Ecuaciones

Profundizando en la comprensión de la relación entre los coeficientes de una ecuación de segundo grado y sus raíces. Ejercicios resueltos en vídeo con Graspable Math

En esta entrada comparto tres vídeos en los que muestro cómo profundizar en la comprensión de la relación entre los coeficientes de una ecuación de segundo grado y sus raíces. En demasiadas ocasiones solemos abordar en clase la explicación de un concepto o contenido matemático y, a renglón seguido, pasamos a la aplicación práctica reiterada con una batería de ejercicios tipo, sin profundizar en la comprensión del concepto.

Lo que propongo con estos tres vídeos es desplazar un poco el ejercicio típico rutinario: «Resuelve la ecuación de segundo grado …» «Halla las soluciones de la ecuación de segundo grado …» por otros que ahondan en la estructura de la ecuación y que nos permite obtener sus soluciones a partir de los coeficientes y, viceversa, obtener la expresión algebraica a partir de sus soluciones, ahondando y permitiendo ver la conexión existente.

Todos ellos han sido elaborados usando la herramienta digital interactiva Graspable Math, de las que ya os he hablado en anteriores entradas en este blog. Una herramienta ideal para acercar el lenguaje algebraico a nuestro alumnado, la cual nos facilita sobremanera a  docentes y estudiantes la escritura en lenguaje científico. Además de todo ello, se antoja como una aliada extraordinaria en entornos de enseñanza semipresencial, distancia o híbrido en el momento tan complejo que nos ha tocado vivir con motivo de la COVID.

Demostración: Relación entre coeficientes de una ecuación de 2º grado y sus raíces

Ejercicio. Comprobar relación entre los coeficientes y las raíces de una ecuación de 2ºgrado

Ejercicio. Hallar coeficiente usando relación coeficientes-raíces en ecuación de 2º grado

Podrás encontrar estos vídeos y muchos más en mi canal de Youtube MatemáTICas: 1,1,2,3,5,8,13,…  Si te ayudaron, y crees que pueden ayudar a estudiantes y profesores, suscríbete y comparte.

 

Más contenido matemático en redes sociales

Colaboración con el Observatorio de Tecnología Educativa del INTEF. Graspable Math: una nueva manera de explorar y hacer matemáticas

El pase de diapositivas requiere JavaScript.

En esta entrada tengo el gusto de compartir artículo elaborado para el Observatorio de Tecnología Educativa del INTEF, un espacio de referencia en torno a la innovación digital en el aula.

Está dedicado a Graspable Math, una herramienta joven, aún poco extendida en España y en el contexto iberoamericano, con mucha potencialidad didáctica para el aula de matemáticas y con la que he trabajado de manera intensiva el último año.

 

ARTÍCULO EN EL OBSERVATORIO

Se trata de  “Graspable Math: una nueva manera de explorar y hacer matemáticas”. Está escrito por Luis Miguel Iglesias Albarrán, profesor de enseñanza secundaria en la especialidad de Matemáticas y Director del IES San Antonio en Bollullos Par del Condado (Huelva).

Graspable Math es una herramienta digital interactiva innovadora que permite una nueva manera de explorar y comprender, mediante la interacción (tocando y arrastrando números y símbolos), las relaciones matemáticas. Forma parte de un proyecto de investigación financiado por el Institute of Education Sciences (IES) dependiente del U.S. Department of Education.

Es una herramienta permite “aprender haciendo” (learning by doing) matemáticas, favoreciendo el aprendizaje autónomo de los estudiantes y permitiéndoles poner el foco en las estructuras matemáticas. El diseño de la herramienta ayuda a salvar el obstáculo de la notación formal, haciendo posible que el alumnado se centre en cómo funcionan. Les brinda, en este sentido, oportunidades para razonar y deducir de manera flexible sobre las tareas matemáticas.

Con Graspable Math se nos presenta, en definitiva, una nueva manera de explorar, enseñar y de hacer matemáticas.

Si quieres saber más sobre Grapable Math, puedes leer el artículo elaborado por Luis Miguel Iglesias Albarrán en el que, además, hace una valoración personal y ofrece recomendaciones para el empleo de esta herramienta.

Acceso al artículo “Graspable Math: una nueva manera de explorar y hacer matemáticas” en formatos PDF y web

 

Dejo a continuación más material por si quieres iniciarte en el uso de esta versátil herramienta.

PUBLICACIONES SOBRE GRASPABLE MATH

En este espacio he realizado distintas publicaciones al respecto:

 

LISTA DE VÍDEOS SOBRE GRASPABLE MATH

Comparto también lista con más de una treintena de vídeos sobre diferentes usos didácticos de esta herramienta.

 

Lista de vídeos en Youtube sobre Graspable Math (33 vídeos)

Te animo a usarla con tu alumnado, a compartirla con tus contactos y compañeros a través de la red y quedo a tu disposición para cualquier duda o comentario al respecto, en forma de comentario bajo esta entrada o en mis perfiles en redes sociales.

¡Ya me contarás cómo te ha ido con tus alumnos en clase! 🙂

MÁS CONTENDO MATEMÁTICO EN REDES SOCIALES

Comienzo de la serie #Directos#MatemáTICas: 1,1,2,3,5,8,13,… y grabación del #Directo1 Álgebra – Ecuaciones 2º grado

Sin apenas difusión, este tipo de aventuras es mejor no pensarlas demasiado :-), he puesto en marcha los #Directos#MatemáTICas: 1,1,2,3,5,8,13,… 

Se trata de directos en los que trataré distintos temas y contenidos matemáticos.

Comparto la grabación del primer directo de la serie:

Directo#1 MatemáTICas: 1,1,2,3,5,8,13,… Álgebra – Ecuaciones 2º grado

Y un formulario para plantear dudas, temas y problemas para los siguientes directos.

Seguimos…

Artículo en monográfico Dialogia – O (Re)inventar da Educação em Tempos de Pandemia. El aprendizaje del álgebra en Educación Secundaria: las estrategias metacognitivas desde la tecnología digital

Se trata de una investigación realizada con mis directoras de Tesis, las doctoras Isabel Pascual y Blanca Arteaga, sobre el aprendizaje del álgebra en Educación Secundaria, usando las estrategias metacognitivas desde la tecnología digital. Aprovecho estas líneas para agradecer todo su conocimiento y el apoyo que me están brindando desde el primer instante de este viaje académico.

Dialogia – Dossiê: O (Re)inventar da Educação em Tempos de Pandemia [La (re) invención de la educación en tiempos de pandemia]

El número 36 de la Revista Dialogia ha publicado el monográfico “La (Re) invención de la educación en tiempos de pandemia” donde se recogen investigaciones que presentan como temáticas los diferentes matices y procesos de adaptación / transformación de la Educación Básica y Superior que, entre otros cambios, se reestructuraron en el entorno en línea, inesperadamente. En cierta medida, dicha migración aceleró la (re) invención de prácticas pedagógicas, dando un nuevo significado a los viejos espacios y creando nuevos lugares para el aprendizaje y la enseñanza. Esta nueva situación ha generado numerosos desafíos a la Educación, en su conjunto, afectando, en particular, a docentes, estudiantes, directivos y familiares, a la vez que brinda un despertar al énfasis y expansión de la educación en línea en el país y el mundo.

En este sentido, el monográfico temático de esta edición de Dialogia cubre diferentes aspectos, innovaciones y desafíos que se plantean a la Educación en tiempos de Pandemia. Se trata de pensar y problematizar, en este contexto, las diferentes formas y contenidos de la nueva organización pedagógica en el entorno online y fuera de él. Entre otros procesos, este nuevo marco socioeconómico y cultural viene provocando cambios en diferentes frentes, involucrando recursos humanos, didácticos, tecnológicos, estrategias educativas, acceso social, formación docente, llevando al foco analítico los avances y dificultades encontradas en esta coyuntura nacional y global. tan particular en la trayectoria histórica de la humanidad.

Más información: aquí.

 

Artículo: El aprendizaje del álgebra en Educación Secundaria: las estrategias metacognitivas desde la tecnología digital

Resumen

La situación de aprendizaje en las escuelas españolas cambió cuando se decretó el estado de alarma en el mes de marzo de 2020, cerrando las escuelas de una forma brusca. Este artículo muestra la adaptación a un medio de aprendizaje íntegramente digital, llevada a cabo en un instituto de Educación Secundaria, en el sur de España. El trabajo se desarrolla en un aula de Matemáticas con estudiantes de 14-15 años, que aprenden conceptos de álgebra. Para ello, se utilizan materiales diversos que facilitan el aprendizaje autónomo y la comunicación docente-estudiante. Los instrumentos de evaluación utilizados son dos plantillas para la resolución de problemas sustentadas en estrategias metacognitivas. Los resultados muestran que los estudiantes han superado los criterios de evaluación marcados para este bloque de contenido, a la vez que el diseño ha facilitado unos niveles de retroalimentación óptima durante todo el proceso de enseñanza-aprendizaje.

Palabras clave

Aprendizaje del algebra; Aprendizaje en línea; COVID-19; Enseñanza virtual; Metacognición; Formación matemática en secundaria

Texto completo

PDF (ESPAÑOL (ESPAÑA))

 

Índice completo del número 36 de la revista Dialogia

Número 36 (2020): septiembre / diciembre

Índice

Editorial

Rosiley Aparecida Teixeira, Adriana Aparecida de Lima Terçariol, Daniela Melaré Vieira Barros, Jason Ferreira Mafra
1-2

Entrevista

Rosiley Aparecida Teixeira, Adriana Aparecida de Lima Terçariol
3-6

Monográfico La (re) invención de la educación en tiempos de pandemia

Lisandra da Trindade Alfaro, Caroline Tavares de Souza Clesar, Lucia Maria Martins Giraffa
7-21
Leer Raquel Almeida, Carla Spagnolo
22-34
Tárcila Lorrane Fernandes de Souza Soares, Ícaro Silva de Santana, Maria Luiza Caires Comper
35-48
Luis Miguel Iglesias Albarrán, Isabel Pascual Gómez, Blanca Arteaga-Martínez
49-72
Andréia Martins, Agata Laisa Laremberg Alves Cavalcanti, Anne Caroline Soares Dourado
73-85
Marcos Godoi, Larissa Beraldo Kawashima, Luciane de Almeida Gomes
86-101
Juliana Pedroso Bruns, Rita Buzzi Rausch
102-115
Fernanda Carla Da Silva Costa, Viviane Lima Martins
116-127
Joao Ferreira Sobrinho Junior, Cristina de Cássia Pereira Moraes
128-148
Jordana da Silva Corrêa, Neiva Afonso Oliveira
149-161
Regiane Caldeira, Stephanni G. Silva Sudré, Gabriel José Pereira
162-175
Fernando José de Almeida, Maria da Graça Moreira Silva, Maria Elizabeth Bianconcini de Almeida
176-192
Jacks Richard de Paulo, Stela Maris Mendes Siqueira Araújo, Priscila Daniele de Oliveira
193-204
Brenda Iolanda Silva do Nascimento, Iago Vilaça de Carvalho, Fernanda Antunes Gomes da Costa
205-219
Michel Douglas Pachiega, Débora Raquel da Costa Milani
220-234
Luciana Longuini da Silva, Kellen Jacobsen Follador
235-251
Raquel Mignoni de Oliveira, Ygor Corrêa
252-268
Jane Helen Gomes de Lima, Gislane Sávio, Graziela Pavei Peruch Rosso
269-282
Eniel de Espírito Santo, Tatiana Polliana Pinto de Lima
283-297
Ana Carolina Oliveira Silva, Shirliane de Araújo Sousa, Jones Baroni Ferreira de Menezes
298-315
Filipa Seabra, Luísa Aires, António Teixeira
316-334
Wanderleya Nara Gonçalves Costa
335-347
Alexandre José de Carvalho Silva, Sayonara Ribeiro Marcelino Cruz, Warlley Ferreira Sahb
348-366
Ana Nobre, Ana Mouraz
367-381
Carla Cristie de França Silva, Lêda Gonçalves de Freitas
382-395
Fernanda Araujo Coutinho Campos, Rute Pereira
396-410
Jucelia Cruz, Elisabeth dos Santos Tavares, Michel Costa
411-427

Artículos

Anaide Maria Alves da Paz, Maria de Fátima Gomes da Silva
428-440
Anselmo Calzolari, Éverton Madaleno Batisteti, Roseli Rodrigues de Mello
441-457
Elizabete Pereira Barbosa, Luciana Freitas de Oliveira Almeida
458-469
Linda Carter Souza da Silva, Luiz Gomes da Silva Filho
470-483
Givanildo da Silva, Alex Vieira da Silva, Inalda Maria dos Santos
484-501
Marinalva Lopes Ribeiro, Taiara de Lima Silva Sales
502-517
Ana Paula de Almeida Guimarães, Lenie Machado, Gabriela Reyes Ormeno
518-531
Jorge França de Farias Júnior
532-549
Telma Temoteo dos Santos
550-567
Rosemary Roggero, Adriana Zanini da Silva
568-580
Milena da Silva Langhanz, Lorena Almeida Gill
581-594
Maria Daiane da Silva Monteiro, Suely Alves da Silva
595-609

Dialogía

11 Recursos Educativos Abiertos Interactivos (…de Matemáticas) elaborados con H5P. Un menú de degustación para el aprendizaje del álgebra

Los lectores habituales de este blog conocen el gusto, más bien adicción :-), que tengo por los Recursos Educativos Abiertos (REA)

El rol de docente como elaborador de contenidos digitales educativos ofrece autonomía, enriquece nuestras clases y nos permite desarrollar una atención educativa más personalizada para nuestros alumnos. Aunque en mi opinión, consumida la quinta parte del siglo XXI, esto no debería ser suficiente. Lo ideal sería llegar a promover ambientes de aprendizaje donde sean los propios alumnos los productores de contenidos.

Create and share with H5P 

En la línea de la atención personalizada, usando el símil gastronómico, he preparado un menú de degustación (compuesto por 11 platos) para el aprendizaje del álgebra. Para su elaboración he utilizado la herramienta H5P, software libre, con un potencial increíble en el ámbito educativo debido a su excelente integración con los principales servicios CMS y LMS como WordPress (es el caso de este post), Moodle, Blackboard, Canvas, Brightspace y Drupal.

No es el objetivo de esta entrada describir el funcionamiento de H5P. Para ello recomiendo, entre otros, el excelente post, que escribiera la compañera y amiga de CEDEC, Lola Alberdi, titulado ¿Qué puede hacer H5p por mis alumnos?

 

¿Qué es H5P?

H5P es una plataforma de creación de contenidos interactivos, gratuita y abierta, con todas las ventajas que proporciona el software libre en educación, ampliando las posibilidades de aprendizaje de nuestros alumnos. H5P permite realizar alrededor de 35 tipos diferentes de contenidos interactivos, y es:

  • multiplataforma (funciona el Linux, Windows, IOS),
  • de código abierto y por lo tanto sostenible en el tiempo, asegurando la perdurabilidad de nuestras creaciones,
  • con libertad para usar, copiar, modificar y distribuir el software,
  • optimiza recursos, reduciendo el costos de equipos,
  • crea alumnos libres, no dependientes de un producto concreto ya que se enseña a trabajar con una tecnología.

H5P está realizado mayormente con código JavaScript con el objetivo de integrarlo con nuevas plataformas por lo que, además de realizar actividades y contenidos interactivos en la misma plataforma de H5p, podemos integrarlo con un plugin en nuestro Moodle, WordPress o Drupal. En caso de que tengamos alguna duda, es útil resaltar que cuenta con un foro de usuario bastante ágil y eficiente. En definitiva, la herramienta capacita a todos para crear, compartir y reutilizar contenido interactivo con facilidad.

 

Pixabay by geralt

 

Menú de degustación para el aprendizaje del álgebra. 11 recursos interactivos elaborados con H5P

Asociación de conceptos
 
Sopa de letras
 
Rellenar huecos. Procedimiento de resolución de ecuaciones de primer grado
 
Quiz. Autoevaluación
 
Razonamiento algebraico. Lenguaje algebraico respuesta abierta, libre.
 
6 Test de resolución de ecuaciones de primer grado. Cada uno contiene 10 actividades aleatorias con 6 posibles respuestas.

Test de ecuaciones nivel I

 

Test de ecuaciones nivel II

 

Test de ecuaciones nivel III

 

Test de ecuaciones nivel I (con fracciones)

 

Test de ecuaciones nivel II (con fracciones)

 

Test de ecuaciones nivel III (con fracciones)

 

Más contenido matemático en redes sociales

Applet interactivo Geogebra y vídeo. Ecuaciones de primer grado sencillas 1 paso (suma, resta). Método de la balanza

En esta entrada comparto sencillo applet interactivo realizado con Geogebra para mostrar al alumnado y permitirle practicar de manera autónoma la resolución de ecuaciones de primer grado sencillas de un solo paso (del tipo x + a = b o x – a = b). Incluyo también un pequeño vídeo explicativo mostrando la interacción con el applet.

Vídeo explicativo

Applet interactivo. Ecuaciones de primer grado sencillas 1 paso (suma, resta). Método de la balanza – Geogebra

Ayuda: Pulsar en el icono para ver el applet a pantalla completa y trabajar con él correctamente.

Pulsar para acceder al applet en geogebra.org

MÁS CONTENIDO MATEMÁTICO EN REDES SOCIALES

Laberinto de ecuaciones de primer y segundo grado con Graspable Math. Propuesta didáctica con plantilla editable y vídeos de ayuda

En esta entrada comparto los materiales de una propuesta didáctica para trabajar las ecuaciones de primer y segundo grado (cuadráticas) que diseñé y llevé a cabo con mi alumnado de Matemáticas de 3º de ESO (14-15 años) en modalidad online durante el cierre de los centros educativos españoles, periodo de la suspensión de la actividad docente presencial (marzo-junio 2020), con motivo de la COVID-19.

Para ayudarte a implementar esta propuesta con tus estudiantes incluyo:

  1. Plantilla en formato editable (.docx)
  2. Plantilla en formato imprimible (.pdf)
  3. Vídeo de ayuda para los estudiantes para que puedan cumplimentar la plantilla en formato digital para escribir las ecuaciones y su resolución.
  4. Vídeo con la resolución de un laberinto de ecuaciones de primer grado realizado en Graspable Math.
  5. Laberinto de ecuaciones de primer grado sencillas. Método de las transformaciones algebraicas realizado en Graspable Math.

Espero te animes a usar la propuesta con tu alumnado y os resulte atractiva y de utilidad.

Ya me contarás cómo te ha ido.

¡Ánimo!

 

Propuesta didáctica

 

1.Plantilla en formato editable (.docx)

Plantilla – Laberinto de ecuaciones de primer y segundo grado

 

2. Plantilla en formato imprimible (.pdf)

Plantilla – Laberinto de ecuaciones de primer y segundo grado

 

3. Vídeo de ayuda para los estudiantes para que puedan cumplimentar la plantilla en formato digital para escribir las ecuaciones y su resolución. 

 

4. Vídeo con la resolución de un laberinto de ecuaciones de primer grado realizado en Graspable Math.

 

5. Laberinto de ecuaciones de primer grado sencillas. Método de las transformaciones algebraicas realizado en Graspable Math.

 

 

MÁS CONTENIDO MATEMÁTICO EN REDES SOCIALES

Lista de Apps y calculadoras avanzadas para resolver ejercicios de matemáticas. Repensando las tareas de matemáticas en tiempos del coronavirus

Reflexión. Repensando las tareas de matemáticas en tiempos del coronavirus

La tecnología está democratizando el acceso a las matemáticas de toda la ciudadanía. En los últimos años han proliferado herramientas y calculadoras avanzadas disponibles en formato App en nuestros dispositivos móviles que, con una simple foto a un libro de texto, a una hoja de ejercicios de clase o introduciendo manualmente con nuestros dedos la ecuación, nos ofrecen la solución y el paso a paso detallado.

Como todo, estas herramientas presentan ventajas e inconvenientes. Entre sus ventajas, la posibilidad de analizar distintas maneras de resolver ejercicios y problemas. Inconvenientes, ya podemos suponerlos, y muchos docentes de matemáticas han podido experimentarlos de primera mano al corregir las actividades de sus alumnos. Entregarse en cuerpo y alma a ellas, sin obtener ningún tipo de aprendizaje, tan solo para obtener la solución, copiar la resolución paso a paso y cumplir el trámite de entregar los ejercicios de clase, puede traer consecuencias devastadoras.

Teniendo presente que han venido para quedarse, si los docentes despreciamos/obviamos su existencia y su potencial puede traer consecuencias importantes para los procesos de Enseñanza-Aprendizaje en las clases de Matemáticas.

En un escenario de pandemia como el que estamos atravesando, con escenarios de aprendizaje remotos a distancia o semi-presencial, donde no vemos trabajar al alumnado delante de nosotros, nos lleva a ‘repensar’, con carácter de urgencia, las tareas de matemáticas, enfocándolas hacia entornos de investigación y resolución de problemas y tareas auténticas. Reducir únicamente las tareas de matemáticas que proponemos a nuestros alumnos a hojas de ejercicios descontextualizadas, ejercicios del pie de página del libro de texto (actividades de aplicación) o problemas-tipo simples, puede llevar a que nuestros aprendices recurran con demasiada frecuencia a este tipo de herramientas, y no la usen únicamente para comprobar la solución o para aprender conjeturando a partir de algunos ejemplos resueltos, cayendo en una dependencia casi total de las mismas.

Es por ello por lo que comparto una colección de ellas, y una posible tarea de uso de este tipo de herramientas, promoviendo el enfoque crítico-reflexivo de los alumnos, más allá de la resolución mecánica de un sistema de ecuaciones lineales.

Como docente de matemáticas reflexioné bastante sobre el tema de esta entrada en los últimos años, especialmente durante el periodo de confinamiento que vivimos en España durante el tercer trimestre del curso pasado, donde tuve que poner el foco en tareas abiertas, creativas y reflexivas para obtener evidencias reales y significativas de aprendizaje de mis alumnos. La lectura de este post de 3nions.com, me animó definitivamente a compartirlo con vosotros.

Me gustaría conocer tu opinión al respecto. Puedes compartirla conmigo como comentario a esta entrada, justo más abajo, o en Twitter en @luismiglesias  

¡Suerte en el nuevo curso!

 

Propuesta de Tarea. con ayuda de Microsoft Math Solver

Analizar la resolución del siguiente sistema de ecuaciones.

¿Qué observas? ¿Es correcta la solución? ¿Cómo lo resolverías tú? ¿Por qué?

Lista de herramientas (Apps y calculadoras avanzadas)

1. Photomath

2. Microsoft Math Solver

3. Calculadora científica HiPER

Las 15 mejores aplicaciones de Math Solver que resuelven problemas matemáticos verbales

4. Brainly

5. Math Tricks

Las 15 mejores aplicaciones de Math Solver que resuelven problemas matemáticos verbales

6. Mathway

7. Khan Academy

Las 15 mejores aplicaciones de Math Solver que resuelven problemas matemáticos verbales

8. WolframAlpha

Las 15 mejores aplicaciones de Math Solver que resuelven problemas matemáticos verbales

9. Cymath

Las 15 mejores aplicaciones de Math Solver que resuelven problemas matemáticos verbales

10. Open Omnia

Las 15 mejores aplicaciones de Math Solver que resuelven problemas matemáticos verbales

11. MalMath

Las 15 mejores aplicaciones de Math Solver que resuelven problemas matemáticos verbales

12. Meritnation

13. QANDA

Las 15 mejores aplicaciones de Math Solver que resuelven problemas matemáticos verbales

14. Math Solver

Las 15 mejores aplicaciones de Math Solver que resuelven problemas matemáticos verbales

15. Math Cafe

Las 15 mejores aplicaciones de Math Solver que resuelven problemas matemáticos verbales

 

MÁS CONTENIDO MATEMÁTICO EN REDES SOCIALES

Problemas matemáticos históricos en verso para celebrar el Día Mundial de la Poesía

No todo iba a ser hablar del innombrable bicho. Como nos instaba Freddie Mercury (Queen) en su disco Innuendo, The Show Must Go On. Teniendo presente este espíritu me he animado a escribir una entrada en este día Día Mundial de la Poesía.

Celebración matemática para el Día Mundial de la Poesía (21 de marzo)

He querido sumarme a la celebración de esta efeméride fusionando la poesía con las matemáticas, en el marco de mi línea de trabajo LingMáTICas, proponiendo la resolución de algunos problemas de números y álgebra planteados de una manera singular. Para ello he elegido varios problemas matemáticos en verso recogidos en el libro Lilavati, obra de especial relevancia en la historia de las matemáticas.

Sobre el Lilavati

 

Bhaskara II (1114-1185), fue un matemático y astrónomo indio. Es conocido, entre otros motivos, por ser el creador de la fórmula cuadrática. Bhaskara escribió un libro al que llamó Lilavati, nombre de su hija a quien iba dedicado. Bhaskara mostró en esta obra que hasta los problemas matemáticos más complejos pueden ser presentados de una forma amena y divertida, e incluso en verso. Lilavati se puede clasificar entre los manuales de divulgación que utilizan como forma el diálogo. Un padre se dirige con ternura a su hija Lilavati para desentrañarle los secretos de la matemática a través de ejercicios en verso, llenos de evocadoras imágenes.

Selección de problemas (retos) en verso

A continuación os presento una selección de 4 problemas en verso recogidos en dicha obra. Debemos tener en cuenta la distancia entre un poema escrito en sánscrito y la correspondiente traducción en español. Es obvio que pierde el ritmo y la calidad del texto original, pero aún así tienen un encanto especial como verás a continuación.

Os invito a resolver los mismos y compartir las soluciones conmigo: mediante comentario en el blog al final de esta entrada, por correo electrónico o mediante alguno de mis perfiles en redes sociales.

Ya me contaréis qué os parece la propuesta y cómo os ha ido con ellas… 

Problema 1.

La quinta parte de un enjambre de abejas se posó en la flor de Kadamba,

la tercera parte en una flor de Silinda, 

el triple de la diferencia entre estos dos números

voló sobre una flor de Krutaja, 

y una abeja quedó sola en el aire, 

atraída por el perfume de un jazmín y de un padanus.

Dime, bella niña, 

cuál es el número de abejas que formaban el enjambre.

 

Problema 2. 

La raíz cuadrada de la mitad del número de abejas en un enjambre
ha volado hasta la planta de jazmín.
Ocho novenos del enjambre atrás quedaron.
Una abeja vuela junto a su compañero quien zumba dentro de la flor de loto;
en la noche, atraído por el dulce aroma de la flor, voló a su interior
¡y ahora está atrapado!
Dime, encantadora dama, el número de abejas que forman el enjambre.

 

Problema 3.

Érase un enamorado que en atención a su novia,
para su adorno y realce, compró algunas esmeraldas.
Un octavo tuvo a bien poner en una diadema.
Con tres séptimos del resto compuso una gargantilla.
Con la mitad del sobrante, arreglóse un brazalete.
De lo que quedó, tres cuartos engarzó en un cinturón
de vibrantes campanillas.
Y aún quedaron dieciséis muy preciosas esmeraldas
que esparció por sus cabellos.
Dime, niña, Lilavati,
cuántas piedras fue que el joven comprara para su amada.

 

Problema 4. 

Un cuarto de un dieciseisavo de un quinto de tres cuartos de dos tercios de un medio de un
dramma fue dado por un avaro a un mendigo en forma de limosna. Dime querida chiquilla, si
has aprendido bien el método fracciones compuestas, ¿cuántos varatakas dio el tacaño?
(1.280 varatakas equivalen a un dramma)

 

Más información

Reseña sobre versión adaptada al español, en la web de la RSME

https://www.rsme.es/2015/07/84-675-6189-0/

 

Más contenido matemático en redes sociales

1/a + 1/b = 1/2018 – Resolución algebraica y comprobación con Scratch

Esta tarde, @fleonsotelo nos planteaba en timeline de Twitter el siguiente problema:

Tras un rato de diversión 🙂 (aunque no lo creas, los matemáticos disfrutamos con estas cosas), he dado con las soluciones (comparto el proceso de resolución paso a paso):


1/a+1/b=1/2018.pdf

y he elaborado un pequeño programa en Scratch que nos permite comprobar que son correctas:

 

WP2Social Auto Publish Powered By : XYZScripts.com
A %d blogueros les gusta esto: