miniTAREA

Vídeos de geometría analítica. Hallar vectores y comprobar si son equipolentes, analítica y gráficamente

Comparte MatemáTICas: 1,1,2,3,5,8,13,...

Hallar vectores y comprobar si son equipolentes (analíticamente)

Manuales

Más contenido matemático en redes sociales

Comparte MatemáTICas: 1,1,2,3,5,8,13,...

Geogebra Math Practice, una excelente aplicación para trabajar el sentido algebraico, fruto de la alianza entre Geogebra y Graspable Math

Comparte MatemáTICas: 1,1,2,3,5,8,13,...

A finales del 2020, escribí una entrada titulada:

Graspable Math y Geogebra; aliadas extraordinarias para enseñar y aprender matemáticas en contextos presenciales discontinuos. 5 tareas resueltas en vídeos sobre funciones lineales, afines, paralelismo y ecuaciones de la recta, la cual comenzaba así:

Los lectores asiduos de este rincón virtual matemático conocen sobradamente mi predilección por estas dos poderosas herramientas digitales. En mi opinión, indispensables ambas para la enseñanza y el aprendizaje de la matemática en el siglo XXI, siendo especialmente útiles en los contextos de enseñanza-aprendizaje semipresencial y a distancia especialmente extendidos con motivo de la COVID-19.

Aprovecho estas líneas para invitarte a visitar las distintas publicaciones sobre propuestas didácticas para trabajar en el aula y los materiales que he compartido sobre ambas en los últimos años:

Pues bien, si juntamos ambas, el resultado no puede ser catalogado de otro modo que excelente.

Como muestra de ello comparto en esta entrada 5 tareas resueltas paso a paso, en otros tantos vídeos, con ayuda de Geogebra y Graspable Math. 

Estos materiales los desarrollé para mis estudiantes de Matemáticas de 3º de ESO (14-15 años) para trabajar en modalidad online durante el cierre de los centros educativos españoles, periodo de la suspensión de la actividad docente presencial (marzo-junio 2020), con motivo de la COVID-19.

Espero te animes a usar los vídeos con tu alumnado si los consideras de utilidad 

(…)

Puedes acceder al contenido completo pulsando más abajo:

Pues bien, esa alianza sigue dando frutos. Y muy buenos además. Ese es el motivo que me trae hoy a escribir estas líneas.

Como Geogebra Ambassador y como usuario habitual y elaborador de diverso material con Graspable Math, además de alpha tester de la herramienta con acceso a funcionalidades experimentales en fase de desarrollo es una gran alegría mostraros la herramienta Geogebra Math Practice. 

 

Geogebra Math Practice, una herramienta para la práctica algebraica con ayuda de GeoGebra

GeoGebra Math Practice ayuda a los estudiantes en su trabajo paso a paso en la resolución de ejercicios de álgebra. Combina el Solver Engine interno de GeoGebra y la tecnología Graspable Math basada en investigaciones para proporcionar notación interactiva, sugerencias adaptativas y comentarios en tiempo real que permiten a los estudiantes explorar diferentes caminos en el proceso de resolución, ayudándoles a ganar en confianza, favoreciendo la fluidez de los procedimientos y la comprensión conceptual. 

2.png

GeoGebra Math Practice es una colaboración entre GeoGebra y Graspable Math , y es de uso gratuito para profesores y estudiantes.

Recursos de práctica de matemáticas para el Centro de ayuda.png

 

Animación interactiva. Ejemplo de resolución de ecuación con Geogebra Math Practice

APA-ecuación lineal de un paso.gif

Estas son las características clave de GeoGebra Math Practice :

  • Utiliza la notación dinámica de Graspable Math para manipular y resolver problemas algebraicos con gestos (tocar y arrastrar) y animaciones interactivas.
  • Obtén sugerencias visuales y conceptuales para cada uno de los pasos, proporcionadas por Solver Engine de GeoGebra.
  • Obtén comentarios instantáneos sobre cada paso.
  • Reescribe libremente el problema con el teclado matemático virtual de GeoGebra.
  • Practica problemas similares para profundizar en tu comprensión de las habilidades clave.

Tipos de ejercicios relacionados con el sentido algebraico que se pueden trabajar actualmente con Geogebra Math Practice (GMP).

Diseño sin título (5).png

GeoGebra Math Practice actualmente es capaz de ayudarte con ejercicios sobre:

  • El orden (jerarquía) de las operaciones
    • Operaciones aritméticas
    • Operaciones con fracciones
    • Operaciones con potencias
  • Expresiones algebraicas
    • Desarrollo (distribución) de expresiones algebraicas.
    • Simplificación de expresiones fraccionarias
  • Polinomios
    • Reescribir a forma estándar
    • Sumar y restar polinomios
    • División por monomios
  • Ecuaciones lineales
    • Ecuaciones lineales de 1 paso, 2 pasos y varios pasos
    • Resolver ecuaciones lineales con múltiples o ninguna solución.

También puede utilizar GeoGebra Math Practice con otros ejemplos y tipos de ejercicios pero es posible que no recibas sugerencias ni comentarios precisos. Durante los próximos meses se espera que sigan ampliando la funcionalidad y se puedan realizar más tipos de ejercicios.

 

Acceso a Geogebra Math Practice: https://www.geogebra.org/mathpractice/es-ES  
 
Acceso a Geogebra Math Practice: https://www.geogebra.org/mathpractice/es-ES  
 

Vídeos

Manuales

Más contenido matemático en redes sociales

Comparte MatemáTICas: 1,1,2,3,5,8,13,...

Reto matemático terrorífico para la noche de Halloween – Graspable Math

Comparte MatemáTICas: 1,1,2,3,5,8,13,...

En esta entrada os propongo un reto terrorífico para la noche de Halloween, basado en un modelo de áreas.

¿Cómo lo ves? ¿Eres capaz de resolverla?

¿Truco o trato? 🙂

Tarea interactiva. Reto matemático terrorífico para la noche de Halloween, realizada en Graspable Math

Pulsa aquí para completar el reto en GMA y dejar registrada tu respuesta (First Name: Tu nombre – Last Initial: Inicial de tu apellido)

Más contenido matemático en redes sociales

Comparte MatemáTICas: 1,1,2,3,5,8,13,...

Siembra a tresbolillo. Competencia Matemática, geometría plana aplicada en huertos y jardines. Día Mundial del Medio Ambiente

Comparte MatemáTICas: 1,1,2,3,5,8,13,...

Con motivo de la celebración del Día Mundial del Medio Ambiente, he considerado interesante traer esta entrada relacionada con la sostenibilidad, gracias a la contribución de las matemáticas, como muestra de eventuales tareas a trabajar en el aula (de matemáticas) en relación a la Agenda 2030 y los Objetivos de Desarrollo Sostenible (ODS).

Siete publicaciones imprescindibles para entender los ODS

¿Quieres descubrir una aplicación práctica y sencilla de la geometría en la agricultura?

El sistema de siembra tresbolillo o de triángulo, es aquel en el cual cada 3 plantas forman un triángulo equilátero.

Este sistema permite que cada planta pueda tener las horas de luz requeridas para su óptimo crecimiento, no se tapen unas con otras, un favoreciendo un excelente aprovechamiento de la luz, un uso óptimo del terreno cultivable y la generación de un microclima, que evita que se escape la humedad del terreno, disminuyendo la evaporación y la erosión.

Y lo mejor, todo ello, con una aplicación simple: triángulo equilátero de lado la extensión máxima de desarrollo de la planta que se vaya a cultivar.
Otro ejemplo más de la importancia de las Matemáticas en nuestras vidas. Matemáticas aplicadas, desarrollo de la competencia matemática al servicio de la resolución de problemas de nuestro día a día #geometría #figurasplanas #huertourbano #huertoecologico #huertoencasa

Vídeos

 

Aplicación Geogebra: calculadora número de plantas siembra tresbolillo

Para el cálculo del número de plantas que caben en una determinada superficie a cultivar, usando la siembra a tresbolillo, hacen falta tan solo conceptos básicos de trigonometría:

S: superficie a cultivar (en metros cuadrados)

d: distancia entre plantas (en metros)

Aplicación desarrollada con Geogebra

 

Ideas para desarrollo de nuevas tareas para el aula de matemáticas

Este contexto da mucho juego para el desarrollo de tareas competenciales puesto que hay diferentes métodos de plantación, con sus correspondientes diseños geométricos asociados. Dejo una fuente de inspiración por aquí, a modo de semilla productora de tareas… 🙂

Comparte MatemáTICas: 1,1,2,3,5,8,13,...

Graspable Math y Geogebra; aliadas extraordinarias para enseñar y aprender matemáticas en contextos presenciales discontinuos. 5 tareas resueltas en vídeos sobre funciones lineales, afines, paralelismo y ecuaciones de la recta

Comparte MatemáTICas: 1,1,2,3,5,8,13,...

Los lectores asiduos de este rincón virtual matemático conocen sobradamente mi predilección por estas dos poderosas herramientas digitales. En mi opinión, indispensables ambas para la enseñanza y el aprendizaje de la matemática en el siglo XXI, siendo especialmente útiles en los contextos de enseñanza-aprendizaje semipresencial y a distancia especialmente extendidos con motivo de la COVID-19.

Aprovecho estas líneas para invitarte a visitar las distintas publicaciones sobre propuestas didácticas para trabajar en el aula y los materiales que he compartido sobre ambas en los últimos años:

Pues bien, si juntamos ambas, el resultado no puede ser catalogado de otro modo que excelente.

