Software matemático

Propuesta didáctica LingMáTICas. Fortaleciendo la competencia linguística: comunicación, representación y resolución de problemas matemáticos de decimales y fracciones elaborando cómics digitales

Los lectores de este blog conocen bien mi predilección por vincular lengua y matemáticas. Ello me llevó hace más de una década a bautizarla. Es decir, a buscar un término, un palabro, con el que poder categorizarlas. Le llamé LingMáTICas.

Así, definí LingMáTICas como el conjunto de propuestas didácticas, contextos de aprendizaje, encaminados a fortalecer la competencia lingüística, en todos sus ámbitos, desde el aula de matemáticas, con ayuda de la tecnología (TIC).

Definición de LingMáTICas. Luis M. Iglesias

Son muchos los compañeros docentes que en estos momentos están inmersos en la elaboración del plan de trabajo para el tratamiento de la lectura en el aula de matemáticas en sus respectivos centros educativos, de manera especial en Andalucía, atendiendo a las INSTRUCCIONES DE 21 DE JUNIO DE 2023, DE LA VICECONSEJERÍA DE DESARROLLO EDUCATIVO Y FORMACIÓN PROFESIONAL, SOBRE EL TRATAMIENTO DE LA LECTURA PARA EL DESPLIEGUE DE LA COMPETENCIA EN COMUNICACIÓN LINGÜÍSTICA EN EDUCACIÓN PRIMARIA Y EDUCACIÓN SECUNDARIA OBLIGATORIA.

Con la idea de aportar mi granito de arena, para ayudar en la medida de lo posible, quiero compartir en esta entrada un trabajo de investigación-acción que llevé a cabo hace unos años por si fuera de utilidad. 

El mismo fue presentado en el Congreso Iberoamericano «La educación ante el nuevo entorno digital», a finales del 2019. Este Congreso fue un espacio donde se pretendía dar a conocer proyectos o experiencias relacionadas con cualquier área temática, pero con el denominador común del entorno digital en el que ya estamos inmersos.

Título 
Decimales y fracciones entre textos e imágenes: una experiencia de aprendizaje basada en la elaboración de cómics digitales. 

Autoría 

Resumen 
Esta investigación-acción tiene como objetivo la construcción de cómics matemáticos para facilitar el aprendizaje de fracciones y decimales. La justificación del uso del cómic radica en la motivación de los estudiantes por el uso de información visual, que al combinarla con el texto puede dar lugar a elementos de desarrollo de habilidades, creatividad y la lectura de contenido (Urbani, 1978, citado en Toh, 2009).  El soporte tecnológico se sostiene en una de las dimensiones de la competencia digital (Marqués, 2009), la dimensión del aprendizaje, expresada como transformación del contenido en adquisición del conocimiento. Además, el cómic se considera una herramienta con potencial para el aprendizaje de las matemáticas, por sus capacidades creativas y visuales (Cleaver, 2008) así como una posibilidad de mejora en la alfabetización de los estudiantes (Tilley, 2008).  

La investigación describe el proceso y resultados de una experiencia en el tercero de Enseñanza Secundaria Obligatoria, en Matemáticas orientadas a las enseñanzas académicas. El contenido a trabajar venía delimitado por el criterio de evaluación “utilizar las propiedades de los números racionales para operarlos, utilizando la forma de cálculo y notación adecuada, para resolver problemas de la vida cotidiana, y presentando los resultados con la precisión requerida” (RD. 1105/2014, p. 391). 

Nota:

En esa fecha estaba en vigor el currículo LOMCE por lo que es evidente que habría que hacer la traslación al currículo actual LOMLOE, RD 217/2022 – Decreto 102/203 de 9 de mayo – Orden 30 de mayo 2023 Currículo Secundaria Andalucía, aunque no es excesivamente complicado. De manera clara tiene vinculación con el Sentido numérico (en lo relativo a saberes básicos) y con los Criterios de Evaluación correspondientes de las Competencias Específicas relativas a la resolución de problemas [RESPRO] y a la comunicación y representación [COMREP] Y socioemocionales [SOCAFE].

Los estudiantes construyen un cómic, utilizando una herramienta digital. Para el análisis de los resultados del conocimiento matemático expuesto se definen categorías que facilitan la identificación de cumplimiento de los estándares de aprendizaje. Estas categorías se construyen sustentadas en la investigación previa para el conocimiento matemático, desde la enseñanza y del aprendizaje de los números racionales. Las categorías que se utilizan son: el sentido dado a los algoritmos según su significado (que incluye la forma de utilizar los algoritmos y la resolución), la tipología del contexto que se utiliza para situar el objeto matemático, el rigor del lenguaje matemático, cómo se presentan los números (en forma decimal o fracción), y la reflexión final con los datos y resultados expuestos. 

Los resultados muestran distintos contextos que agrupamos como realistas y ficticios, donde estos últimos dan lugar a aquellos que dan sentido al objeto matemático y los que resultan forzados para introducir tanto el número como el algoritmo utilizado. Se utilizan distintos algoritmos, basados en suma y multiplicación; los cálculos implican usos como porcentaje, cálculo de las partes de un todo y equivalencia. En aquellas tareas que implican uso de algoritmos, los números base son fracciones en lugar de decimales. Encontramos tareas que finalizan de una manera reflexiva agrupando todos los datos utilizados a modo de recopilatorio para dar lugar a un ejercicio, y su solución. No aparecen demasiadas conversiones entre fracciones, y cuando lo hacen son para dar lugar a números que faciliten la interpretación de las partes de un todo. Los errores que aparecen surgen de cálculos encadenados entre fracciones, no siendo explícito si el cálculo es desde el paso anterior o desde el inicio, o cuando resultados dan lugar a números decimales y el contexto hubiese necesitado un número natural para su interpretación. 

Descarga del material

 

DESCARGAR: LingMáTICas. Comunicación, representación y resolución de problemas matemáticos mediante cómics digitales

Más contenido matemático en redes sociales

Creamos nuestro Círculo Matemático Computacional (CMC) para trabajar el Pensamiento Computacional y la Resolución de Problemas. Proyecto Situaciones de Aprendizaje del MEFP

Este curso 22/23 se ha implantado el nuevo currículo derivado de la implantación de la LOMLOE en los cursos impares (1º, 3º y 5º de Primaria, 1º y 3º de Secundaria y 1º de Bachillerato). A partir de septiembre se implantará en los pares, finalizando así dicha implantación. 

Uno de los nuevos paradigmas propuestos en el nuevo marco curricular son las Situaciones de Aprendizaje, que son situaciones y actividades que implican el despliegue por parte del alumnado de actuaciones asociadas a competencias clave y competencias específicas, y que contribuyen a la adquisición y desarrollo de las mismas.

Acompañando al desarrollo normativo se han realizado diferentes acciones. Entre ellas se ha establecido un itinerario formativo para el profesorado y se ha puesto en marcha el proyecto Situaciones de Aprendizaje, un proyecto que publicará en torno a 200 Situaciones de Aprendizaje de todas las etapas (desde Infantil a Bachillerato) y de todas las materias. 

He tenido la suerte de participar en este bonito proyecto de Recursos Educativos Abiertos (REA), concretamente en el grupo de trabajo de Matemáticas,  con la elaboración de una de las Situaciones de Aprendizaje la cual espero sea de utilidad, si no ya para el presente curso, que está tocando a su fin, para el curso que viene. 

Creamos nuestro Círculo Matemático Computacional (CMC)

Situación de Aprendizaje: Creamos nuestro Círculo Matemático Computacional (CMC)

 

 

Situaciones de Aprendizaje de Matemáticas

Con la excelente coordinación por parte de José Luis Muñoz Casado, hemos trabajado el siguiente equipo de Matemáticas:

  • Julio Rodríguez Taboada
  • Antonio Moreno
  • Ester Solves
  • María Ángeles Portilla
  • José Rafael Viana Sánchez
  • Luis Miguel Iglesias
  • Claudia Lázaro
  • José María Vázquez
  • Laureano Serrano Muñoz
  • Lluis Bonet
  • Pilar Sabariego
  • Berta Sánchez García
  • Carmen Lahiguera Serrano
  • Pablo Peñalver Alonso
  • Francisco Zapatero Sánchez

Todas las Situaciones de Aprendizaje de Matemáticas pueden ser localizadas accediendo a a la web del proyecto y filtrando (marcando la casilla Matemáticas). 

Aunque no soy objetivo por ser parte del proyecto, os recomiendo encarecidamente visitar y conocer las Situaciones de Aprendizaje de Matemáticas, y del resto de materias elaboradas, y os animo a adaptarlas y llevarlas a vuestras aulas. 

Acceder a la web del Proyecto y activa el filtro «Matemáticas» https://intef.es/recursos-educativos/situaciones-aprendizaje/

 

Proyecto Situaciones de Aprendizaje MEFP

Acceder a la web del Proyecto: https://intef.es/recursos-educativos/situaciones-aprendizaje/

 

¿Qué se ofrece?

Una colección de situaciones de aprendizaje y otros materiales didácticos de naturaleza competencial creados por docentes en activo, para Educación Infantil, Educación Primaria, Educación Secundaria Obligatoria y Bachillerato. Todos ellos se publican con una licencia abierta (Creative Commons Reconocimiento-CompartirIgual 4.0) e incluyen el archivo fuente para su descarga y posible edición posterior.

Información curricular

Estos materiales se han diseñado conforme a los objetivos, competencias, criterios de evaluación y saberes básicos fijados en el Real Decreto 95/2022, de 1 de febrero, por el que se establece la ordenación y las enseñanzas mínimas de la Educación Infantil, el Real Decreto 157/2022, de 1 de marzo, por el que se establecen la ordenación y las enseñanzas mínimas de la Educación Primaria, el Real Decreto 217/2022, de 29 de marzo, por el que se establece la ordenación y las enseñanzas mínimas de la Educación Secundaria Obligatoria y el Real Decreto 243/2022, de 5 de abril, por el que se establecen la ordenación y las enseñanzas mínimas del Bachillerato.

Información técnica (eXeLearning)

Todos los materiales se han elaborado con la herramienta eXeLearning, un editor de recursos educativos interactivos, gratuito y de código abierto, lo que hace posible que cualquier usuario los pueda descargar y utilizar -con o sin conexión-, así como editar para adaptarlos a sus necesidades. Ofrece, asimismo, la ventaja de que permite exportar los contenidos a diferentes formatos estándar para su utilización en entornos web (html) o en plataformas de gestión de contenido educativo (SCORM) como Moodle y otros LMS.

 

Currículo básico Matemáticas Secundaria LOMLOE

Ejercicio interactivo. Tarjetas de memoria de funciones racionales y sus gráficas

Desarrollo del sentido algebraico. Relaciones y funciones. Ecuación explícita y=mx+n (con deslizadores) Polypad · Mathigon

En esta entrada comparto una funcionalidad que puede ser de utilidad para el trabajo en el aula, favoreciendo la comprensión e interpretación de los parámetros presentes en la ecuación explícita de una recta, a través de su representación. 

y = mx + n

m: valor de la pendiente de la recta

n: valor de la ordenada en el origen. Esto es, el valor de la ordenada correspondiente al valor de abscisa x=0 –> (0, n)

Para facilitar este proceso se puede ir activando y desactivando uno y otro deslizador e ir dejando tiempo para la reflexión y la intervención del alumnado. 

Os dejo el lienzo que he elaborado con la herramienta Polypad · Mathigon, y un pequeño vídeo, donde muestro el proceso.

Espero sea de utilidad para vuestro trabajo a pie de aula y para acompañar a vuestros aprendices en el desarrollo del sentido algebraico.

Vídeo. Uso de deslizadores en gráfica vinculada a la ecuación de la recta.

Canva Polypad · Mathigon

 

Polypad · Mathigon – Ec. explícita y = mx+n deslizadores

Conexión curricular LOMLOE (RD 217/2022)

Sentido algebraico. Relaciones y funciones

Más contenido matemático en redes sociales

 

Desarrollo plano de los 5 poliedros regulares. Vídeos, fichas imprimibles y tableros interactivos en Polypad · Mathigon

En esta entrada comparto:

  1. Vídeo

  2. Ficha imprimible

  3. Tablero interactivoo en Polypad · Mathigon

de cada uno de los desarrollos planos de los 5 poliedros regulares existentes, por separado, y uno con todos. 

Matemáticas LOMLOE · ESO · Saberes Básicos (de 1º a 3º)

Espero sea de utilidad para vuestro trabajo a pie de aula y para acompañar a vuestros aprendices en el desarrollo del Sentido Espacial. 

Tetraedro

Hexaedro o cubo

Octaedro

 

Dodecaedro

Icosaedro

5 poliedros regulares. Desarrollo plano.

Más contenido matemático en redes sociales

Álgebra de sucesos con Desmos. Sentido Estocástico. Animación

En esta entrada comparto un gif animado sobre el álgebra de sucesos, obtenido a partir de un applet interactivo que elaboré hace algún tiempo con Desmos.

Concreción curricular

· Competencias específicas: Conexiones intra-matemáticas (CE5) y Representación (CE7)

· Saberes Básicos: Sentido estocástico 

Descripción

Animación

Álgebra de sucesos. Realizado con Demos por Luis M. Iglesias bajo licencia CC BY SA 4.0

Álgebra de sucesos. Realizado con Desmos por Luis M. Iglesias bajo licencia CC BY SA 4.0

Más contenido matemático en redes sociales

Suma de números enteros de distinto signo con el cubo de ceros de Polypad · Mathigon

Tras una larga e intensa jornada de final de trimestre, al llegar a casa a última hora de la tarde, he acompañado a mi pequeña (12 años) en su estudio abordando el primer acercamiento a los enteros.

Tras la comprensión de situaciones de la vida cotidiana expresadas con enteros, representación en la recta real, orden y suma de números enteros del mismo signo, ha estado practicando la suma de enteros de distinto signo.

Para aterrizar en este tipo de sumas, le he mostrado algunas ejemplificaciones que he elaborado para ella usando la funcionalidad «cubo o cubeta de ceros» de Polypad · Mathigon.

Os dejo el lienzo que he elaborado, con un ejemplo resuelto y otro por hacer, y una animación, de unos dos minutos, donde muestro el proceso seguido.

Espero sea de utilidad para vuestro trabajo a pie de aula y para acompañar a vuestros aprendices en el desarrollo del sentido numérico.

Animación. Ejemplo resuelto paso a paso usando el cubo de ceros

Canva Polypad · Mathigon

Polypad · Mathigon – Suma enteros de distinto signo

Más contenido matemático en redes sociales

(Vídeo) Ponencia en el XXVI Congreso Nacional de Matemática Educativa de Guatemala. Menú de degustación de herramientas digitales para enseñar y aprender matemática en un contexto post pandémico

El pase de diapositivas requiere JavaScript.

La tarde del pasado viernes, 25 de noviembre, tuve el gusto y el honor de participar en el XXVI Congreso Nacional de Matemática Educativa, un evento organizado por la Unidad de Modelación Matemática e Investigación, de la Facultad de Ingeniería de la Universidad de San Carlos de Guatemala, que se proyecta hacia la sociedad guatemalteca en apoyo a la mejora de la calidad educativa de matemática.

El evento ha contado con la participación de 60 ponentes, de Guatemala, México, Colombia, Panamá, Paraguay, El Salvador, Venezuela y España, de forma virtual, con talleres, foros, conferencias y grupos de reflexión acerca de la enseñanza y aprendizaje de esta materia en todos los niveles educativos, y con la participación de más de 500 docentes.

Quiero expresar mi agradecimiento a todos los miembros del Comité Organizador del Congreso, y de manera especial a la Dra. Mayra Castillo y al Dr. Julio Ricardo Castillo por todo el apoyo que me han dado. Comparto a continuación el enlace al evento en Facebook donde se encuentra en el vídeo de mi ponencia «Menú de degustación de herramientas digitales para enseñar y aprender matemática en un contexto post pandémico» donde, durante algo más de dos horas, reflexioné, compartí e interactué con los profesores participantes, realizando actividades matemáticas, simulando una situación real de clase a distancia con 4 herramientas digitales que en mi opinión son el póker de ases de las herramientas digitales para enseñar y aprender matemáticas en cualquier tipo de entorno; presencial, híbridos/blended/semipresencial y a distancia. Hablo de Geogebra Notas, Desmos, Graspable Math y Mathigon.

Espero que el vídeo sea de utilidad para tu trabajo diario en el aula de matemáticas. Quedo a la espera de tus comentarios 😉

Menú de degustación de herramientas digitales para enseñar y aprender matemática en un contexto post pandémico

XXVI Congreso Nacional de Matemática Educativa de Guatemala

Ejercicios interactivos para trabajar el sentido algebraico. Producto de polinomios usando el modelo de áreas elaborado con Desmos

En esta entrada comparto una batería compuesta por 10 ejercicios interactivos, elaborados con Desmos, para trabajar el producto de polinomios (binomios, igualdades notables y polinomios hasta grado 4) usando el modelo de áreas.

Espero que resulten de utilidad y le saques mucho partido. Déjame tu comentario, ¡tu opinión me interesa! 😉

Concreción curricular

· Competencias específicas: Conexiones intra-matemáticas (CE5) y Representación (CE7)

· Saberes Básicos: Expresiones algebraicas (sentido algebraico) – Área de figuras planas rectángulos (sentido de la medida y sentido espacial)

Descripción

Ejercicios de práctica de la propiedad distributiva de expresiones algebraicas. Producto de polinomios apoyado en un modelo gráfico de áreas.

  • Producto de binomios (Ej1 y Ej2)
  • Producto de binomios. Identidades notables (Ej3, Ej4 y Ej5)
  • Producto de polinomios (Ej6, Ej7, Ej8, Ej9 y Ej10)

Obra derivada elaborada por Luis Miguel Iglesias Albarrán · MatemáTICas: 1,1,2,3,5,8,13,… a partir de la obra original de Daniel Wekselgreene. Traducido al español, modificado y generados nuevos ejercicios.

Demo

Acceso a las actividades Desmos

Pulsar en Continuar sin iniciar sesión, introducir nombre y comenzar…

Pulsar para acceder a los ejercicios de práctica en Desmos

¿Cómo usar este recurso? Se puede acceder a https://student.desmos.com/join/bhwa7j?lang=es y proyectar en clase o compartir el enlace con los estudiantes, por correo electrónico u otro servicio de mensajería, enlazando desde una plataforma educativa o anotándolo en la pizarra.

Más contenido matemático en redes sociales

Instrumento para la evaluación competencial. Diana de evaluación y metacognición con Geogebra

A estas alturas, como docentes de matemáticas, es de sobra conocido el potencial didáctico de la herramienta Geogebra. El límite a lo que podamos hacer con ella depende, no de la herramienta en sí, sino más bien de nuestra creatividad y de nuestra capacidad técnica.

En esta entrada os presento un uso de Geogebra un tanto diferente al habitual. En este caso la he usado para elaborar un instrumento de evaluación, concretamente una diana de aprendizaje o diana de evaluación y metacognición. La misma la elaboré en el marco del Proyecto REA/DUA Andalucía, proyecto bellísimo y superpotente de creación de Recursos Educativos Abiertos (REA) según los principios del Diseño Universal de Aprendizaje (DUA), en el que tengo la fortuna de participar desde el rol de Coordinador Técnico, junto a más de 200 compañeros y compañeras docentes de Andalucía. Si aún no lo conoces te animo a visitarlo, explorar y compartir las más de 250 situaciones de aprendizaje disponibles, adaptadas al nuevo marco curricular derivado de la implantación de la LOMLOE, con licencia Creative Commons.

Vídeo: Diana de evaluación y metacognición con Geogebra

Diana de aprendizaje de evaluación y metacognición

A continuación os dejo un fragmento de un excelente post publicado por Ingrid Mosquera en el sitio web del Máster Universitario en Formación del Profesorado de Secundaria de la UNIR (https://www.unir.net/educacion/revista/dianas-de-aprendizaje-que-son-y-para-que-sirven/). Recomiendo su lectura completa, además de otros posts de la serie relacionados con las dianas digitales.

¿Qué es una diana de evaluación?

Se puede decir que es un sistema visual, rápido y sencillo de llevar a cabo un aprendizaje participativo. Una participación que puede darse en todos los estadios de su empleo, desde la propia elaboración de la misma hasta el debate sobre los resultados obtenidos. Suele definirse como una posible representación gráfica de una evaluación que nos conducirá a la reflexión a partir de una única imagen que aglutina diferentes informaciones. Es el visual thinking de las evaluaciones, por usar terminología actual.

El dibujo o la plantilla de una diana consiste en círculos concéntricos que, de dentro hacia fuera, indican el nivel de cumplimiento o de adaptación a cada uno de los ítems incluidos. Alrededor del círculo más amplio tendremos los nombres de los ítems y para cubrir la diana iremos indicando el número que corresponde en cada uno de ellos. Así, al final, uniendo los puntos, obtendremos lo que se viene denominando como mapa de evaluación.

Aquí podemos ver un ejemplo sencillo en el que únicamente una persona participa, reflexionando sobre sus propias capacidades lingüísticas:

autoevaluacion

Dianas de evaluación y metacognición

La diana puede servir para autoevaluarse, para coevaluar a otros compañeros, para valorar el trabajo en grupo o para que los estudiantes puedan calificarnos como docentes. A menudo suelen emplearse para evaluar las actitudes y la participación del alumnado. Dependiendo del objetivo último para la que se elabore, muchos de los puntos presentados en la enumeración anterior vendrán determinados de antemano.

 

Como elemento de autoevaluación, las dianas contribuirán al desarrollo de la metacognición de nuestros alumnos. Igualmente, una autoevaluación, como la presentada en la imagen previa, puede ser comparada con la coevaluación y autoevaluación de otros compañeros, o con la propia evaluación del docente. De esta manera, de un solo vistazo, se podrá abrir un interesante debate en el que los alumnos podrán reflexionar acerca de las percepciones que tienen sobre su propio aprendizaje.

 Diana de evaluación y metacognición en Geogebra.org


Acceso a la diana de evaluación en Geogebra.org

 

Espero que sea de utilidad para ti y para tus estudiantes y le saquéis mucho partido en el aula.

Más contenido matemático en redes sociales

WP2Social Auto Publish Powered By : XYZScripts.com
A %d blogueros les gusta esto: