apoyadas en la Inteligencia Artificial Generativa de ChatGPT.

Seguimos…

Más contenido matemático en redes sociales

Comparte MatemáTICas: 1,1,2,3,5,8,13,...
WP2Social Auto Publish Powered By : XYZScripts.com