Sentido numérico

Transformemos juntos nuestras concepciones docentes sobre la resolución de problemas matemáticos

Comparte MatemáTICas: 1,1,2,3,5,8,13,...

La transformación de nuestras concepciones como docentes es una tarea continua y esencial para mejorar la calidad educativa en el aula. Nuestras creencias y prácticas impactan directamente en cómo nuestros alumnos aprenden matemáticas y perciben su utilidad.

En el nuevo marco normativo, autonómico andaluz y estatal, derivado de la implantación de la LOMLOE, la resolución de problemas se posiciona como una herramienta metodológica clave, no solo para enseñar contenidos, sino también para desarrollar el razonamiento, la comunicación y la autonomía de nuestros alumnos.

Durante mi intervención en las Jornadas para el Impulso del Razonamiento Matemático en Andalucía, celebradas en Málaga y Córdoba hace un par de semanas, reflexionamos, entre otros aspectos, sobre cómo nuestras concepciones sobre los problemas pueden influir sobre la manera en qué los enseñamos, qué tipo de problemas enseñamos y cómo/qué aprenden nuestros alumnos.

El nuevo currículo de Matemáticas derivado de la implantación de la LOMLOE tiene como líneas principales en la definición de las competencias específicas de matemáticas la resolución de problemas y las destrezas socioafectivas. En la introducción de la materia se recoge literalmente:

La investigación en didáctica ha demostrado que el rendimiento en matemáticas puede mejorar si se cuestionan los prejuicios y se desarrollan emociones positivas hacia las matemáticas. Por ello, el dominio de destrezas socioafectivas como identificar y manejar emociones, afrontar los desafíos, mantener la motivación y la perseverancia y desarrollar el autoconcepto, entre otras, permitirá al alumnado aumentar su bienestar general, construir resiliencia y prosperar como estudiante de matemáticas.

Por otro lado, resolver problemas no es solo un objetivo del aprendizaje de las matemáticas, sino que también es una de las principales formas de aprender matemáticas. En la resolución de problemas destacan procesos como su interpretación, la traducción al lenguaje matemático, la aplicación de estrategias matemáticas, la evaluación del proceso y la comprobación de la validez de las soluciones. Relacionado con la resolución de problemas se encuentra el pensamiento computacional. Este incluye el análisis de datos, la organización lógica de los mismos, la búsqueda de soluciones en secuencias de pasos ordenados y la obtención de soluciones con instrucciones que puedan ser ejecutadas por una herramienta tecnológica programable, una persona o una combinación de ambas, lo cual amplía la capacidad de resolver problemas y promueve el uso eficiente de recursos digitales.

En este nuevo paradigma curricular, reforzado aún más si cabe en Andalucía con las Instrucciones de Razonamiento Matemático (18 junio 2024), se hace necesario poner la mirada en lo que la investigación educativa ha caracterizado como concepciones docentes sobre la resolución de problemas matemáticos.

Este artículo surge de los comentarios positivos que me han trasladado, por diferentes vías y redes sociales, muchos compañeros y compañeras de diferentes colegios e institutos de la geografía andaluza que acudieron a alguna de las jornadas o que han visto las grabaciones de las mismas, así como del interés común mostrado por la resolución de problemas y las concepciones que tenemos sobre ellas. Me reitero en mi opinión, como profesor de matemáticas e investigador en didáctica de la matemática, que este aspecto es crucial porque las concepciones afectan directamente tanto al proceso de enseñanza como al aprendizaje de nuestros alumnos.

Esta entrada en «el sitio de mi recreo», que no es otro que este blog de Matemáticas, no pretende ser más que una invitación a reflexionar, a compartir estrategias y a avanzar hacia una enseñanza más centrada en la resolución de problemas como eje vertebrador del aprendizaje matemático.

Ahora bien, como en todo proceso de transformación, debemos comenzar con una mirada instrospectiva, autocrítica y abierta al cambio, pilares básicos para construir una práctica docente más reflexiva, inclusiva y eficaz. 