Como muestra de ello comparto en esta entrada 5 tareas resueltas paso a paso, en otros tantos vídeos, con ayuda de Geogebra y Graspable Math. 

Estos materiales los desarrollé para mis estudiantes de Matemáticas de 3º de ESO (14-15 años) para trabajar en modalidad online durante el cierre de los centros educativos españoles, periodo de la suspensión de la actividad docente presencial (marzo-junio 2020), con motivo de la COVID-19.

Espero te animes a usar los vídeos con tu alumnado si los consideras de utilidad.

 

Vídeos

1. Funciones lineales. Pertenencia a recta. Ecuación de la recta Geométrico – Graspable Math & Geogebra

 

2. Funciones lineales. Pertenencia a recta. Ecuación de la recta. Geometría Analítica. Graspable Math

 

3. Funciones afines. Ecuación de la recta. Recta paralela pasando por un punto – Graspable Math & Geogebra

 

4. Funciones lineales – Paralelismo – Significado de m y n en la ecuación explícita – Graspable Math & Geogebra

 

5. Funciones afines. Ecuación de la recta. Recta paralela pasando por un punto – Graspable Math & Geogebra

Más contenido matemático en redes sociales

Comparte MatemáTICas: 1,1,2,3,5,8,13,...

Tarea Open Middle sobre logaritmos (cambio de base) elaborada en Graspable Math y en Scratch

Comparte MatemáTICas: 1,1,2,3,5,8,13,...

Comenzamos la semana con esta entrada donde comparto los materiales de una propuesta didáctica para trabajar los logaritmos (teorema del cambio de base).

Se trata de una tarea de tipo Open Middle, traducida al español y adaptada a partir de la original en inglés del profesor Bryan Anderson. La he implementado en dos herramientas que en mi opinión presentan un potencial didáctico increible y a las que soy adicto; Graspable Math y Scratch.

Para ayudarte a implementar esta propuesta con tus estudiantes incluyo:

  1. Enunciado de la tarea en Graspable Math
  2. Tarea interactiva. Logaritmos OM realizada en Graspable Math
  3. Tarea interactiva. Logaritmos OM realizada en Scratch

Espero te animes a usar la propuesta con tu alumnado y os resulte atractiva y de utilidad.

Ya me contarás cómo te ha ido.

¡Ánimo!

 

Propuesta didáctica

 

1. Enunciado de la tarea en Graspable Math

 

2. Tarea interactiva. Logaritmos OM, realizada en Graspable Math.

 

3. Tarea interactiva. Logaritmos OM realizada en Scratch

Enlace a Logaritmos OM en Scratch

 

Esta entrada participa en la Edición 11.6: Conjeturas del Carnaval de Matemáticas, que en esta ocasión organiza Gaussianos.

 

Más contenido matemático en redes sociales

Comparte MatemáTICas: 1,1,2,3,5,8,13,...

Tarea rica elaborada y resuelta con Graspable Math para trabajar las expresiones algebraicas con 2 variables

Comparte MatemáTICas: 1,1,2,3,5,8,13,...

En esta entrada comparto los materiales de una propuesta didáctica para trabajar las expresiones algebraicas con 2 variables.

Para ayudarte a implementar esta propuesta con tus estudiantes incluyo:

  1. Enunciado de la tarea
  2. Incomparable. Expresiones algebraicas con 2 variables realizado en Graspable Math.
  3. Vídeo con la resolución de la tarea usando Graspable Math.

Espero te animes a usar la propuesta con tu alumnado y os resulte atractiva y de utilidad.

Ya me contarás cómo te ha ido.

¡Ánimo!

 

Propuesta didáctica

 

1.Enunciado de la tarea

 

 

2. Tarea: Incomparable. Expresiones algebraicas con 2 variables realizada en Graspable Math.

 

3. Vídeo con la resolución de la tarea usando Graspable Math.

 

MÁS CONTENIDO MATEMÁTICO EN REDES SOCIALES

Comparte MatemáTICas: 1,1,2,3,5,8,13,...

Laberinto de ecuaciones de primer y segundo grado con Graspable Math. Propuesta didáctica con plantilla editable y vídeos de ayuda

Comparte MatemáTICas: 1,1,2,3,5,8,13,...

En esta entrada comparto los materiales de una propuesta didáctica para trabajar las ecuaciones de primer y segundo grado (cuadráticas) que diseñé y llevé a cabo con mi alumnado de Matemáticas de 3º de ESO (14-15 años) en modalidad online durante el cierre de los centros educativos españoles, periodo de la suspensión de la actividad docente presencial (marzo-junio 2020), con motivo de la COVID-19.

Para ayudarte a implementar esta propuesta con tus estudiantes incluyo:

  1. Plantilla en formato editable (.docx)
  2. Plantilla en formato imprimible (.pdf)
  3. Vídeo de ayuda para los estudiantes para que puedan cumplimentar la plantilla en formato digital para escribir las ecuaciones y su resolución.
  4. Vídeo con la resolución de un laberinto de ecuaciones de primer grado realizado en Graspable Math.
  5. Laberinto de ecuaciones de primer grado sencillas. Método de las transformaciones algebraicas realizado en Graspable Math.

Espero te animes a usar la propuesta con tu alumnado y os resulte atractiva y de utilidad.

Ya me contarás cómo te ha ido.

¡Ánimo!

 

Propuesta didáctica

 

1.Plantilla en formato editable (.docx)

Plantilla – Laberinto de ecuaciones de primer y segundo grado

 

2. Plantilla en formato imprimible (.pdf)

Plantilla – Laberinto de ecuaciones de primer y segundo grado

 

3. Vídeo de ayuda para los estudiantes para que puedan cumplimentar la plantilla en formato digital para escribir las ecuaciones y su resolución. 

 

4. Vídeo con la resolución de un laberinto de ecuaciones de primer grado realizado en Graspable Math.

 

5. Laberinto de ecuaciones de primer grado sencillas. Método de las transformaciones algebraicas realizado en Graspable Math.

 

 

MÁS CONTENIDO MATEMÁTICO EN REDES SOCIALES

Comparte MatemáTICas: 1,1,2,3,5,8,13,...

Tareas Open Middle relacionadas con la suma y la resta elaboradas con Graspable Math

Comparte MatemáTICas: 1,1,2,3,5,8,13,...

En esta entrada te propongo 4 tareas de tipo Open Middle, relacionadas con la suma y la resta, que he elaborado con ayuda de Graspable Math.

Puedes dejar las soluciones que encuentres haciendo comentarios a esta entrada.
¡Ánimo!

1. Tarea OM – Resta (I)

 

2. Tarea OM – Resta (II)

 

3. Tarea OM – Suma (I)

 

4. Tarea OM – Suma y Resta (I)

 

¿Qué es una tarea de tipo Open Middle (OM)?

El nombre “Open Middle” puede sonar como un nombre extraño para un tipo de problemas matemáticos. Sin embargo, hace referencia a un tipo de problema muy particular que se debe fomentar en el aula de matemáticas. Como habrás podido apreciar en las tareas anteriores, la mayoría de tareas OM presentan las siguiente características:

  • un “comienzo cerrado”: lo que significa que todos los alumnos comienzan con el mismo problema inicial.
  • un “final cerrado”: lo que significa que todos los alumnos terminan con el mismo resultado.
  • un “medio abierto”: lo que significa que hay múltiples maneras de acercarse a -y en última instancia, de resolver- el problema.

Los problemas de tipo “Open Middle” suelen requerir una carga cognitiva mayor que la mayoría de los problemas que evalúa solo la comprensión procedimental y conceptual. Además, trabajan con los contenidos del currículo y proveen a los estudiantes oportunidades para discutir su pensamiento, favoreciendo la fluidez, el razonamiento y la expresión oral/escrita.

Algunas características adicionales de los problemas de tipo “Open Middle” son:

  • Generalmente tienen múltiples maneras de ser resueltos en contraposición a los problemas en los que a uno se le pide que aplique un método específico para su resolución.
  • Pueden ser optimizados de manera tal que sea fácil encontrar un resultado, pero resulte más desafiante encontrar el resultado óptimo.
  • Pueden parecer de naturaleza simple y procedimental pero resultan siendo más desafiantes y complejos cuando uno comienza a resolverlos.
  • Generalmente no son tan complejos como una tarea contextualizada que puede requerir un contexto previo para ser completadas.

Los artífices y creadores originales de este tipo de tareas son Nanette Johnson y Robert Kaplinsky.

MÁS CONTENIDO MATEMÁTICO EN REDES SOCIALES

Comparte MatemáTICas: 1,1,2,3,5,8,13,...

miniTAREA. Oferta promocional #eXPLÍCAlo

Comparte MatemáTICas: 1,1,2,3,5,8,13,...

Matemáticas en la vida cotidiana. Observa la imagen con la oferta promocional y lee con atención las siguientes situaciones hipotéticas de compras:
  • Situación 1. Producto 1 – Valor 1000 € y Producto 2 – Valor 10 €.
  • Situación 2. Producto 1 – Valor 10 € y Producto 2 – Valor 1000 €.
¿Qué importe deberíamos abonar en cada una de las situaciones?
¿Qué opción elegirías si fueras el comprador?
¿Qué observas?
#eXPLÍCAlo
Comparte MatemáTICas: 1,1,2,3,5,8,13,...
WP2Social Auto Publish Powered By : XYZScripts.com