Geogebra

Explorando la magia de GeoGebra y Python: PyGgb. Visualizaciones matemáticas interactivas para el aula

Comparte MatemáTICas: 1,1,2,3,5,8,13,...
En el proceso de aprendizaje de las matemáticas, la visualización y la interacción son clave para entender conceptos complejos. Asimismo facilita sobremanera la labor docente, como apoyo a las explicaciones. En los últimos meses, he estado disfrutando muchísimo de la combinación de dos herramientas poderosas: GeoGebra y Python. Juntas no solo nos permiten crear construcciones geométricas dinámicas y precisas, sino que también nos abren la puerta a explorar las matemáticas de forma más creativa e interactiva.
 

GeoGebra + Python: PyGgb

GeoGebra es ya una herramienta esencial en nuestras clases de matemáticas, conocida por su capacidad para modelar y explorar conceptos de forma visual. Pero al combinarla con Python, un lenguaje de programación accesible y potente, las posibilidades se multiplican. Esta combinación nos permite automatizar procesos, crear animaciones complejas y generar visualizaciones que de otra manera serían más difíciles de elaborar.

Fuente: @GeoGebra en X

Acceso al entorno de programación PyGgb

Basta introducir la url: https://geogebra.org/python/index.html y dar rienda suelta a tu imaginación. 

Tablero de ajedrez

8 aplicaciones prácticas para el aula

A continuación, os comparto algunos de los proyectos que he desarrollado y que he publicado en mi canal de YouTube. Cada uno de estos vídeos muestra cómo podemos usar esta combinación para crear visualizaciones matemáticas interactivas y atractivas que pueden llevar nuestras clases a otro nivel:

  • 1. Serie de polígonos regulares con GeoGebra + Python
    En este vídeo, exploro cómo generar una serie de polígonos regulares utilizando GeoGebra y Python. Es una forma excelente de mostrar la simetría y las propiedades geométricas de estos polígonos de manera visual y dinámica.

  • 2. Diseños geométricos variados con GeoGebra + Python
    Aquí podéis ver cómo usamos GeoGebra y Python para crear diseños geométricos variados y estéticamente atractivos. Es una oportunidad fantástica para que los alumnos vean cómo las matemáticas también pueden ser arte.

  • 3. Cicloide con GeoGebra + Python
    En este vídeo, construyo una cicloide, una curva generada por un punto en el borde de un círculo que rueda a lo largo de una línea recta. Es una aplicación perfecta para enseñar sobre curvas y sus propiedades tanto en cinemática como en geometría (sentido de la medida y espacial).

  • 4. Representación de rectas y tabla de valores: Ecuación explícita y=mx+n con GeoGebra + Python
    Este proyecto es ideal para mostrar la relación entre la ecuación de una recta y su representación gráfica, resaltando la importancia de las conexiones intramatemáticas, viendo el saber matemático como un todo integrado. Además, se genera automáticamente una tabla de valores, lo que facilita la comprensión de la pendiente y la intersección.

  • 5. Diseños geométricos variados: Cuadrados marchosos con GeoGebra + Python
    Aquí presento un diseño geométrico dinámico donde los cuadrados parecen «bailar» al ritmo de la programación. Es un recurso genial para captar la atención de los estudiantes y mostrar la belleza de la geometría dinámica. Un ejemplo claro del enfoque STEAM en el aula de Matemáticas

  • 6. Parábola y arte reglado con GeoGebra + Python
    Este vídeo explora cómo construir una parábola y cómo esta se puede utilizar para crear patrones geométricos atractivos. Es una excelente manera de conectar conceptos algebraicos con aplicaciones geométricas.

  • 7. Teselación hexagonal: Panal de abejas con GeoGebra + Python
    En este proyecto, exploro la teselación hexagonal, mostrando cómo se forma un panal de abejas. Es una forma perfecta de introducir a los estudiantes en conceptos de simetría, teselación y sus aplicaciones en la naturaleza.

  • 8. Diseños geométricos: Rotación de segmentos con GeoGebra + Python
    Finalmente, en este vídeo muestro cómo la rotación de segmentos puede generar patrones geométricos interesantes. Es ideal para discutir temas como la rotación y la simetría en el aula.

Ventajas pedagógicas

Incorporar Python en el uso de GeoGebra no solo añade una capa técnica interesante, sino que también introduce a los alumnos a la programación de una manera intuitiva y orientada a resultados, artefactos digitales concretos que pueden ser perfectamente el producto final de Situaciones de Aprendizaje competenciales. Esto no solo refuerza sus habilidades matemáticas, sino que también desarrolla competencias digitales que son cada vez más necesarias en el mundo actual.

 

Os animo a que veáis los vídeos que he compartido y que consideréis cómo estas herramientas podrían integrarse en vuestras clases. La combinación de GeoGebra y Python tiene el potencial de transformar la enseñanza de las matemáticas, haciendo que conceptos abstractos sean más tangibles y atractivos para los estudiantes.

Seguiré explorando nuevas formas de aprovechar esta potente combinación y compartiendo mis descubrimientos. ¡No os perdáis las próximas publicaciones y, como siempre, estaré encantado de conocer vuestras experiencias y comentarios!

Más contenido matemático en redes sociales

Comparte MatemáTICas: 1,1,2,3,5,8,13,...

Matemáticas con herramientas digitales. Problema geométrico: dos cuadrados y un rectángulo, con Geogebra

Comparte MatemáTICas: 1,1,2,3,5,8,13,...

Navegando por la red me topé con este bonito problema:

«Dos cuadrados y un rectángulo. ¿Cuánto vale el área del rectángulo?»

Tras analizarlo con detalle y resolverlo usando un poco de trigonometría me di cuenta que era bastante más rico de lo que aparentaba y que escondía un bonito invariante geométrico relacionado con él área del cuadrado inicial, independientemente de cuales fueran las áreas de los cuadrados adyacentes dibujados. 

Y, en efecto, con ayuda de este magnífico software de geometría dinámica, Geogebra, pude certificar que era cierta mi observación. 

Es por ello por lo que he pensado que tal vez sería de utilidad para otros compañeros docentes que quieran trabajarlo en el aula. 

Bien como problema aislado, para analizar en detalle y promover un escenario de conjeturas (razonamiento y prueba), para seguir el protocolo de construcción y que los alumnos realicen construcciones del problema con diferentes tamaños, compartan sus resultados y conjeturen,…

Applet interactivo en Geogebra.org

Applet interactivo en Geogebra.org

Pulsa para colocar a pantalla completa (esquina inferior derecha) y pulsa el botón de reproducir (play)

 

Vídeo con explicación del problema e interacción con el applet

 

Espero que resulte de utilidad. Ya me contarás qué te parece y si te ha funcionado en el aula. 

Saludos y feliz domingo 😉

Más contenido matemático en redes sociales

Comparte MatemáTICas: 1,1,2,3,5,8,13,...

Matemáticas con herramientas digitales. Posición relativa de rectas en el plano: resolución analítica (hoja de cálculo) y gráfica (Geogebra)

Comparte MatemáTICas: 1,1,2,3,5,8,13,...

En esta entrada comparto un ejercicio de estudio de la posición relativa de dos rectas en el plano, apoyado en dos herramientas digitales:

  1. Para la resolución analítica hemos usado la Hoja de cálculo de Google.
  2. Para la resolución gráfica hemos usado la archiconocida Geogebra.

Esta doble resolución favorece la comprensión por parte de nuestro alumnado, así ha ocurrido en Matemáticas B de 4º de ESO, y es por ello por lo que os lo he querido dejar por aquí. Al disponer de la representación gráfica y enfrentarla con la resolución analítica, favorece la conexión intra-matemática entre la ecuación, el significado de los distintos coeficientes y la representación gráfica de la recta. 

Posición relativa de rectas en el plano – Resolución gráfica (Pulsar para acceder a Geogebra)

Esto puede ser utilizado para enseñar, proyectando en la Pizarra Digital, o para que el alumnado elabore sus propios productos digitales, favoreciendo el aprendizaje significativo y el desarrollo competencial del mismo.

Espero que resulte de utilidad. Ya me contarás qué te parece y si te ha funcionado en el aula. 

Saludos y buen finde 😉

Más contenido matemático en redes sociales

Comparte MatemáTICas: 1,1,2,3,5,8,13,...

Ecuaciones por un tubo (polinómicas, racionales, radicales,… y sistemas de ecuaciones). 15 actividades y problemas resueltos paso a paso

Comparte MatemáTICas: 1,1,2,3,5,8,13,...

Buenos días, comenzando esta nueva semana, comparto este material que he ido elaborando para mi alumnado de Matemáticas 4ºESO, por si fuera de utilidad para tu trabajo en el aula o para compartir con tus alumnos.

Ya me contarás cómo te ha ido.

¡¡Saludos y a por el lunes!!

ECUACIONES POR UN TUBO · MATEMÁTICAS: 1,1,2,3,5,8,13,… de Luis Miguel Iglesias Albarrán

 

PDF con enlaces

Acceso a PDF para pulsar en los enlaces: ECUACIONES POR UN TUBO · MATEMÁTICAS 1,1,2,3,5,8,13,…

Acceso a Graspable Math con las 15 actividades resueltas

Acceso a las actividades resueltas paso a paso en Graspable Math

 

 

 

Comparte MatemáTICas: 1,1,2,3,5,8,13,...

Conferencia Magistral «Enseñar y aprender matemáticas en modalidad híbrida» en el XVI Congreso Internacional de Metodología de la Ciencia y de la Investigación para la Educación de México

Comparte MatemáTICas: 1,1,2,3,5,8,13,...

La Asociación Mexicana de Metodología de la Ciencia y de la Investigación, A. C. y la Universidad Guadalupe Victoria ha convocado a especialistas en metodología de la ciencia, en metodología de la investigación, en investigación científica y tecnológica, en investigación educativa, educadores, pedagogos, autoridades educativas, líderes y responsables de proyectos de investigación en centros educativos, científicos de la educación, tomadores de decisiones en el ámbito científico-educativo, padres de familia, estudiantes y a todo los interesados en la generación, uso y aplicación de las nuevas tendencias de la metodología de la ciencia, de la metodología de la investigación, de los lineamientos y políticas actuales de la educación a interactuar y dialogar en el espacio del 16º Congreso Internacional de Metodología de la Ciencia y de la Investigación para la Educación, que se ha realizado en Modalidad Híbrida (Presencial y en línea) en las instalaciones de la Universidad Guadalupe Victoria, en Multunchac, Campeche, Cam., México, del 26 al 28 de octubre de 2023, con el tema “Metodologías para el aprendizaje y el conocimiento en la Modalidad Híbrida” («Methodologies for learning and knowledge in the Hybrid Modality»).

 
Desde estas líneas agradezco la invitación recibida desde México, en la persona de D. Noel Ángulo primeramente y, por parte de, D. Ángel Eduardo Vargas Garza, como Coordinador General del Comité Organizador del citado Congreso, para impartir la Conferencia Magistral «Enseñar y aprender matemáticas en modalidad híbrida”.
 
 
‘La Asociación Mexicana de Metodología de la Ciencia y de la Investigación A. C., reconociendo su amplia trayectoria académica e interés en participar en la proyección de los profesionales de la Metodología de la Ciencia y de la Investigación Educativa, tiene el agrado de invitarle a participar en el “Décimo Sexto Congreso Internacional de Metodología de la Ciencia y de la Investigación para la Educación”, con la Video Conferencia Magistral: «Enseñar y aprender matemáticas en modalidad híbrida”.’

 

Ha sido un honor, un verdadero placer, compartir y aprender en este Congreso con centenares de colegas del contexto mexicano en particular, e iberoamericano en general. Por último quisiera destacar la excelente organización por parte de la AMCCI, de la Universidad Guadalupe Victoria, y el resto de entidades colaboradoras.

 
 

El pase de diapositivas requiere JavaScript.

Más contenido matemático en redes sociales

Comparte MatemáTICas: 1,1,2,3,5,8,13,...

Creamos nuestro Círculo Matemático Computacional (CMC) para trabajar el Pensamiento Computacional y la Resolución de Problemas. Proyecto Situaciones de Aprendizaje del MEFP

Comparte MatemáTICas: 1,1,2,3,5,8,13,...

Este curso 22/23 se ha implantado el nuevo currículo derivado de la implantación de la LOMLOE en los cursos impares (1º, 3º y 5º de Primaria, 1º y 3º de Secundaria y 1º de Bachillerato). A partir de septiembre se implantará en los pares, finalizando así dicha implantación. 

Uno de los nuevos paradigmas propuestos en el nuevo marco curricular son las Situaciones de Aprendizaje, que son situaciones y actividades que implican el despliegue por parte del alumnado de actuaciones asociadas a competencias clave y competencias específicas, y que contribuyen a la adquisición y desarrollo de las mismas.

Acompañando al desarrollo normativo se han realizado diferentes acciones. Entre ellas se ha establecido un itinerario formativo para el profesorado y se ha puesto en marcha el proyecto Situaciones de Aprendizaje, un proyecto que publicará en torno a 200 Situaciones de Aprendizaje de todas las etapas (desde Infantil a Bachillerato) y de todas las materias. 

He tenido la suerte de participar en este bonito proyecto de Recursos Educativos Abiertos (REA), concretamente en el grupo de trabajo de Matemáticas,  con la elaboración de una de las Situaciones de Aprendizaje la cual espero sea de utilidad, si no ya para el presente curso, que está tocando a su fin, para el curso que viene. 

Creamos nuestro Círculo Matemático Computacional (CMC)

Situación de Aprendizaje: Creamos nuestro Círculo Matemático Computacional (CMC)

 

 

Situaciones de Aprendizaje de Matemáticas

Con la excelente coordinación por parte de José Luis Muñoz Casado, hemos trabajado el siguiente equipo de Matemáticas:

  • Julio Rodríguez Taboada
  • Antonio Moreno
  • Ester Solves
  • María Ángeles Portilla
  • José Rafael Viana Sánchez
  • Luis Miguel Iglesias
  • Claudia Lázaro
  • José María Vázquez
  • Laureano Serrano Muñoz
  • Lluis Bonet
  • Pilar Sabariego
  • Berta Sánchez García
  • Carmen Lahiguera Serrano
  • Pablo Peñalver Alonso
  • Francisco Zapatero Sánchez

Todas las Situaciones de Aprendizaje de Matemáticas pueden ser localizadas accediendo a a la web del proyecto y filtrando (marcando la casilla Matemáticas). 

Aunque no soy objetivo por ser parte del proyecto, os recomiendo encarecidamente visitar y conocer las Situaciones de Aprendizaje de Matemáticas, y del resto de materias elaboradas, y os animo a adaptarlas y llevarlas a vuestras aulas. 

Acceder a la web del Proyecto y activa el filtro «Matemáticas» https://intef.es/recursos-educativos/situaciones-aprendizaje/

 

Proyecto Situaciones de Aprendizaje MEFP

Acceder a la web del Proyecto: https://intef.es/recursos-educativos/situaciones-aprendizaje/

 

¿Qué se ofrece?

Una colección de situaciones de aprendizaje y otros materiales didácticos de naturaleza competencial creados por docentes en activo, para Educación Infantil, Educación Primaria, Educación Secundaria Obligatoria y Bachillerato. Todos ellos se publican con una licencia abierta (Creative Commons Reconocimiento-CompartirIgual 4.0) e incluyen el archivo fuente para su descarga y posible edición posterior.

Información curricular

Estos materiales se han diseñado conforme a los objetivos, competencias, criterios de evaluación y saberes básicos fijados en el Real Decreto 95/2022, de 1 de febrero, por el que se establece la ordenación y las enseñanzas mínimas de la Educación Infantil, el Real Decreto 157/2022, de 1 de marzo, por el que se establecen la ordenación y las enseñanzas mínimas de la Educación Primaria, el Real Decreto 217/2022, de 29 de marzo, por el que se establece la ordenación y las enseñanzas mínimas de la Educación Secundaria Obligatoria y el Real Decreto 243/2022, de 5 de abril, por el que se establecen la ordenación y las enseñanzas mínimas del Bachillerato.

Información técnica (eXeLearning)

Todos los materiales se han elaborado con la herramienta eXeLearning, un editor de recursos educativos interactivos, gratuito y de código abierto, lo que hace posible que cualquier usuario los pueda descargar y utilizar -con o sin conexión-, así como editar para adaptarlos a sus necesidades. Ofrece, asimismo, la ventaja de que permite exportar los contenidos a diferentes formatos estándar para su utilización en entornos web (html) o en plataformas de gestión de contenido educativo (SCORM) como Moodle y otros LMS.

 

Currículo básico Matemáticas Secundaria LOMLOE

Comparte MatemáTICas: 1,1,2,3,5,8,13,...

Instrumento para la evaluación competencial. Diana de evaluación y metacognición con Geogebra

Comparte MatemáTICas: 1,1,2,3,5,8,13,...

A estas alturas, como docentes de matemáticas, es de sobra conocido el potencial didáctico de la herramienta Geogebra. El límite a lo que podamos hacer con ella depende, no de la herramienta en sí, sino más bien de nuestra creatividad y de nuestra capacidad técnica.

En esta entrada os presento un uso de Geogebra un tanto diferente al habitual. En este caso la he usado para elaborar un instrumento de evaluación, concretamente una diana de aprendizaje o diana de evaluación y metacognición. La misma la elaboré en el marco del Proyecto REA/DUA Andalucía, proyecto bellísimo y superpotente de creación de Recursos Educativos Abiertos (REA) según los principios del Diseño Universal de Aprendizaje (DUA), en el que tengo la fortuna de participar desde el rol de Coordinador Técnico, junto a más de 200 compañeros y compañeras docentes de Andalucía. Si aún no lo conoces te animo a visitarlo, explorar y compartir las más de 250 situaciones de aprendizaje disponibles, adaptadas al nuevo marco curricular derivado de la implantación de la LOMLOE, con licencia Creative Commons.

Vídeo: Diana de evaluación y metacognición con Geogebra

Diana de aprendizaje de evaluación y metacognición

A continuación os dejo un fragmento de un excelente post publicado por Ingrid Mosquera en el sitio web del Máster Universitario en Formación del Profesorado de Secundaria de la UNIR (https://www.unir.net/educacion/revista/dianas-de-aprendizaje-que-son-y-para-que-sirven/). Recomiendo su lectura completa, además de otros posts de la serie relacionados con las dianas digitales.

¿Qué es una diana de evaluación?

Se puede decir que es un sistema visual, rápido y sencillo de llevar a cabo un aprendizaje participativo. Una participación que puede darse en todos los estadios de su empleo, desde la propia elaboración de la misma hasta el debate sobre los resultados obtenidos. Suele definirse como una posible representación gráfica de una evaluación que nos conducirá a la reflexión a partir de una única imagen que aglutina diferentes informaciones. Es el visual thinking de las evaluaciones, por usar terminología actual.

El dibujo o la plantilla de una diana consiste en círculos concéntricos que, de dentro hacia fuera, indican el nivel de cumplimiento o de adaptación a cada uno de los ítems incluidos. Alrededor del círculo más amplio tendremos los nombres de los ítems y para cubrir la diana iremos indicando el número que corresponde en cada uno de ellos. Así, al final, uniendo los puntos, obtendremos lo que se viene denominando como mapa de evaluación.

Aquí podemos ver un ejemplo sencillo en el que únicamente una persona participa, reflexionando sobre sus propias capacidades lingüísticas:

autoevaluacion

Dianas de evaluación y metacognición

La diana puede servir para autoevaluarse, para coevaluar a otros compañeros, para valorar el trabajo en grupo o para que los estudiantes puedan calificarnos como docentes. A menudo suelen emplearse para evaluar las actitudes y la participación del alumnado. Dependiendo del objetivo último para la que se elabore, muchos de los puntos presentados en la enumeración anterior vendrán determinados de antemano.

 

Como elemento de autoevaluación, las dianas contribuirán al desarrollo de la metacognición de nuestros alumnos. Igualmente, una autoevaluación, como la presentada en la imagen previa, puede ser comparada con la coevaluación y autoevaluación de otros compañeros, o con la propia evaluación del docente. De esta manera, de un solo vistazo, se podrá abrir un interesante debate en el que los alumnos podrán reflexionar acerca de las percepciones que tienen sobre su propio aprendizaje.

 Diana de evaluación y metacognición en Geogebra.org


Acceso a la diana de evaluación en Geogebra.org

 

Espero que sea de utilidad para ti y para tus estudiantes y le saquéis mucho partido en el aula.

Más contenido matemático en redes sociales

Comparte MatemáTICas: 1,1,2,3,5,8,13,...

El problema viral del corte del sandwich, por elrubius @Rubiu5. Ricas y variadas estrategias de resolver un problema usando distintos saberes

Comparte MatemáTICas: 1,1,2,3,5,8,13,...

Os comparto este tweet viral de elrubius (@Rubiu5) que, más allá de comentarios sin sentido, divertidos y jocosos; así como soluciones correctas y erróneas, nos muestran variadas e interesantes maneras de abordar este problema cotidiano.

El problema es el siguiente:

He tomado algunas respuestas, con diferentes y variados acercamientos, haciendo uso de diferentes estrategias y saberes (contenidos) para resolverlo.

  1. Análitico (integrales),
  2. Cálculo de área (rectángulo y triángulo)
  3. Área y perímetro
  4. Cálculo de áreas de forma manipulativa, por descomposición y recomposición, usando las propiedades de la medida.

1. Un acercamiento usando integrales (Alon @alonsozazo)

2. Caso particular, área de rectángulos y triángulos (Justine@Im_Justnx)

3. Área y perímetro… y ‘sensación de más grande’ (Kimel @Kimel_Kobol)

4. Áreas, descomposición y recomposición (? @aressatxn)

Como se observa en esta selección de ejemplos que he realizado, aunque os animo a seguir el hilo de respuestas para analizar otras, se puede resolver un problema de múltiples maneras y movilizando saberes (contenidos) de los distintos sentidos matemáticos (bloques de contenidos).

Gracias, elrubius (@Rubiu5), por viralizar las matemáticas y propiciar este rico escenario de aprendizaje 😉

Comparte MatemáTICas: 1,1,2,3,5,8,13,...

MatemáTICas: 1,1,2,3,5,8,13… cumple 13 años en la red

Comparte MatemáTICas: 1,1,2,3,5,8,13,...

Hoy es un día especial para quien escribe ya que, tal día como hoy, hace 13 años (14 de marzo de 2009), en el hueco que gentilmente me cedieron los compañeros de Profeblog, escribía los primeros renglones de mi libro virtual matemático; MatemáTICas: 1,1,2,3,5,8,13,…  

Pastel de cumpleaños con vela rosa número 13 en backgraund azul prendido fuego por encendedor. vista de primer plano | Foto Premium

Fuente: Freepik

Lo bauticé con este nombre, en honor a una de las sucesiones más conocidas de la matemática, la sucesión de Fibonacci

File:Fibonacci sequence - starting with zero.jpg

File:Fibonacci blocks.svg

Fuente: Wikimedia commons

Llegó a este mundo cuando ya incluso anunciaban la muerte de los blogs. Ya veis que no hice mucho caso a tales rumores :-). Lo tenía claro. Necesitaba un espacio que complementara mis clases, un rincón que apostase de manera clara por la inclusión de la tecnología en la práctica educativa, en mis clases de matemáticas. Un lugar en la red donde centralizar los materiales didácticos que fuese elaborando para mis alumnos. Ese sitio, ese lugar, ese espacio debía de ser un blog, este blog.

Y claro, no podía ser de otra forma. Su fecha de lanzamiento, el día de Pi #díadePi o #Piday, por aquello del inglés, 3/14 (14 de marzo). Mi primer post, un modesto y tímido, Bienvenid@ . La 40ª Conferencia General de la UNESCO proclamó el 14 de marzo de cada año como el Día Internacional de las Matemáticas en noviembre de 2019 (40C/Resolución 30).

Por este motivo, hoy, la comunidad matemática mundial también está de celebración, aunque no podamos hacerlo como quisiéramos y nos gustaría. El mundo y especialmente Europa está viviendo días negros por la invasión de Ucrania a manos de Rusia. Si no tuvimos bastante con la COVID-19, la tragedia humanitaria causada por esta violación de las fronteras de un país y de los derechos humanos nos tiene bastante apenados y sonrojados, al ver día tras día a través de los medios de comunicación la barbarie que la especie humana pude llegar a cometer. Desde estas líneas, todo mi apoyo y fuerza al pueblo ucraniano.

Mucho ha llovido desde aquel 14/03/2009. El termino competencia digital había realizado su incursión junto al resto de Competencia Básicas de la LOE (Ley Orgánica de Educación, 2006). Los docentes que usábamos los blogs como medio para ampliar nuestra aula física, lo que hoy sería un entorno blended-learning, lo hacíamos a voluntad propia y éramos considerado una especie un tanto singular. Recuerdo aquella mesa de debate en el primer EABE (Encuentro Andaluz de Blogs Educativos) donde en la mesa de trabajo simultánea ya hablamos del reconocimiento de la competencia digital. ¡Qué cosas se nos ocurrían! 😉

13 años más tarde, dos nuevas leyes educativas LOMCE (2013) y LOMLOE (2020), celebro que Europa y España lo tengan claro, y con un buen marco de la Competencia Digital Docente elaborado por INTEF con colaboración de las comunidades, habrá un proceso certificador y acreditador de la competencia a través de actividades formativas alineadas con dicho marco, que se desencadenará en nuestro país en próximas fechas. La Educación de hoy día no se concibe sin Tecnología, y en Matemáticas son imprescindibles para Enseñar y para Aprender.

Iglesias-Albarrán, Luis M. Enseñanza y aprendizaje de las matemáticas en la era digital. Ambientes de aprendizaje mediados por TIC,SCOPEO MONOGRÁFICO Nº4: e-MatemáTICas,,4,41-80,2012,Universidad de Salamanca. Servicio de Innovación y Producción Digital

 

Desde aquel día, reconocimiento del ITE, ahora INTEF, como Buena Práctica 2.0 por la inclusión de las TIC en la práctica educativa,  muchas vivencias, reconocimientos en certámenes y otras muy buenas experiencias profesionales a través de las cuales he conocido, compartido y descubierto grandes compañeros/as de viaje, más de 500 entradas publicadas, multitud de materiales de elaboración propia o recopilados, material de conferencias, jornadas de trabajo en las que he participado, artículos publicados en revistas o reseñas de colaboraciones en libros, más de 6 millones de visitas,… hacen que hoy deba daros las GRACIAS, y confirmar que seguiré viniendo por aquí mientras tenga fuerzas, a compartir cada vez que tenga o sea capaz de encontrar la manera de hacer un hueco para escribir y publicar sobre Matemáticas (con Tecnología): MatemáTICas.

Para terminar os dejo con tres vídeos sobre Pi y dos poemas. Espero que os guste.

Vídeo: ¿Para qué sirve el número Pi? BBC Mundo

 

Vídeo: El número Pi Canal encuentro Adrián Paenza

Vídeo: Spock («Star Trek») desactiva una computadora malvada pidiéndole que calcule el último dígito de Pi :-). Fuente: Mathigon

 

Poema: El número Pi (Wislawa Szymborska, Premio Nobel de Literatura 1996). Fuente: Yosoytuprofe

El admirable número Pi
tres coma uno cuatro uno.
Las cifras que siguen son también preliminares
cinco nueve dos porque jamás acaba.
No puede abarcarlo seis cinco tres cinco la mirada,
ocho nueve ni el cálculo
siete nueve ni la imaginación,
ni siquiera tres dos tres ocho un chiste, es decir, una comparación
cuatro seis con cualquier otra cosa
dos seis cuatro tres de este mundo.

La serpiente más larga de la tierra suma equis metros y se acaba.
Y lo mismo las serpientes míticas aunque tardan más.
El séquito de dígitos del número Pi
llega al final de la página y no se detiene,
sigue, recorre la mesa, el aire,
una pared, una hoja, un nido de pájaros, las nubes, hasta llegar
directo al cielo,
perderse en la insondable hinchazón del cielo.
¡Qué breve la cola de un cometa, cual la de un ratón!
¡Qué endeble el rayo de un astro si se curva en la insignificancia
del espacio!

Mientras aquí dos tres quince trescientos diecinueve
mi número de teléfono la talla de tu camisa
el año mil novecientos sesenta y tres sexto piso
el número de habitantes sesenta y cinco céntimos
dos pulgadas de cintura una charada y un mensaje cifrado
que dice vuela mi ruiseñor y canta
y también se ruega guardar silencio,
y se extinguirán cielo y tierra,
pero el número Pi no, jamás,
seguirá su camino con su nada despreciable cinco
con su en absoluto vulgar ocho
con su ni por asomo postrero siete,
empujando, ¡ay!, empujando a durar
a la perezosa eternidad.

Poema: El número  π (A Pilar Bayer y A F Walter May). Fuente: Repoelas


3

 

1

 

4

 

1

5

 

 

9

 

 

 

 

2

 

6

 

 

5

 

 

3

 

5

 

 

8

 

 

 

 

9

 

 

 

 

7

 

 

 

9

 

 

 

 

3

 

2

3

 

8

 

 

 

4

 

 

6

 

 

2

 

6

 

 

 

4

 

3

 

3

 

8

 

 

 

3

 

2

 

7

 

 

 

9

 

 

 

 

5

 

0

2

 

8

 

 

 

8

 

 

 

4

 

1

 

 

9

 

 

 

 

7

 

1

 

6

 

 

9

 

 

 

 

3

 

9

 

 

 

 

9

 

 

 

 

3

 

7

 

 

 

 

5

 

1

0

5

 

8

 

 

 

2

 

9

 

 

 

 

7

 

 

 

4

 

 

9

 

 

 

 

4

 

 

4

La longitud de la circunferencia,
la longitud del diámetro:
¡qué fuerza su cociente,

siempre el mismo, constante, eterno!,

tres coma catorce,
tres coma catorce dieciséis,
primeros balbuceos de un río infinito
de decimales sin período, siempre nuevos,

único e infinito, único y diverso,

tres coma catorce,
el recuerdo escolar de tantos cálculos,
tres coma catorce dieciséis,
el recuerdo de números en clave,
como barcos en un puerto,

humeantes, a punto de partir
río abajo, mientras el agua fluye
hecha números y caricia,
y el lomo de los cocodrilos de las preguntas
que van haciendo los matemáticos
anuncia ya todo tipo de peligros:
es fácil que una de ellas os pille
en sus mandíbulas plagadas de agudezas
y os arranque años de vida con un problema,

el área del círculo
Dividida por el cuadrado del radio

seductor, desafiante,
muy difícil de resolver,
pero tan atractivo que ni siquiera os déis cuenta
de que estáis quemando en él la vida,
de tan adentro como os ha entrado
aquella pregunta que tan pocos pueden comprender,

y los cinco sentidos se ponen al acecho
de algo que desborda los sentidos,
de las extrañas propiedades de un número
llamado irracional y que desborda la razón,
pero que está en el fondo de la razón del universo.

El primer problema: calcularlo,
obtener más y más decimales,
escalar un monte de decimales,

penetrando cada vez más en un mundo
que ya no pertenece al universo de la medida
–si medís las longitudes
de circunferencias reales, de diámetros reales,
y obtenéis su cociente,

sólo hallaréis dos decimales, tres decimales,
quizás cuatro decimales del número ?
(lo que de él sabían los egipcios):
los otros quedarán más allá
de los límites de la precisión de la medida-;
una definición, pues, que parece tan simple,
–un cociente de dos longitudes que estáis viendo
dibujadas en el papel–

y lleva, en cambio, a un desbordamiento de decimales.
¿Y cómo han calculado tantos decimales?
Durante más de dos mil quinientos años,
los que se atrevieron a embarcarse en la aventura,
siguiendo los pasos del gran Arquímedes,
inscribían polígonos en un círculo,
decágonos, dodecágonos, pentadecágonos,
polígonos de más y más lados,
y calculaban su perímetro

y lo dividían por el diámetro del círculo circunscrito;
naturalmente, cuanto más lados,
más se aproxima el polígono a la circunferencia
y más precisión se consigue en los decimales,
pero también encontraban
más y más dificultades;
parece duro, lo sé,

parece árido, lo sé,
pero también sé ver los atractivos
de navegar por un río en una selva espesa,
sin saber cómo será su curso un poco más allá,
ahora lento –decimales pequeños–,
ahora rápido –decimales grandes–,
siempre fluyente pero siempre impredictible:
¿cuál será el siguiente decimal?
¿Valdrá dos?, ¿valdrá cinco?, ¿valdrá nueve?

no hay manera de saberlo,
salvo que hagáis el cálculo;
¿cuál será el valor del decimal quinquagésimo?

el área de la esfera
dividida por cuatro veces el cuadrado del radio,

no hay otra manera de saberlo
que hacer todos y cada uno de los cálculos
que conducen hasta este decimal,

es decir, calcular todos los decimales anteriores
sin saltarse ni uno
–como en el tiempo de nuestra vida:
no hay otra manera de saber
lo que pasará dentro de un año
que vivir día a día todo el año,
hora a hora, minuto a minuto todo el año,
un tiempo, pues, diferente del tiempo de los astros,

predictible a largo término.
Pero sigamos con los decimales del número ?:
el método de los polígonos se hace largo y fatigoso:
¿habría manera de hallar un camino más rápido?

John Wallis, hacia mil seiscientos ochenta,
encuentra (en Oxford) que ? puede ser expresado
-tomad nota-
como el doble del producto de los cuadrados
de todos los números pares
dividido por el producto de los cuadrados

el volumen de la esfera
dividido por cuatro tercios del cubo de su radio,

de todos los números impares;
parece misterioso, lo sé,
no es evidente, ni fácil de demostrar,
pero es un salto, ¿no lo véis?:
hemos pasado, por primera vez en dos mil años,
de la geometría a la aritmética,

vemos el número ? con una luz diferente,
nos cuesta reconocer en este cociente
de productos de números
aquel cociente de longitudes inmediatas,

tan directamente visibles y sensibles,
y ahora nos parece arisco y misterioso,
pero su cálculo se ha hecho más fácil,

más y más decimales;
el proceso se acelera todavía más
cuando se hallan otras formas aritméticas

de escribir el número π, :
como suma de potencias,
como suma de inversos de potencias,
como raíz de sumas de inversos de potencias…
Pero se necesita, para eso,
afinar los instrumentos de las matemáticas,
inventar las derivadas,
inventar las integrales

–¿inventar o descubrir?:
observad que son conceptos diferentes
que suponen, también, ideas muy diversas

dos veces el producto de los cuadrados de todos los pares
dividido por el producto de los cuadrados de todos los impares

sobre qué son los números y la mente–,
inventar series de Taylor,
inventar series de Fourier,
inventar muchos otros procedimientos
que no quiero mencionar para evitar
que este escrito deje de ser lo que quiero:
un poema, en cierta forma, y no una lección

de matemáticas o historia
–por eso no hablo de otras propiedades
del número π, como la transcendencia,
ni doy ningún detalle de lo que digo.
No hablo de fórmulas concretas,
sino de emociones que he sentido,
y que antes que yo han sentido muchos otros,
y que sentirán muchos otros cuando yo ya no esté,
emociones de belleza y de vértigo

de viaje y de aventura,
de esfuerzo, de derrota, de victoria,
de rebeldía, de perseverancia,
de fusión con el mundo y de lejanía del mundo,
que algún día también sentiréis vosotros

el área de la elipse,
dividida por el producto de sus ejes,

si pensáis, con detalle, en este número
o en otros números que le son familiares
–la raíz cuadrada de dos, por ejemplo,
es decir, el cociente de la diagonal
y el lado de un cuadrado,
cociente irracional
que amargó la vejez de Pitágoras,
quien había enseñado que el mundo

estaba hecho de números puramente racionales
–pero ¡qué ironía, que dos formas,
el círculo y el cuadrado, que encontramos por doquier,
rehúsen expresarse en estos números!.
Pero podéis preguntaros otras cosas
que cuál será el siguiente decimal:
con los ordenadores, el proceso se ha acelerado
enormemente y conocemos ya

miles de decimales,
en lugar de los quinientos a que se había llegado
con el ingenio y las fuerzas estrictamente humanas;
así, pues, suponed que ya tenemos

miles de decimales,

todos ellos irrelevantes a efectos prácticos,
salvo los cinco primeros o, como máximo,
de los quince o veinte primeros, hilando fino.
Os podéis preguntar por la abundancia
relativa de las diversas cifras:
la del uno, la del dos, la del tres, la del cuatro,
la del cinco, la del seis, la del siete, la del ocho,
la del nueve, la del cero.
Pues bien: se comprueba –pero mucho antes

de que esto hubiera sido comprobado ya lo había demostrado
Borel y otros matemáticos–
que la abundancia relativa de las diversas cifras
es la misma,
que la abundancia relativa de todos los grupos de dos cifras
–quince, veintitrés, noventa y cinco, por ejemplo–
es la misma

que la abundancia relativa de todos los grupos de tres cifras

–ciento veintiuno, quinientos veintitrés, pongamos por caso-
es la misma,
y así sucesivamente para grupos
de más y más cifras;
en otras palabras: es seguro
que en los decimales de π, encontraréis la fecha

de vuestro nacimiento
(23-10-1953, en mi caso,
o bien 31-4-1592, si nos fijamos
en las siete primeras cifras de pi)
y también la fecha de vuestra muerte
(que no sabréis reconocer,
como en mi caso),
y vuestro número de teléfono;
más aún: si designamos las letras mediante números

–1 la A, 2 la B, 3 la C, 4 la D
y así sucesivamente–
sabed desde ahora que vuestro nombre está escrito

en los decimales del número π, ,
y que en algún lugar del número π, podéis hallar,
juntos, vuestro nombre y el de vuestro amor
y el nombre de vuestros hijos,
y las fechas del nacimiento y de la muerte
de cada uno de vosotros
Es vertiginoso, ciertamente, pero he de decir
que al lado de vuestro nombre también está escrito
el nombre de cualquier hombre o mujer

que hayan existido o que nunca existirán:
es, pues, vertiginoso y fútil:
está toda vuestra historia
pero también todas las otras posibles historias
que habríais podido vivir,
todos los otros amores
que hubierais podido tener,
de manera que lo dice todo y nada,
como algunos oráculos antiguos,

o como pasa a menudo cuando se habla demasiado.
Si miráis el número π, después de haber leído
este poema, os parecerá, quizás, vertiginoso,

como un pozo sin fondo, como un infinito
que se despliega ilimitadamente delante vuestro,
pero moriréis antes de haber podido leer
una mínima parte de sus decimales.
En el número π, hay el reposo y el movimiento
(como en el círculo),
la eternidad y el tiempo

(como en Dios),
la finitud y la infinidad
(como en el universo),
la armonía y el caos
(como en el mundo):

una definición breve y precisa,

y una inacabable sucesión de decimales
que no repiten su orden en ningún período.
Pero hay casos aún más inquietantes:
números que no es posible definir,
ristras infinitas de decimales

colocados al azar, al puro azar,
números, pues, que nunca podréis reducir
a una definición breve y concisa,
como π, o raíz de dos,
sino números que son movimiento sin reposo,
caos sin armonía, tiempo sin eternidad,
números que ni tan sólo podemos pronunciar,
números que nos recuerdan que el mundo es inefable,

la longitud de la circunferencia
dividida por dos veces el radio

y por eso conviene que, de vez en cuando,
la poesía hable de esta clase de números
que comparten con ella los límites del lenguaje,
y quien sabe si del mundo,
tal como los números hablan en ella
mediante los acentos, las sílabas, las estrofas.
O quizás son números que no pueden existir
si es que el mundo, en el fondo, es palabra
–no nuestra, claro está, sino de un Dios

que hubiera querido hacerse palabra a la medida
de nuestra limitada capacidad de escucha–,
pero esto nos conduciría a otros derroteros
–los de Dios y de su presencia
en el mundo y en nosotros–
que convendría no esquivar como lo hacemos,
tan desdeñosamente, en estos tiempos.

Pero me detengo aquí
y doy por acabado este poema
–de hecho, inacabado y discursivo–,
sabiendo, empero, que el número π, sigue,

caudaloso como todos los ríos a un tiempo,
con más cifras que gotas el Nilo o el Ganges,
el Volga o el Amazonas,
con más cifras que granos de arena
hay en todas las playas de la Tierra,
con más cifras que átomos hay
en todos los planetas del sistema solar,
y rehusando siempre un orden claro y repetitivo,
como un río espumoso y turbulento, infinito,

pero también lento, sutil, discreto,
modesto en su apariencia
pero con más propiedades que oro hay
en las minas del mundo,

o hasta que Dios se canse de él y diga basta,
y haga terminar el universo por la fatiga
de tener que soportar números como éste,
el número π.

(GRACIAS)^∞

Más contenido matemático en redes sociales

Comparte MatemáTICas: 1,1,2,3,5,8,13,...

Busca tu fecha de nacimiento, fecha destacada o tu número favorito entre los decimales del número Pi

Comparte MatemáTICas: 1,1,2,3,5,8,13,...

Como es bien conocido, el número Pi (π) = 3.14159265359… , se obtiene al dividir el perímetro del cualquier círculo entre su diámetro, sin importar el tamaño del círculo.

Podéis comprobarlo vosotros mismos pulsando en el botón de reproducir (play) en el siguiente applet que elaboré hace unos años para una experiencia de aula que desarrollé con mis alumnos de 2º de ESO.

Applet Descubriendo el número Pi · Geogebra.org

Es de las constantes más famosas y tiene un papel fundamental en las matemáticas, hasta el punto que la UNESCO declaró el 14 de marzo (3/14, en inglés) como Día Internacional de las Matemáticas.

π es un número irracional, esto es, no se puede calcular como la división de dos números enteros. A diferencia de los números racionales, la expresión decimal de cualquier número irracional es infinita y no se repite nunca. π tiene tantos decimales diferentes que puedes encontrar la fecha de tu nacimiento, fecha de una efeméride o tu número favorito escrita entre los decimales del número Pi.

A continuación comparto dos aplicaciones para jugar y divertirnos un rato:

Aplicación de Mathigon 

Hace unas horas publiqué en Twitter:

Dígitos de Pi. Busca tu fecha de nacimiento, fecha favorita, número… en el primer millón de decimales del número #PiDay con este aplicativo de @MathigonOrg

Ejemplo: 1-1-1986 mathigon.org/step/circles/p

una aplicación de Mathigon donde puedes buscar entre el primer millón de decimales de Pi.

Pulsa en la imagen para acceder:

https://mathigon.org/step/circles/pi-digits

 

Aplicación de la Sociedad Matemática Mexicana 

Excelente aplicación, descubierta gracias a @_trastoy al responder a mi tuit anterior. Realiza búsquedas de cadenas de 6 dígitos más allá del primer millón de decimales.

Elaborado por Sociedad Matemática Mexicana · Instituto de Matemáticas de la UNAM para la celebración del Día de Pi

Espero que las disfrutéis y la compartáis entre vuestras amistades… ¡Que fluya la matemática en las redes! 🙂

Más contenido matemático en redes sociales

Comparte MatemáTICas: 1,1,2,3,5,8,13,...
WP2Social Auto Publish Powered By : XYZScripts.com