Puzzles

Vídeos de geometría analítica. Hallar vectores y comprobar si son equipolentes, analítica y gráficamente

Comparte MatemáTICas: 1,1,2,3,5,8,13,...

Hallar vectores y comprobar si son equipolentes (analíticamente)

Manuales

Más contenido matemático en redes sociales

Comparte MatemáTICas: 1,1,2,3,5,8,13,...

Geogebra Math Practice, una excelente aplicación para trabajar el sentido algebraico, fruto de la alianza entre Geogebra y Graspable Math

Comparte MatemáTICas: 1,1,2,3,5,8,13,...

A finales del 2020, escribí una entrada titulada:

Graspable Math y Geogebra; aliadas extraordinarias para enseñar y aprender matemáticas en contextos presenciales discontinuos. 5 tareas resueltas en vídeos sobre funciones lineales, afines, paralelismo y ecuaciones de la recta, la cual comenzaba así:

Los lectores asiduos de este rincón virtual matemático conocen sobradamente mi predilección por estas dos poderosas herramientas digitales. En mi opinión, indispensables ambas para la enseñanza y el aprendizaje de la matemática en el siglo XXI, siendo especialmente útiles en los contextos de enseñanza-aprendizaje semipresencial y a distancia especialmente extendidos con motivo de la COVID-19.

Aprovecho estas líneas para invitarte a visitar las distintas publicaciones sobre propuestas didácticas para trabajar en el aula y los materiales que he compartido sobre ambas en los últimos años:

Pues bien, si juntamos ambas, el resultado no puede ser catalogado de otro modo que excelente.

Como muestra de ello comparto en esta entrada 5 tareas resueltas paso a paso, en otros tantos vídeos, con ayuda de Geogebra y Graspable Math. 

Estos materiales los desarrollé para mis estudiantes de Matemáticas de 3º de ESO (14-15 años) para trabajar en modalidad online durante el cierre de los centros educativos españoles, periodo de la suspensión de la actividad docente presencial (marzo-junio 2020), con motivo de la COVID-19.

Espero te animes a usar los vídeos con tu alumnado si los consideras de utilidad 

(…)

Puedes acceder al contenido completo pulsando más abajo:

Pues bien, esa alianza sigue dando frutos. Y muy buenos además. Ese es el motivo que me trae hoy a escribir estas líneas.

Como Geogebra Ambassador y como usuario habitual y elaborador de diverso material con Graspable Math, además de alpha tester de la herramienta con acceso a funcionalidades experimentales en fase de desarrollo es una gran alegría mostraros la herramienta Geogebra Math Practice. 

 

Geogebra Math Practice, una herramienta para la práctica algebraica con ayuda de GeoGebra

GeoGebra Math Practice ayuda a los estudiantes en su trabajo paso a paso en la resolución de ejercicios de álgebra. Combina el Solver Engine interno de GeoGebra y la tecnología Graspable Math basada en investigaciones para proporcionar notación interactiva, sugerencias adaptativas y comentarios en tiempo real que permiten a los estudiantes explorar diferentes caminos en el proceso de resolución, ayudándoles a ganar en confianza, favoreciendo la fluidez de los procedimientos y la comprensión conceptual. 

2.png

GeoGebra Math Practice es una colaboración entre GeoGebra y Graspable Math , y es de uso gratuito para profesores y estudiantes.

Recursos de práctica de matemáticas para el Centro de ayuda.png

 

Animación interactiva. Ejemplo de resolución de ecuación con Geogebra Math Practice

APA-ecuación lineal de un paso.gif

Estas son las características clave de GeoGebra Math Practice :

  • Utiliza la notación dinámica de Graspable Math para manipular y resolver problemas algebraicos con gestos (tocar y arrastrar) y animaciones interactivas.
  • Obtén sugerencias visuales y conceptuales para cada uno de los pasos, proporcionadas por Solver Engine de GeoGebra.
  • Obtén comentarios instantáneos sobre cada paso.
  • Reescribe libremente el problema con el teclado matemático virtual de GeoGebra.
  • Practica problemas similares para profundizar en tu comprensión de las habilidades clave.

Tipos de ejercicios relacionados con el sentido algebraico que se pueden trabajar actualmente con Geogebra Math Practice (GMP).

Diseño sin título (5).png

GeoGebra Math Practice actualmente es capaz de ayudarte con ejercicios sobre:

  • El orden (jerarquía) de las operaciones
    • Operaciones aritméticas
    • Operaciones con fracciones
    • Operaciones con potencias
  • Expresiones algebraicas
    • Desarrollo (distribución) de expresiones algebraicas.
    • Simplificación de expresiones fraccionarias
  • Polinomios
    • Reescribir a forma estándar
    • Sumar y restar polinomios
    • División por monomios
  • Ecuaciones lineales
    • Ecuaciones lineales de 1 paso, 2 pasos y varios pasos
    • Resolver ecuaciones lineales con múltiples o ninguna solución.

También puede utilizar GeoGebra Math Practice con otros ejemplos y tipos de ejercicios pero es posible que no recibas sugerencias ni comentarios precisos. Durante los próximos meses se espera que sigan ampliando la funcionalidad y se puedan realizar más tipos de ejercicios.

 

Acceso a Geogebra Math Practice: https://www.geogebra.org/mathpractice/es-ES  
 
Acceso a Geogebra Math Practice: https://www.geogebra.org/mathpractice/es-ES  
 

Vídeos

Manuales

Más contenido matemático en redes sociales

Comparte MatemáTICas: 1,1,2,3,5,8,13,...

Múltiplos de múltiplos y Puzles Yohakus interactivos en Mathigon

Comparte MatemáTICas: 1,1,2,3,5,8,13,...

En esta entrada comparto varios retos interactivos realizados con Mathigon. Al ver el tweet de DCDSBMath me encantaron y me lancé a adaptarlos al español con la herramienta Polypad.

Múltiplos de múltiplos

Puzles Yohaku

Consejo: Pulsar en el nombre para ir directamente a la web de Mathigon y visualizarlos correctamente a pantalla completa. Usar lupas (+/-) y pantalla completa para desplazarse si fuera necesario.

Espero que os gusten y os animéis a usarlas con vuestros alumnos y a compartirlas. ¡Que fluya la matemática en las redes! 🙂

Más contenido matemático en redes sociales

Comparte MatemáTICas: 1,1,2,3,5,8,13,...

Reto matemático terrorífico para la noche de Halloween – Graspable Math

Comparte MatemáTICas: 1,1,2,3,5,8,13,...

En esta entrada os propongo un reto terrorífico para la noche de Halloween, basado en un modelo de áreas.

¿Cómo lo ves? ¿Eres capaz de resolverla?

¿Truco o trato? 🙂

Tarea interactiva. Reto matemático terrorífico para la noche de Halloween, realizada en Graspable Math

Pulsa aquí para completar el reto en GMA y dejar registrada tu respuesta (First Name: Tu nombre – Last Initial: Inicial de tu apellido)

Más contenido matemático en redes sociales

Comparte MatemáTICas: 1,1,2,3,5,8,13,...

Graspable Math y Geogebra; aliadas extraordinarias para enseñar y aprender matemáticas en contextos presenciales discontinuos. 5 tareas resueltas en vídeos sobre funciones lineales, afines, paralelismo y ecuaciones de la recta

Comparte MatemáTICas: 1,1,2,3,5,8,13,...

Los lectores asiduos de este rincón virtual matemático conocen sobradamente mi predilección por estas dos poderosas herramientas digitales. En mi opinión, indispensables ambas para la enseñanza y el aprendizaje de la matemática en el siglo XXI, siendo especialmente útiles en los contextos de enseñanza-aprendizaje semipresencial y a distancia especialmente extendidos con motivo de la COVID-19.

Aprovecho estas líneas para invitarte a visitar las distintas publicaciones sobre propuestas didácticas para trabajar en el aula y los materiales que he compartido sobre ambas en los últimos años:

Pues bien, si juntamos ambas, el resultado no puede ser catalogado de otro modo que excelente.

Como muestra de ello comparto en esta entrada 5 tareas resueltas paso a paso, en otros tantos vídeos, con ayuda de Geogebra y Graspable Math. 

Estos materiales los desarrollé para mis estudiantes de Matemáticas de 3º de ESO (14-15 años) para trabajar en modalidad online durante el cierre de los centros educativos españoles, periodo de la suspensión de la actividad docente presencial (marzo-junio 2020), con motivo de la COVID-19.

Espero te animes a usar los vídeos con tu alumnado si los consideras de utilidad.

 

Vídeos

1. Funciones lineales. Pertenencia a recta. Ecuación de la recta Geométrico – Graspable Math & Geogebra

 

2. Funciones lineales. Pertenencia a recta. Ecuación de la recta. Geometría Analítica. Graspable Math

 

3. Funciones afines. Ecuación de la recta. Recta paralela pasando por un punto – Graspable Math & Geogebra

 

4. Funciones lineales – Paralelismo – Significado de m y n en la ecuación explícita – Graspable Math & Geogebra

 

5. Funciones afines. Ecuación de la recta. Recta paralela pasando por un punto – Graspable Math & Geogebra

Más contenido matemático en redes sociales

Comparte MatemáTICas: 1,1,2,3,5,8,13,...

Laberinto de ecuaciones de primer y segundo grado con Graspable Math. Propuesta didáctica con plantilla editable y vídeos de ayuda

Comparte MatemáTICas: 1,1,2,3,5,8,13,...

En esta entrada comparto los materiales de una propuesta didáctica para trabajar las ecuaciones de primer y segundo grado (cuadráticas) que diseñé y llevé a cabo con mi alumnado de Matemáticas de 3º de ESO (14-15 años) en modalidad online durante el cierre de los centros educativos españoles, periodo de la suspensión de la actividad docente presencial (marzo-junio 2020), con motivo de la COVID-19.

Para ayudarte a implementar esta propuesta con tus estudiantes incluyo:

  1. Plantilla en formato editable (.docx)
  2. Plantilla en formato imprimible (.pdf)
  3. Vídeo de ayuda para los estudiantes para que puedan cumplimentar la plantilla en formato digital para escribir las ecuaciones y su resolución.
  4. Vídeo con la resolución de un laberinto de ecuaciones de primer grado realizado en Graspable Math.
  5. Laberinto de ecuaciones de primer grado sencillas. Método de las transformaciones algebraicas realizado en Graspable Math.

Espero te animes a usar la propuesta con tu alumnado y os resulte atractiva y de utilidad.

Ya me contarás cómo te ha ido.

¡Ánimo!

 

Propuesta didáctica

 

1.Plantilla en formato editable (.docx)

Plantilla – Laberinto de ecuaciones de primer y segundo grado

 

2. Plantilla en formato imprimible (.pdf)

Plantilla – Laberinto de ecuaciones de primer y segundo grado

 

3. Vídeo de ayuda para los estudiantes para que puedan cumplimentar la plantilla en formato digital para escribir las ecuaciones y su resolución. 

 

4. Vídeo con la resolución de un laberinto de ecuaciones de primer grado realizado en Graspable Math.

 

5. Laberinto de ecuaciones de primer grado sencillas. Método de las transformaciones algebraicas realizado en Graspable Math.

 

 

MÁS CONTENIDO MATEMÁTICO EN REDES SOCIALES

Comparte MatemáTICas: 1,1,2,3,5,8,13,...

Tareas Open Middle relacionadas con la suma y la resta elaboradas con Graspable Math

Comparte MatemáTICas: 1,1,2,3,5,8,13,...

En esta entrada te propongo 4 tareas de tipo Open Middle, relacionadas con la suma y la resta, que he elaborado con ayuda de Graspable Math.

Puedes dejar las soluciones que encuentres haciendo comentarios a esta entrada.
¡Ánimo!

1. Tarea OM – Resta (I)

 

2. Tarea OM – Resta (II)

 

3. Tarea OM – Suma (I)

 

4. Tarea OM – Suma y Resta (I)

 

¿Qué es una tarea de tipo Open Middle (OM)?

El nombre “Open Middle” puede sonar como un nombre extraño para un tipo de problemas matemáticos. Sin embargo, hace referencia a un tipo de problema muy particular que se debe fomentar en el aula de matemáticas. Como habrás podido apreciar en las tareas anteriores, la mayoría de tareas OM presentan las siguiente características:

  • un “comienzo cerrado”: lo que significa que todos los alumnos comienzan con el mismo problema inicial.
  • un “final cerrado”: lo que significa que todos los alumnos terminan con el mismo resultado.
  • un “medio abierto”: lo que significa que hay múltiples maneras de acercarse a -y en última instancia, de resolver- el problema.

Los problemas de tipo “Open Middle” suelen requerir una carga cognitiva mayor que la mayoría de los problemas que evalúa solo la comprensión procedimental y conceptual. Además, trabajan con los contenidos del currículo y proveen a los estudiantes oportunidades para discutir su pensamiento, favoreciendo la fluidez, el razonamiento y la expresión oral/escrita.

Algunas características adicionales de los problemas de tipo “Open Middle” son:

  • Generalmente tienen múltiples maneras de ser resueltos en contraposición a los problemas en los que a uno se le pide que aplique un método específico para su resolución.
  • Pueden ser optimizados de manera tal que sea fácil encontrar un resultado, pero resulte más desafiante encontrar el resultado óptimo.
  • Pueden parecer de naturaleza simple y procedimental pero resultan siendo más desafiantes y complejos cuando uno comienza a resolverlos.
  • Generalmente no son tan complejos como una tarea contextualizada que puede requerir un contexto previo para ser completadas.

Los artífices y creadores originales de este tipo de tareas son Nanette Johnson y Robert Kaplinsky.

MÁS CONTENIDO MATEMÁTICO EN REDES SOCIALES

Comparte MatemáTICas: 1,1,2,3,5,8,13,...

2 retos: resolución y construcción de criptogramas numéricos aditivos

Comparte MatemáTICas: 1,1,2,3,5,8,13,...

Criptograma Ilustraciones Stock, Vectores, Y Clipart – (881 Ilustraciones Stock)

 

En esta entrada te propongo resolver 2 criptogramas numéricos aditivos. A continuación te explicaré un poco qué es un criptograma, un poco de historia sobre este concepto y algunas reglas para resolverlos.

1. ¿Qué es un criptograma?

Un criptograma es un fragmento de mensaje cifrado, y cuyo significado es ininteligible hasta que es descifrado. Generalmente, el contenido del mensaje inteligible es modificado siguiendo un determinado patrón, de manera que sólo es posible comprender el significado original tras conocer o descubrir el patrón seguido en el cifrado.

Por lo general, el cifrado utilizado para cifrar el texto es lo suficientemente simple como para que el criptograma pueda resolverse manualmente. El cifrado más utilizado en estos casos es el llamado cifrado por sustitución, en el que cada letra es remplazada por una diferente o por un número.

En sus inicios fue concebido para aplicaciones más serias, pero en la actualidad es utilizado por lo general como entretenimiento en revistas y diarios.

2. Un poco de historia sobre los criptogramas

Los criptogramas no fueron originalmente creados para propósitos de entretenimiento, sino para el cifrado de secretos militares o privados.

El primer uso de criptogramas para propósitos de entretenimiento sucedió durante la Edad Media por unos monjes que preparaban juegos de ingenio. Un manuscrito encontrado en Bamberg establecen que los visitantes irlandeses a la corte de Merfyn Frych ap Gwriad (muerto en el año 844), rey de Gwynedd en Gales recibieron unos criptogramas, los cuales sólo podían resolverse transponiendo las letras del alfabeto latino al griego. Alrededor del siglo trece, el monje inglés Roger Bacon escribió un libro en el cual listó siete métodos de cifrado, y estableció que

Un hombre está loco si para escribir un secreto, elige una forma que pueda ser conocida por el vulgo.

En el siglo XIX, Edgar Allan Poe ayudó a popularizar los criptogramas, mediante la publicación de muchos artículos en revistas y diarios.

Los criptogramas numéricos son operaciones de cálculo en las cuales se han sustituido las cifras por letras u otros símbolos de manera que se propone encontrar que valor corresponde a cada letra, teniendo en cuenta, claro, que una misma letra no puede representar dos valores numéricos diferentes. Su resolución, a menudo, exige muchas hipótesis y largos cálculos que implican grandes riesgos de confusión.

3. Algunas reglas o pistas

Para resolverlos pueden serte de utilidad tener en cuenta lo siguiente:

  • Los números están en base diez, a menos que se especifique lo contrario.
  • Cada letra o símbolo representa un único número (entre 0 y 9).
  • El primer dígito de un número no puede ser el cero.

4. Reto I. Resuelve los siguientes criptogramas aditivos

Te propongo dos criptogramas para que practiques. Son aditivos porque en sus enunciados aparecen sumas.

Criptograma aditivo (I) · MatemáTICas: 1,1,2,3,5,8,13,…
Criptograma aditivo (II) · MatemáTICas: 1,1,2,3,5,8,13,…

5. Reto II. Construye tus propios criptogramas aditivos

Pon a prueba tu creatividad, construye tu propio criptograma y déjalo como comentario en este blog o remítela por correo electrónico a luismiglesias@gmail.com.

 

MÁS CONTENIDO MATEMÁTICO EN REDES SOCIALES

Comparte MatemáTICas: 1,1,2,3,5,8,13,...

30 retos y distintas maneras creativas de trabajar el ingenio, la lógica y la resolución de problemas #_Lógicamente

Comparte MatemáTICas: 1,1,2,3,5,8,13,...

Hace poco más de diez días, concretamente el pasado 18 de marzo, anunciaba la puesta en marcha de un Nuevo foro: “_Lógicamente” #ingenio #lógica #acertijos

Hoy, quiero compartir con vosotros mi gratitud por la buena acogida que ha tenido dicho espacio. En el mismo ya contamos con más de una treintena de retos, recogidos en 21 debates, los cuales aparecen recopilados a continuación.

En _Lógicamente puedes participar:

  • Resolviendo retos.
  • Proponiendo los tuyos propios.

Asimismo, si eres docente, puedes usarlo para el trabajo en el aula proponiendo la resolución de retos a los chicos como han hecho de una manera genial alumno/as de 5º de Primaria del CEIP Miguel Delibes de Valladolid con el reto _Lógicamente #3 ¿Qué fracción de área…   proponiéndolos en vídeo como han hecho los chico/as del CPR Luis Vives de Ourense a través de _Lógicamente #11 Acertijos matemáticos 3 [1-5] o de cualquier otra manera que se te ocurra ya que se trata de un foro totalmente abierto.

Echa un vistazo a los distintos retos y estoy convencido de que te picará el gusanillo y querrás participar. ¡¡ Te espero por allí… _Lógicamente 🙂 !!

matematicas11235813_logicamente

Debates Foro
_Lógicamente #1 Encuentra la figura (Patrones) _Lógicamente…
_Lógicamente #2 La rana en el pozo
_Lógicamente #3 ¿Qué fracción de área…
_Lógicamente #4 ¿Si recubrieran el suelo de tu dormitorio con billetes…
_Lógicamente #5 ¿Cuánto vale el área del cuadrilátero azul?
_Lógicamente #6 Si reducimos la base de un rectángulo…
_Lógicamente #7 Al rico bombón
_Lógicamente #8 La polilla
_Lógicamente #9 Acertijos matemáticos I [1-3]
_Lógicamente #10 Acertijos matemáticos 2 [1-4]
_Lógicamente #11 Acertijos matemáticos 3 [1-5]
_Lógicamente #12 Poesía matemática
_Lógicamente #13 Sumando palillos
_Lógicamente #14 Partiendo a mi manera…
_Lógicamente #15 Familiar dadivoso
_Lógicamente #16 El día… se nos va
_Lógicamente #17 Continúa la serie. La siguiente letra es…
_Lógicamente #18 Otra de series….
_Lógicamente #19 Cuadrado amoroso
_Lógicamente #20 L+U+C+I+A
_Lógicamente #21 Huevos rotos
Comparte MatemáTICas: 1,1,2,3,5,8,13,...

Mueve tu coco con Curvy #puzzles #pdi

Comparte MatemáTICas: 1,1,2,3,5,8,13,...

¡Qué mejor manera de comenzar el curso, que hacerlo con un poco de entrenamiento cerebral!

Menu -> New Puzzle -> Elegir números de columnas (Columns) y filas (Rows) y, a jugar…

Comenzar a jugar a Curvy

Comparte MatemáTICas: 1,1,2,3,5,8,13,...
WP2Social Auto Publish Powered By : XYZScripts.com