A continuación planteo y ofrezco algunas respuestas y reflexiones que espero sean de utilidad para que ¡¡sigamos avanzando juntos!!

Ya me contarás tu opinión. Me interesa y mucho. 

Elaboración propia con DALL-E

PREGUNTAS, RESPUESTAS Y REFLEXIONES SOBRE LAS CONCEPCIONES DEL PROFESORADO SOBRE LA RESOLUCIÓN DE PROBLEMAS 

1. ¿Por qué es importante estudiar las concepciones del profesorado sobre la resolución de problemas?

Es crucial porque estas concepciones determinan cómo enseñamos y cómo los alumnos aprenden. Creencias erróneas, a menudo relacionadas con una formación deficiente, pueden limitar el uso de estrategias efectivas y perpetuar prácticas poco centradas en el desarrollo del pensamiento matemático.

2. ¿Qué tipo de concepciones erróneas sobre la resolución de problemas se detectan?

Actualmente, se identifican los siguientes problemas comunes:

  • Expectativas sobre los alumnos. Subestimación de las capacidades de los alumnos para resolver problemas.
  • Gestión del aula. Dedicamos poco tiempo a la resolución de problemas, priorizando algoritmos y cálculo mecánico.
  • Diversidad cultural. La diversidad, especialmente las dificultades lingüísticas, es vista como una barrera en lugar de una oportunidad.
  • Estrategias matemáticas. Desconocemos y no enseñamos de manera explícita estrategias heurísticas, modelización o aspectos del pensamiento computacional como metodología de resolución de problemas.
  • Comunicación. Aunque reconocemos su importancia, no fomentamos que los alumnos expliquen sus procesos; ni oralmente ni por escrito.
  • Causas de las dificultades. A menudo atribuimos las dificultades a factores externos, en lugar de reflexionar sobre la metodología. 
  • Relevancia del proceso. Consideramos la resolución de problemas como secundaria, sin priorizar el desarrollo de habilidades matemáticas profundas.

3. ¿Qué factores favorecen la transformación de concepciones erróneas?

Los siguientes elementos resultan fundamentales para este proceso de transformación:

  • Toma de conciencia. Observar cómo nuestros alumnos resuelven problemas con éxito y emplean estrategias diversas.
  • Reflexión sistemática y continuada. Revisar y autoevaluar nuestras prácticas docentes.
  • Contraste de metodologías. Experimentar nuevas formas de trabajar, uso de distintas estrategias de resolución de problemas, modelización, investigación guiada, trabajo por proyectos, aprendizaje cooperativo,…

4. ¿Cómo influye la diversidad cultural en la resolución de problemas?

Aunque puede ser un reto, la diversidad cultural presente en nuestras aulas y en nuestros centros educativos es una riqueza que, bien gestionada, favorece el aprendizaje.

Las estrategias cooperativas, el trabajo en equipo en grupos heterogéneos y mixtos, la aceptación de la crítica razonada, el fomento de la perseverancia y una cultura de aprendizaje a partir del error, ayudan a superar barreras lingüísticas y promueven el intercambio de ideas desde diferentes perspectivas.

5. ¿Qué papel desempeña la comunicación en la enseñanza de la resolución de problemas?

Como se puede ver en diversos ejemplos en la presentación que usé, este es un aspecto fundamental y muy presente en mi aula, ya que considero que la comunicación es fundamental para que nuestros alumnos verbalicen sus ideas, compartan estrategias y construyan conocimiento colectivo.

Es de vital importancia dedicar tiempo para fomentar el diálogo y el debate matemático en el aula. 

6. ¿Qué estrategias didácticas mejoran la gestión del aula durante la resolución de problemas?

Entre las más efectivas destacan:

  • Asignar tiempo suficiente a la resolución de problemas.
  • Organizar el trabajo en pequeños grupos.
  • Proporcionar materiales manipulativos.
  • Enseñar estrategias específicas de resolución.
  • Fomentar el debate y la exposición de ideas.

7. ¿Es posible cambiar las concepciones del profesorado sobre la relevancia de la resolución de problemas?

Sí, es posible. Mostrar cómo la resolución de problemas introduce conceptos nuevos, desarrolla el pensamiento matemático y beneficia a nuestros alumnos puede transformar nuestra percepción y darle la importancia que merece.

Compartir nuestras prácticas de aula, en entornos presenciales (departamento, área, grupos de trabajo, jornadas, congresos,…) o virtuales (a través de blogs, redes sociales,…) es una buena opción. Doy fe de ello.

8. ¿Qué se necesita, que aspectos so para lograr una transformación de las concepciones?

Es imprescindible:

  • Espacios para reflexionar y planificar en equipo.
  • Formación continua en didáctica de la matemática.
  • Formación en gestión y dinámicas del aula, así como en aspectos cognitivos y no cognitivos del aprendizaje.
  • Un cambio en la cultura escolar que valore el análisis de la práctica docente y el desarrollo profesional.

FUENTES

  • Real Decreto 217/2022, de 29 de marzo, por el que se establece la ordenación y las enseñanzas mínimas de la Educación Secundaria Obligatoria.
  • Orden de 30 de mayo de 2023, por la que se desarrolla el currículo correspondiente a la etapa de Educación Secundaria Obligatoria en la Comunidad Autónoma de Andalucía, se regulan determinados aspectos de la atención a la diversidad y a las diferencias individuales, se establece la ordenación de la evaluación del proceso de aprendizaje del alumnado y se determina el proceso de tránsito entre las diferentes etapas educativas.
  • Instrucciones sobre las medidas para el fomento del Razonamiento Matemático a través del planteamiento y la resolución de retos y problemas en Educación Infantil, Educación Primaria y Educación Secundaria Obligatoria en Andalucía
  • Pastells, A. A. (2012). Proceso de transformación de las concepciones del Profesorado sobre la resolución de Problemas matemáticos. Enseñanza de las Ciencias. Revista de investigación y experiencias didácticas, 30(3), 71-88.

Comparte MatemáTICas: 1,1,2,3,5,8,13,...

Presentación usada en las Jornadas de Impulso del Razonamiento Matemático en Andalucía

Comparte MatemáTICas: 1,1,2,3,5,8,13,...

El pasado martes 29 de octubre, en el Salón de Actos de la Facultad de Derecho de la Universidad de Málaga, y el lunes 4 de noviembre, en el Salón de Actos del Rectorado de la Universidad de Córdoba, se se han celebrado sendas jornadas para el profesorado de Andalucía Oriental y Andalucía Occidental.

Estas jornadas, impulsadas por la Dirección General de Innovación Educativa y Formación del Profesorado, y organizadas por los CEP de Málaga y de Córdoba han versado sobre las Instrucciones de Razonamiento Matemático (18 junio 2024),  con presentación institucional a cargo del DG de Innovación y Formación del Profesorado,  D. Francisco Javier Franco Fernández, y han constado de ponencias para las distintas etapas y mesas redondas.

En total han asistido más de 800 docentes de todas las provincias andaluzas, profesores y profesoras que imparten matemáticas en las distintas etapas educativas; Infantil, Primaria, Secundaria y Bachillerato. 

He tenido el gusto de participar en la mesa redonda moderada por D. Agustín Carrillo de Albornoz, SAEM Thales y Secretario General de la FESPM, junto a mis compañeros D.ª Belén Sepúlveda, D. Juan Antonio Reyes y D. Guillermo Cotrino.

Estoy encantando de que se potencie el razonamiento matemático y la resolución de problemas en Andalucía, muy feliz por el impulso de la Consejería de Desarrollo Educativo y la Formación Profesional con estas jornadas así como con el resto de actuaciones que desarrollarán las Instrucciones y agradecido por participar en las mismas aportando mi granito de arena.

Os comparto el material en el que he apoyado mi intervención por si fuera de utilidad, tanto para los docentes que han participado en las Jornadas, como para aquellos compañeros y compañeras que no han podido asistir.

Enlace a la presentación

Tweets de las Jornadas de los CEP de Málaga y Córdoba

Vídeos de la Jornadas de Córdoba y Málaga

Imágenes de ambas Jornadas

El pase de diapositivas requiere JavaScript.

Más contenido matemático en redes sociales

Comparte MatemáTICas: 1,1,2,3,5,8,13,...

Explorando la magia de GeoGebra y Python: PyGgb. Visualizaciones matemáticas interactivas para el aula

Comparte MatemáTICas: 1,1,2,3,5,8,13,...
En el proceso de aprendizaje de las matemáticas, la visualización y la interacción son clave para entender conceptos complejos. Asimismo facilita sobremanera la labor docente, como apoyo a las explicaciones. En los últimos meses, he estado disfrutando muchísimo de la combinación de dos herramientas poderosas: GeoGebra y Python. Juntas no solo nos permiten crear construcciones geométricas dinámicas y precisas, sino que también nos abren la puerta a explorar las matemáticas de forma más creativa e interactiva.
 

GeoGebra + Python: PyGgb

GeoGebra es ya una herramienta esencial en nuestras clases de matemáticas, conocida por su capacidad para modelar y explorar conceptos de forma visual. Pero al combinarla con Python, un lenguaje de programación accesible y potente, las posibilidades se multiplican. Esta combinación nos permite automatizar procesos, crear animaciones complejas y generar visualizaciones que de otra manera serían más difíciles de elaborar.

Fuente: @GeoGebra en X

Acceso al entorno de programación PyGgb

Basta introducir la url: https://geogebra.org/python/index.html y dar rienda suelta a tu imaginación. 

Tablero de ajedrez

8 aplicaciones prácticas para el aula

A continuación, os comparto algunos de los proyectos que he desarrollado y que he publicado en mi canal de YouTube. Cada uno de estos vídeos muestra cómo podemos usar esta combinación para crear visualizaciones matemáticas interactivas y atractivas que pueden llevar nuestras clases a otro nivel:

  • 1. Serie de polígonos regulares con GeoGebra + Python
    En este vídeo, exploro cómo generar una serie de polígonos regulares utilizando GeoGebra y Python. Es una forma excelente de mostrar la simetría y las propiedades geométricas de estos polígonos de manera visual y dinámica.

  • 2. Diseños geométricos variados con GeoGebra + Python
    Aquí podéis ver cómo usamos GeoGebra y Python para crear diseños geométricos variados y estéticamente atractivos. Es una oportunidad fantástica para que los alumnos vean cómo las matemáticas también pueden ser arte.

  • 3. Cicloide con GeoGebra + Python
    En este vídeo, construyo una cicloide, una curva generada por un punto en el borde de un círculo que rueda a lo largo de una línea recta. Es una aplicación perfecta para enseñar sobre curvas y sus propiedades tanto en cinemática como en geometría (sentido de la medida y espacial).

  • 4. Representación de rectas y tabla de valores: Ecuación explícita y=mx+n con GeoGebra + Python
    Este proyecto es ideal para mostrar la relación entre la ecuación de una recta y su representación gráfica, resaltando la importancia de las conexiones intramatemáticas, viendo el saber matemático como un todo integrado. Además, se genera automáticamente una tabla de valores, lo que facilita la comprensión de la pendiente y la intersección.

  • 5. Diseños geométricos variados: Cuadrados marchosos con GeoGebra + Python
    Aquí presento un diseño geométrico dinámico donde los cuadrados parecen «bailar» al ritmo de la programación. Es un recurso genial para captar la atención de los estudiantes y mostrar la belleza de la geometría dinámica. Un ejemplo claro del enfoque STEAM en el aula de Matemáticas

  • 6. Parábola y arte reglado con GeoGebra + Python
    Este vídeo explora cómo construir una parábola y cómo esta se puede utilizar para crear patrones geométricos atractivos. Es una excelente manera de conectar conceptos algebraicos con aplicaciones geométricas.

  • 7. Teselación hexagonal: Panal de abejas con GeoGebra + Python
    En este proyecto, exploro la teselación hexagonal, mostrando cómo se forma un panal de abejas. Es una forma perfecta de introducir a los estudiantes en conceptos de simetría, teselación y sus aplicaciones en la naturaleza.

  • 8. Diseños geométricos: Rotación de segmentos con GeoGebra + Python
    Finalmente, en este vídeo muestro cómo la rotación de segmentos puede generar patrones geométricos interesantes. Es ideal para discutir temas como la rotación y la simetría en el aula.

Ventajas pedagógicas

Incorporar Python en el uso de GeoGebra no solo añade una capa técnica interesante, sino que también introduce a los alumnos a la programación de una manera intuitiva y orientada a resultados, artefactos digitales concretos que pueden ser perfectamente el producto final de Situaciones de Aprendizaje competenciales. Esto no solo refuerza sus habilidades matemáticas, sino que también desarrolla competencias digitales que son cada vez más necesarias en el mundo actual.

 

Os animo a que veáis los vídeos que he compartido y que consideréis cómo estas herramientas podrían integrarse en vuestras clases. La combinación de GeoGebra y Python tiene el potencial de transformar la enseñanza de las matemáticas, haciendo que conceptos abstractos sean más tangibles y atractivos para los estudiantes.

Seguiré explorando nuevas formas de aprovechar esta potente combinación y compartiendo mis descubrimientos. ¡No os perdáis las próximas publicaciones y, como siempre, estaré encantado de conocer vuestras experiencias y comentarios!

Más contenido matemático en redes sociales

Comparte MatemáTICas: 1,1,2,3,5,8,13,...

Ejercicio interactivo. Identifica el número secreto con pistas

Comparte MatemáTICas: 1,1,2,3,5,8,13,...

 

Comparte MatemáTICas: 1,1,2,3,5,8,13,...

(Vídeo) Conferencia en el XXVII Congreso Nacional de Matemática Educativa de Guatemala. Aprender y enseñar matemáticas con manipulativos virtuales

Comparte MatemáTICas: 1,1,2,3,5,8,13,...

El pasado 24 de noviembre del recién terminado 2023, disfruté impartiendo la Conferencia «Aprender y enseñar matemáticas con manipulativos virtuales» en el XXVII Congreso Nacional de Matemática Educativa, evento de referencia en nuestro querido país hermano de Guatemala, organizado por la Unidad de Modelación Matemática e Investigación de la Facultad de Ingeniería de la Universidad de San Carlos de Guatemala.

El evento contó con la participación de 44 ponentes de 8 países, Guatemala, México, Costa Rica, Estados Unidos de Norteamérica, Perú, Panamá, El Salvador y España, de forma virtual, con un total de 50 talleres y 6 conferencias plenarias acerca de la enseñanza y aprendizaje de esta materia en todos los niveles educativos. El mismo contó con la participación de 420 docentes.

Quiero expresar mi agradecimiento, por la confianza renovada y el respeto y cariño mostrado hacia mi trabajo, a todos los miembros del Comité Organizador del Congreso, con especial énfasis en la Dra. Mayra Castillo y el Dr. Julio Ricardo Castillo por todo el apoyo que me han dado, antes, durante y tras el evento.

El pase de diapositivas requiere JavaScript.

Comparto a continuación el enlace al evento en Facebook donde se encuentra en el vídeo de mi Conferencia «Aprender y enseñar matemáticas con manipulativos virtuales» donde, durante más de dos horas, reflexioné, compartí e interactué con los profesores participantes, proponiendo diferentes actividades matemáticas basadas en materiales manipulativos, simulando una situación real de clase a distancia, explicitando propuestas metodológicas, favoreciendo el razonamiento y la argumentación matemática.

Aprender y enseñar matemáticas con manipulativos virtuales

XXVII Congreso Nacional de Matemática Educativa de Guatemala

Más contenido matemático en redes sociales

Comparte MatemáTICas: 1,1,2,3,5,8,13,...

Estrella numérica

Comparte MatemáTICas: 1,1,2,3,5,8,13,...

Espero que disfrutes con el siguiente reto numérico.

Piensa y prepara una estrategia para abordarlo antes de lanzarte a probar a ciegas…

Ya me contarás cómo te ha ido.

 
Luis Miguel Iglesias. Estrella numérica (CC BY-SA)

¡¡Salud, feliz Navidad y próspero 2024 cargadito de Matemáticas!!

Comparte MatemáTICas: 1,1,2,3,5,8,13,...

Una nueva era en la creación de contenidos digitales educativos de la mano de la Inteligencia Artificial de ChatGPT y eXeLearning

Comparte MatemáTICas: 1,1,2,3,5,8,13,...

Los lectores habituales de este blog son conocedores de mi pasión por la generación de contenidos educativos digitales. En este blog hay algunos de centenares de ellos. 

He tenido la suerte, además, de participar en algunos de los grandes proyectos institucionales de Recursos Educativos Abiertos de nuestro país. Concretamente, en los últimos años, como:

  • Elaborador del Proyecto EDIA. ABP de Matemáticas

  • Elaborador del Proyecto Situaciones de Aprendizaje MEFP INTEF. Creamos nuestro Círculo Matemático Computacional

 

 

 

 

 

 

 

 

https://www.juntadeandalucia.es/educacion/portals/web/transformacion-digital-educativa/rea/modelo-pedagogico-guia-tecnica

https://www.juntadeandalucia.es/educacion/portals/web/transformacion-digital-educativa/rea

Además de ello, en un campo, no ya emergente, sino de plena actualidad, como es el de la Inteligencia Artificial, he podido vivir de primera mano experiencias formativas de gran nivel, entre ellas mi participación en el

  • Proyecto Fostering Artificial Intelligence at Schools (FAIaS)

Una nueva era en la creación de contenidos digitales educativos de la mano de ChatGPT y eXeLearning

Pues bien, aprovechando el conocimiento en dichos ámbitos, se me ha ocurrido combinar ambos:

  • Recursos Educativos Abiertos, creación de contenido digital con la herramienta eXeLearning, 

+

  • Inteligencia Artificial Generativa de OpenAI, ChatGPT, y más concretamente uno de mis asistentes GPT.

El resultado de esta fusión se puede comprobar en el siguiente vídeo, en el que muestro el proceso de creación de contenidos en eXeLearning, previa sencilla supervisión del contenido devuelto por mi asistente GPT. Creo que serán únicamente las primeras fusiones entre ambas tecnologías, ya que creo que mis asistentes y yo nos llevaremos bien y formaremos un gran equipo.

Seguiremos informando de nuestros avances 🙂

 

Una nueva era en la creación de contenidos digitales educativos de la mano de ChatGPT y eXeLearning

Pulsa en el siguiente enlace para que puedas interactuar con mi asistente (a fecha 5/12/2023 se requiere disponer de cuenta ChatGPT Plus de pago).

Ya me contarás qué te ha parecido esta manera de generar contenidos digitales educativos interactivos en eXeLearning.

Seguimos…

Más contenido matemático en redes sociales

Comparte MatemáTICas: 1,1,2,3,5,8,13,...

Desarrollo del sentido numérico a través de ‘Una bonita relación numérica: a, b, MCD(a,b) y MCM(a,b)’

Comparte MatemáTICas: 1,1,2,3,5,8,13,...

Esta mañana me preguntó un compañero, docente de otra comunidad autónoma, a través de un mensaje privado en uno de mis perfiles en RRSS, que si le podía dar ideas para trabajar el sentido numérico en 1º-2º ESO. Se me vino a la cabeza unas cuantas pero, como sabéis… el tiempo es oro y, desafortunadamente, no dispongo de tiempo para escribir algo nuevo. Así que, tras la calma de esta tarde, he pensado en compartirle y, al mismo tiempo, dejar por aquí para todos una de las propuestas didácticas recogidas en la secuencia competencial de una Situación de Aprendizaje consistente en un plan de trabajo formativo para ayudar a los centros que quieran formar a sus alumnos a modo de preparación previa a la creación de su Círculo Matemático Computacional (CMC).

 

Propuesta didáctica: Una bonita relación numérica

De igual manera que las personas tenemos bonitas relaciones de amistad, en el mundo de los números también nos encontramos con ellas. 

Ya habéis visto cómo, usando un algoritmo clásico ‘famoso’, el Algoritmo de Euclides, podéis obtener el Máximo Común Divisor de dos números, siguiendo una secuencia ordenada de pasos, ya sea manualmente o con ayuda de un ordenador. 

En esta actividad vamos a seguir trabajando con el Máximo Común Divisor (MCD), también con el Mínimo Común Múltiplo (MCM), y vais a descubrir y profundizar en la comprensión de estos dos conceptos matemáticos con los que tan familiarizados estamos en las clases de matemáticas. 

Vamos a ver qué relación existe entre el producto de dos números naturales, a·b, y el producto MCD(a,b)·MCM(a,b).

Antes de empezar, observa con atención el siguiente vídeo:

Luis Miguel Iglesias. Una bonita relación numérica: a, b, MCD(a,b) y MCM(a,b) (Licencia estándar de YouTube)

A continuación, trabajando en equipo, resuelve e introduce los valores correctos correspondientes a las casillas representadas con una interrogación (?).


Luis Miguel Iglesias. Una bonita relación (CC BY-SA)

Si te gustó esta tarea para trabajar con tus alumnos el desarrollo del sentido numérico te animo a consultar la SdA Creamos nuestro Círculo Matemático Computacional (CMC), a modificarla, adaptarla para tus alumnos y a compartirla con otros colegas de tu departamento didáctico o conocidos.

¡¡Buen fin de semana. Salud, felicidad y matemáticas!!

Comparte MatemáTICas: 1,1,2,3,5,8,13,...

Creamos nuestro Círculo Matemático Computacional (CMC) para trabajar el Pensamiento Computacional y la Resolución de Problemas. Proyecto Situaciones de Aprendizaje del MEFP

Comparte MatemáTICas: 1,1,2,3,5,8,13,...

Este curso 22/23 se ha implantado el nuevo currículo derivado de la implantación de la LOMLOE en los cursos impares (1º, 3º y 5º de Primaria, 1º y 3º de Secundaria y 1º de Bachillerato). A partir de septiembre se implantará en los pares, finalizando así dicha implantación. 

Uno de los nuevos paradigmas propuestos en el nuevo marco curricular son las Situaciones de Aprendizaje, que son situaciones y actividades que implican el despliegue por parte del alumnado de actuaciones asociadas a competencias clave y competencias específicas, y que contribuyen a la adquisición y desarrollo de las mismas.

Acompañando al desarrollo normativo se han realizado diferentes acciones. Entre ellas se ha establecido un itinerario formativo para el profesorado y se ha puesto en marcha el proyecto Situaciones de Aprendizaje, un proyecto que publicará en torno a 200 Situaciones de Aprendizaje de todas las etapas (desde Infantil a Bachillerato) y de todas las materias. 

He tenido la suerte de participar en este bonito proyecto de Recursos Educativos Abiertos (REA), concretamente en el grupo de trabajo de Matemáticas,  con la elaboración de una de las Situaciones de Aprendizaje la cual espero sea de utilidad, si no ya para el presente curso, que está tocando a su fin, para el curso que viene. 

Creamos nuestro Círculo Matemático Computacional (CMC)

Situación de Aprendizaje: Creamos nuestro Círculo Matemático Computacional (CMC)

 

 

Situaciones de Aprendizaje de Matemáticas

Con la excelente coordinación por parte de José Luis Muñoz Casado, hemos trabajado el siguiente equipo de Matemáticas:

  • Julio Rodríguez Taboada
  • Antonio Moreno
  • Ester Solves
  • María Ángeles Portilla
  • José Rafael Viana Sánchez
  • Luis Miguel Iglesias
  • Claudia Lázaro
  • José María Vázquez
  • Laureano Serrano Muñoz
  • Lluis Bonet
  • Pilar Sabariego
  • Berta Sánchez García
  • Carmen Lahiguera Serrano
  • Pablo Peñalver Alonso
  • Francisco Zapatero Sánchez

Todas las Situaciones de Aprendizaje de Matemáticas pueden ser localizadas accediendo a a la web del proyecto y filtrando (marcando la casilla Matemáticas). 

Aunque no soy objetivo por ser parte del proyecto, os recomiendo encarecidamente visitar y conocer las Situaciones de Aprendizaje de Matemáticas, y del resto de materias elaboradas, y os animo a adaptarlas y llevarlas a vuestras aulas. 

Acceder a la web del Proyecto y activa el filtro «Matemáticas» https://intef.es/recursos-educativos/situaciones-aprendizaje/

 

Proyecto Situaciones de Aprendizaje MEFP

Acceder a la web del Proyecto: https://intef.es/recursos-educativos/situaciones-aprendizaje/

 

¿Qué se ofrece?

Una colección de situaciones de aprendizaje y otros materiales didácticos de naturaleza competencial creados por docentes en activo, para Educación Infantil, Educación Primaria, Educación Secundaria Obligatoria y Bachillerato. Todos ellos se publican con una licencia abierta (Creative Commons Reconocimiento-CompartirIgual 4.0) e incluyen el archivo fuente para su descarga y posible edición posterior.

Información curricular

Estos materiales se han diseñado conforme a los objetivos, competencias, criterios de evaluación y saberes básicos fijados en el Real Decreto 95/2022, de 1 de febrero, por el que se establece la ordenación y las enseñanzas mínimas de la Educación Infantil, el Real Decreto 157/2022, de 1 de marzo, por el que se establecen la ordenación y las enseñanzas mínimas de la Educación Primaria, el Real Decreto 217/2022, de 29 de marzo, por el que se establece la ordenación y las enseñanzas mínimas de la Educación Secundaria Obligatoria y el Real Decreto 243/2022, de 5 de abril, por el que se establecen la ordenación y las enseñanzas mínimas del Bachillerato.

Información técnica (eXeLearning)

Todos los materiales se han elaborado con la herramienta eXeLearning, un editor de recursos educativos interactivos, gratuito y de código abierto, lo que hace posible que cualquier usuario los pueda descargar y utilizar -con o sin conexión-, así como editar para adaptarlos a sus necesidades. Ofrece, asimismo, la ventaja de que permite exportar los contenidos a diferentes formatos estándar para su utilización en entornos web (html) o en plataformas de gestión de contenido educativo (SCORM) como Moodle y otros LMS.

 

Currículo básico Matemáticas Secundaria LOMLOE

Comparte MatemáTICas: 1,1,2,3,5,8,13,...

Suma de números enteros de distinto signo con el cubo de ceros de Polypad · Mathigon

Comparte MatemáTICas: 1,1,2,3,5,8,13,...

Tras una larga e intensa jornada de final de trimestre, al llegar a casa a última hora de la tarde, he acompañado a mi pequeña (12 años) en su estudio abordando el primer acercamiento a los enteros.

Tras la comprensión de situaciones de la vida cotidiana expresadas con enteros, representación en la recta real, orden y suma de números enteros del mismo signo, ha estado practicando la suma de enteros de distinto signo.

Para aterrizar en este tipo de sumas, le he mostrado algunas ejemplificaciones que he elaborado para ella usando la funcionalidad «cubo o cubeta de ceros» de Polypad · Mathigon.

Os dejo el lienzo que he elaborado, con un ejemplo resuelto y otro por hacer, y una animación, de unos dos minutos, donde muestro el proceso seguido.

Espero sea de utilidad para vuestro trabajo a pie de aula y para acompañar a vuestros aprendices en el desarrollo del sentido numérico.

Animación. Ejemplo resuelto paso a paso usando el cubo de ceros

Canva Polypad · Mathigon

Polypad · Mathigon – Suma enteros de distinto signo

Más contenido matemático en redes sociales

Comparte MatemáTICas: 1,1,2,3,5,8,13,...
WP2Social Auto Publish Powered By : XYZScripts.com