En esta entrada comparto un vídeo mostrando el proceso de resolución de un problema en el que usamos una ecuación de primer grado con una variable (incógnita), apoyado en un recurso extraordinariamente visual como el diagrama de cinta.
El pasado 24 de noviembre del recién terminado 2023, disfruté impartiendo la Conferencia «Aprender y enseñar matemáticas con manipulativos virtuales» en el XXVII Congreso Nacional de Matemática Educativa, evento de referencia en nuestro querido país hermano de Guatemala, organizado por la Unidad de Modelación Matemática e Investigación de la Facultad de Ingeniería de la Universidad de San Carlos de Guatemala.
El evento contó con la participación de 44 ponentes de 8 países, Guatemala, México, Costa Rica, Estados Unidos de Norteamérica, Perú, Panamá, El Salvador y España, de forma virtual, con un total de 50 talleres y 6 conferencias plenarias acerca de la enseñanza y aprendizaje de esta materia en todos los niveles educativos. El mismo contó con la participación de 420 docentes.
Quiero expresar mi agradecimiento, por la confianza renovada y el respeto y cariño mostrado hacia mi trabajo, a todos los miembros del Comité Organizador del Congreso, con especial énfasis en la Dra. Mayra Castillo y el Dr. Julio Ricardo Castillo por todo el apoyo que me han dado, antes, durante y tras el evento.
El pase de diapositivas requiere JavaScript.
Comparto a continuación el enlace al evento en Facebook donde se encuentra en el vídeo de mi Conferencia «Aprender y enseñar matemáticas con manipulativos virtuales» donde, durante más de dos horas, reflexioné, compartí e interactué con los profesores participantes, proponiendo diferentes actividades matemáticas basadas en materiales manipulativos, simulando una situación real de clase a distancia, explicitando propuestas metodológicas, favoreciendo el razonamiento y la argumentación matemática.
Esta mañana me preguntó un compañero, docente de otra comunidad autónoma, a través de un mensaje privado en uno de mis perfiles en RRSS, que si le podía dar ideas para trabajar el sentido numérico en 1º-2º ESO. Se me vino a la cabeza unas cuantas pero, como sabéis… el tiempo es oro y, desafortunadamente, no dispongo de tiempo para escribir algo nuevo. Así que, tras la calma de esta tarde, he pensado en compartirle y, al mismo tiempo, dejar por aquí para todos una de las propuestas didácticas recogidas en la secuencia competencial de una Situación de Aprendizaje consistente en un plan de trabajo formativo para ayudar a los centros que quieran formar a sus alumnos a modo de preparación previa a la creación de su Círculo Matemático Computacional (CMC).
De igual manera que las personas tenemos bonitas relaciones de amistad, en el mundo de los números también nos encontramos con ellas.
Ya habéis visto cómo, usando un algoritmo clásico ‘famoso’, el Algoritmo de Euclides, podéis obtener el Máximo Común Divisor de dos números, siguiendo una secuencia ordenada de pasos, ya sea manualmente o con ayuda de un ordenador.
En esta actividad vamos a seguir trabajando con el Máximo Común Divisor (MCD), también con el Mínimo Común Múltiplo (MCM), y vais a descubrir y profundizar en la comprensión de estos dos conceptos matemáticos con los que tan familiarizados estamos en las clases de matemáticas.
Vamos a ver qué relación existe entre el producto de dos números naturales, a·b, y el producto MCD(a,b)·MCM(a,b).
Antes de empezar, observa con atención el siguiente vídeo:
A continuación, trabajando en equipo, resuelve e introduce los valores correctos correspondientes a las casillas representadas con una interrogación (?).
Si te gustó esta tarea para trabajar con tus alumnos el desarrollo del sentido numérico te animo a consultar la SdA Creamos nuestro Círculo Matemático Computacional (CMC), a modificarla, adaptarla para tus alumnos y a compartirla con otros colegas de tu departamento didáctico o conocidos.
¡¡Buen fin de semana. Salud, felicidad y matemáticas!!
Este curso 22/23 se ha implantado el nuevo currículo derivado de la implantación de la LOMLOE en los cursos impares (1º, 3º y 5º de Primaria, 1º y 3º de Secundaria y 1º de Bachillerato). A partir de septiembre se implantará en los pares, finalizando así dicha implantación.
Uno de los nuevos paradigmas propuestos en el nuevo marco curricular son las Situaciones de Aprendizaje, que son situaciones y actividades que implican el despliegue por parte del alumnado de actuaciones asociadas a competencias clave y competencias específicas, y que contribuyen a la adquisición y desarrollo de las mismas.
Acompañando al desarrollo normativo se han realizado diferentes acciones. Entre ellas se ha establecido un itinerario formativo para el profesorado y se ha puesto en marcha el proyecto Situaciones de Aprendizaje, un proyecto que publicará en torno a 200 Situaciones de Aprendizaje de todas las etapas (desde Infantil a Bachillerato) y de todas las materias.
He tenido la suerte de participar en este bonito proyecto de Recursos Educativos Abiertos (REA), concretamente en el grupo de trabajo de Matemáticas, con la elaboración de una de las Situaciones de Aprendizaje la cual espero sea de utilidad, si no ya para el presente curso, que está tocando a su fin, para el curso que viene.
Con la excelente coordinación por parte de José Luis Muñoz Casado, hemos trabajado el siguiente equipo de Matemáticas:
Julio Rodríguez Taboada
Antonio Moreno
Ester Solves
María Ángeles Portilla
José Rafael Viana Sánchez
Luis Miguel Iglesias
Claudia Lázaro
José María Vázquez
Laureano Serrano Muñoz
Lluis Bonet
Pilar Sabariego
Berta Sánchez García
Carmen Lahiguera Serrano
Pablo Peñalver Alonso
Francisco Zapatero Sánchez
Todas las Situaciones de Aprendizaje de Matemáticas pueden ser localizadas accediendo a a la web del proyecto y filtrando (marcando la casilla Matemáticas).
Aunque no soy objetivo por ser parte del proyecto, os recomiendo encarecidamente visitar y conocer las Situaciones de Aprendizaje de Matemáticas, y del resto de materias elaboradas, y os animo a adaptarlas y llevarlas a vuestras aulas.
Una colección de situaciones de aprendizaje y otros materiales didácticos de naturaleza competencial creados por docentes en activo, para Educación Infantil, Educación Primaria, Educación Secundaria Obligatoria y Bachillerato. Todos ellos se publican con una licencia abierta (Creative Commons Reconocimiento-CompartirIgual 4.0) e incluyen el archivo fuente para su descarga y posible edición posterior.
Todos los materiales se han elaborado con la herramienta eXeLearning, un editor de recursos educativos interactivos, gratuito y de código abierto, lo que hace posible que cualquier usuario los pueda descargar y utilizar -con o sin conexión-, así como editar para adaptarlos a sus necesidades. Ofrece, asimismo, la ventaja de que permite exportar los contenidos a diferentes formatos estándar para su utilización en entornos web (html) o en plataformas de gestión de contenido educativo (SCORM) como Moodle y otros LMS.
En esta entrada comparto una funcionalidad que puede ser de utilidad para el trabajo en el aula, favoreciendo la comprensión e interpretación de los parámetros presentes en la ecuación explícita de una recta, a través de su representación.
y = mx + n
m: valor de la pendiente de la recta
n: valor de la ordenada en el origen. Esto es, el valor de la ordenada correspondiente al valor de abscisa x=0 –> (0, n)
Para facilitar este proceso se puede ir activando y desactivando uno y otro deslizador e ir dejando tiempo para la reflexión y la intervención del alumnado.
Os dejo el lienzo que he elaborado con la herramienta Polypad · Mathigon, y un pequeño vídeo, donde muestro el proceso.
Espero sea de utilidad para vuestro trabajo a pie de aula y para acompañar a vuestros aprendices en el desarrollo del sentido algebraico.
Vídeo. Uso de deslizadores en gráfica vinculada a la ecuación de la recta.
Tras una larga e intensa jornada de final de trimestre, al llegar a casa a última hora de la tarde, he acompañado a mi pequeña (12 años) en su estudio abordando el primer acercamiento a los enteros.
Tras la comprensión de situaciones de la vida cotidiana expresadas con enteros, representación en la recta real, orden y suma de números enteros del mismo signo, ha estado practicando la suma de enteros de distinto signo.
Para aterrizar en este tipo de sumas, le he mostrado algunas ejemplificaciones que he elaborado para ella usando la funcionalidad «cubo o cubeta de ceros» de Polypad · Mathigon.
Os dejo el lienzo que he elaborado, con un ejemplo resuelto y otro por hacer, y una animación, de unos dos minutos, donde muestro el proceso seguido.
Espero sea de utilidad para vuestro trabajo a pie de aula y para acompañar a vuestros aprendices en el desarrollo del sentido numérico.
Animación. Ejemplo resuelto paso a paso usando el cubo de ceros
La tarde del pasado viernes, 25 de noviembre, tuve el gusto y el honor de participar en el XXVI Congreso Nacional de Matemática Educativa, un evento organizado por la Unidad de Modelación Matemática e Investigación, de la Facultad de Ingeniería de la Universidad de San Carlos de Guatemala, que se proyecta hacia la sociedad guatemalteca en apoyo a la mejora de la calidad educativa de matemática.
El evento ha contado con la participación de 60 ponentes, de Guatemala, México, Colombia, Panamá, Paraguay, El Salvador, Venezuela y España, de forma virtual, con talleres, foros, conferencias y grupos de reflexión acerca de la enseñanza y aprendizaje de esta materia en todos los niveles educativos, y con la participación de más de 500 docentes.
Quiero expresar mi agradecimiento a todos los miembros del Comité Organizador del Congreso, y de manera especial a la Dra. Mayra Castillo y al Dr. Julio Ricardo Castillo por todo el apoyo que me han dado. Comparto a continuación el enlace al evento en Facebook donde se encuentra en el vídeo de mi ponencia «Menú de degustación de herramientas digitales para enseñar y aprender matemática en un contexto post pandémico» donde, durante algo más de dos horas, reflexioné, compartí e interactué con los profesores participantes, realizando actividades matemáticas, simulando una situación real de clase a distancia con 4 herramientas digitales que en mi opinión son el póker de ases de las herramientas digitales para enseñar y aprender matemáticas en cualquier tipo de entorno; presencial, híbridos/blended/semipresencial y a distancia. Hablo de Geogebra Notas, Desmos, Graspable Math y Mathigon.
Espero que el vídeo sea de utilidad para tu trabajo diario en el aula de matemáticas. Quedo a la espera de tus comentarios 😉
En esta entrada comparto varios retos interactivos realizados con Mathigon. Al ver el tweet de DCDSBMath me encantaron y me lancé a adaptarlos al español con la herramienta Polypad.
Consejo: Pulsar en el nombre para ir directamente a la web de Mathigon y visualizarlos correctamente a pantalla completa. Usar lupas (+/-) y pantalla completa para desplazarse si fuera necesario.
Espero que os gusten y os animéis a usarlas con vuestros alumnos y a compartirlas. ¡Que fluya la matemática en las redes! 🙂