Autonomía e iniciativa personal

Propuesta didáctica LingMáTICas. Fortaleciendo la competencia linguística: comunicación, representación y resolución de problemas matemáticos de decimales y fracciones elaborando cómics digitales

Los lectores de este blog conocen bien mi predilección por vincular lengua y matemáticas. Ello me llevó hace más de una década a bautizarla. Es decir, a buscar un término, un palabro, con el que poder categorizarlas. Le llamé LingMáTICas.

Así, definí LingMáTICas como el conjunto de propuestas didácticas, contextos de aprendizaje, encaminados a fortalecer la competencia lingüística, en todos sus ámbitos, desde el aula de matemáticas, con ayuda de la tecnología (TIC).

Definición de LingMáTICas. Luis M. Iglesias

Son muchos los compañeros docentes que en estos momentos están inmersos en la elaboración del plan de trabajo para el tratamiento de la lectura en el aula de matemáticas en sus respectivos centros educativos, de manera especial en Andalucía, atendiendo a las INSTRUCCIONES DE 21 DE JUNIO DE 2023, DE LA VICECONSEJERÍA DE DESARROLLO EDUCATIVO Y FORMACIÓN PROFESIONAL, SOBRE EL TRATAMIENTO DE LA LECTURA PARA EL DESPLIEGUE DE LA COMPETENCIA EN COMUNICACIÓN LINGÜÍSTICA EN EDUCACIÓN PRIMARIA Y EDUCACIÓN SECUNDARIA OBLIGATORIA.

Con la idea de aportar mi granito de arena, para ayudar en la medida de lo posible, quiero compartir en esta entrada un trabajo de investigación-acción que llevé a cabo hace unos años por si fuera de utilidad. 

El mismo fue presentado en el Congreso Iberoamericano «La educación ante el nuevo entorno digital», a finales del 2019. Este Congreso fue un espacio donde se pretendía dar a conocer proyectos o experiencias relacionadas con cualquier área temática, pero con el denominador común del entorno digital en el que ya estamos inmersos.

Título 
Decimales y fracciones entre textos e imágenes: una experiencia de aprendizaje basada en la elaboración de cómics digitales. 

Autoría 

Resumen 
Esta investigación-acción tiene como objetivo la construcción de cómics matemáticos para facilitar el aprendizaje de fracciones y decimales. La justificación del uso del cómic radica en la motivación de los estudiantes por el uso de información visual, que al combinarla con el texto puede dar lugar a elementos de desarrollo de habilidades, creatividad y la lectura de contenido (Urbani, 1978, citado en Toh, 2009).  El soporte tecnológico se sostiene en una de las dimensiones de la competencia digital (Marqués, 2009), la dimensión del aprendizaje, expresada como transformación del contenido en adquisición del conocimiento. Además, el cómic se considera una herramienta con potencial para el aprendizaje de las matemáticas, por sus capacidades creativas y visuales (Cleaver, 2008) así como una posibilidad de mejora en la alfabetización de los estudiantes (Tilley, 2008).  

La investigación describe el proceso y resultados de una experiencia en el tercero de Enseñanza Secundaria Obligatoria, en Matemáticas orientadas a las enseñanzas académicas. El contenido a trabajar venía delimitado por el criterio de evaluación “utilizar las propiedades de los números racionales para operarlos, utilizando la forma de cálculo y notación adecuada, para resolver problemas de la vida cotidiana, y presentando los resultados con la precisión requerida” (RD. 1105/2014, p. 391). 

Nota:

En esa fecha estaba en vigor el currículo LOMCE por lo que es evidente que habría que hacer la traslación al currículo actual LOMLOE, RD 217/2022 – Decreto 102/203 de 9 de mayo – Orden 30 de mayo 2023 Currículo Secundaria Andalucía, aunque no es excesivamente complicado. De manera clara tiene vinculación con el Sentido numérico (en lo relativo a saberes básicos) y con los Criterios de Evaluación correspondientes de las Competencias Específicas relativas a la resolución de problemas [RESPRO] y a la comunicación y representación [COMREP] Y socioemocionales [SOCAFE].

Los estudiantes construyen un cómic, utilizando una herramienta digital. Para el análisis de los resultados del conocimiento matemático expuesto se definen categorías que facilitan la identificación de cumplimiento de los estándares de aprendizaje. Estas categorías se construyen sustentadas en la investigación previa para el conocimiento matemático, desde la enseñanza y del aprendizaje de los números racionales. Las categorías que se utilizan son: el sentido dado a los algoritmos según su significado (que incluye la forma de utilizar los algoritmos y la resolución), la tipología del contexto que se utiliza para situar el objeto matemático, el rigor del lenguaje matemático, cómo se presentan los números (en forma decimal o fracción), y la reflexión final con los datos y resultados expuestos. 

Los resultados muestran distintos contextos que agrupamos como realistas y ficticios, donde estos últimos dan lugar a aquellos que dan sentido al objeto matemático y los que resultan forzados para introducir tanto el número como el algoritmo utilizado. Se utilizan distintos algoritmos, basados en suma y multiplicación; los cálculos implican usos como porcentaje, cálculo de las partes de un todo y equivalencia. En aquellas tareas que implican uso de algoritmos, los números base son fracciones en lugar de decimales. Encontramos tareas que finalizan de una manera reflexiva agrupando todos los datos utilizados a modo de recopilatorio para dar lugar a un ejercicio, y su solución. No aparecen demasiadas conversiones entre fracciones, y cuando lo hacen son para dar lugar a números que faciliten la interpretación de las partes de un todo. Los errores que aparecen surgen de cálculos encadenados entre fracciones, no siendo explícito si el cálculo es desde el paso anterior o desde el inicio, o cuando resultados dan lugar a números decimales y el contexto hubiese necesitado un número natural para su interpretación. 

Descarga del material

 

DESCARGAR: LingMáTICas. Comunicación, representación y resolución de problemas matemáticos mediante cómics digitales

Más contenido matemático en redes sociales

Reto matemático terrorífico para la noche de Halloween – Graspable Math

En esta entrada os propongo un reto terrorífico para la noche de Halloween, basado en un modelo de áreas.

¿Cómo lo ves? ¿Eres capaz de resolverla?

¿Truco o trato? 🙂

Tarea interactiva. Reto matemático terrorífico para la noche de Halloween, realizada en Graspable Math

Pulsa aquí para completar el reto en GMA y dejar registrada tu respuesta (First Name: Tu nombre – Last Initial: Inicial de tu apellido)

Más contenido matemático en redes sociales

Colaboración con el Observatorio de Tecnología Educativa del INTEF. Graspable Math: una nueva manera de explorar y hacer matemáticas

El pase de diapositivas requiere JavaScript.

En esta entrada tengo el gusto de compartir artículo elaborado para el Observatorio de Tecnología Educativa del INTEF, un espacio de referencia en torno a la innovación digital en el aula.

Está dedicado a Graspable Math, una herramienta joven, aún poco extendida en España y en el contexto iberoamericano, con mucha potencialidad didáctica para el aula de matemáticas y con la que he trabajado de manera intensiva el último año.

 

ARTÍCULO EN EL OBSERVATORIO

Se trata de  “Graspable Math: una nueva manera de explorar y hacer matemáticas”. Está escrito por Luis Miguel Iglesias Albarrán, profesor de enseñanza secundaria en la especialidad de Matemáticas y Director del IES San Antonio en Bollullos Par del Condado (Huelva).

Graspable Math es una herramienta digital interactiva innovadora que permite una nueva manera de explorar y comprender, mediante la interacción (tocando y arrastrando números y símbolos), las relaciones matemáticas. Forma parte de un proyecto de investigación financiado por el Institute of Education Sciences (IES) dependiente del U.S. Department of Education.

Es una herramienta permite “aprender haciendo” (learning by doing) matemáticas, favoreciendo el aprendizaje autónomo de los estudiantes y permitiéndoles poner el foco en las estructuras matemáticas. El diseño de la herramienta ayuda a salvar el obstáculo de la notación formal, haciendo posible que el alumnado se centre en cómo funcionan. Les brinda, en este sentido, oportunidades para razonar y deducir de manera flexible sobre las tareas matemáticas.

Con Graspable Math se nos presenta, en definitiva, una nueva manera de explorar, enseñar y de hacer matemáticas.

Si quieres saber más sobre Grapable Math, puedes leer el artículo elaborado por Luis Miguel Iglesias Albarrán en el que, además, hace una valoración personal y ofrece recomendaciones para el empleo de esta herramienta.

Acceso al artículo “Graspable Math: una nueva manera de explorar y hacer matemáticas” en formatos PDF y web

 

Dejo a continuación más material por si quieres iniciarte en el uso de esta versátil herramienta.

PUBLICACIONES SOBRE GRASPABLE MATH

En este espacio he realizado distintas publicaciones al respecto:

 

LISTA DE VÍDEOS SOBRE GRASPABLE MATH

Comparto también lista con más de una treintena de vídeos sobre diferentes usos didácticos de esta herramienta.

 

Lista de vídeos en Youtube sobre Graspable Math (33 vídeos)

Te animo a usarla con tu alumnado, a compartirla con tus contactos y compañeros a través de la red y quedo a tu disposición para cualquier duda o comentario al respecto, en forma de comentario bajo esta entrada o en mis perfiles en redes sociales.

¡Ya me contarás cómo te ha ido con tus alumnos en clase! 🙂

MÁS CONTENDO MATEMÁTICO EN REDES SOCIALES

Graspable Math y Geogebra; aliadas extraordinarias para enseñar y aprender matemáticas en contextos presenciales discontinuos. 5 tareas resueltas en vídeos sobre funciones lineales, afines, paralelismo y ecuaciones de la recta

Los lectores asiduos de este rincón virtual matemático conocen sobradamente mi predilección por estas dos poderosas herramientas digitales. En mi opinión, indispensables ambas para la enseñanza y el aprendizaje de la matemática en el siglo XXI, siendo especialmente útiles en los contextos de enseñanza-aprendizaje semipresencial y a distancia especialmente extendidos con motivo de la COVID-19.

Aprovecho estas líneas para invitarte a visitar las distintas publicaciones sobre propuestas didácticas para trabajar en el aula y los materiales que he compartido sobre ambas en los últimos años:

Pues bien, si juntamos ambas, el resultado no puede ser catalogado de otro modo que excelente.

Como muestra de ello comparto en esta entrada 5 tareas resueltas paso a paso, en otros tantos vídeos, con ayuda de Geogebra y Graspable Math. 

Estos materiales los desarrollé para mis estudiantes de Matemáticas de 3º de ESO (14-15 años) para trabajar en modalidad online durante el cierre de los centros educativos españoles, periodo de la suspensión de la actividad docente presencial (marzo-junio 2020), con motivo de la COVID-19.

Espero te animes a usar los vídeos con tu alumnado si los consideras de utilidad.

 

Vídeos

1. Funciones lineales. Pertenencia a recta. Ecuación de la recta Geométrico – Graspable Math & Geogebra

 

2. Funciones lineales. Pertenencia a recta. Ecuación de la recta. Geometría Analítica. Graspable Math

 

3. Funciones afines. Ecuación de la recta. Recta paralela pasando por un punto – Graspable Math & Geogebra

 

4. Funciones lineales – Paralelismo – Significado de m y n en la ecuación explícita – Graspable Math & Geogebra

 

5. Funciones afines. Ecuación de la recta. Recta paralela pasando por un punto – Graspable Math & Geogebra

Más contenido matemático en redes sociales

Tarea Open Middle sobre logaritmos (cambio de base) elaborada en Graspable Math y en Scratch

Comenzamos la semana con esta entrada donde comparto los materiales de una propuesta didáctica para trabajar los logaritmos (teorema del cambio de base).

Se trata de una tarea de tipo Open Middle, traducida al español y adaptada a partir de la original en inglés del profesor Bryan Anderson. La he implementado en dos herramientas que en mi opinión presentan un potencial didáctico increible y a las que soy adicto; Graspable Math y Scratch.

Para ayudarte a implementar esta propuesta con tus estudiantes incluyo:

  1. Enunciado de la tarea en Graspable Math
  2. Tarea interactiva. Logaritmos OM realizada en Graspable Math
  3. Tarea interactiva. Logaritmos OM realizada en Scratch

Espero te animes a usar la propuesta con tu alumnado y os resulte atractiva y de utilidad.

Ya me contarás cómo te ha ido.

¡Ánimo!

 

Propuesta didáctica

 

1. Enunciado de la tarea en Graspable Math

 

2. Tarea interactiva. Logaritmos OM, realizada en Graspable Math.

 

3. Tarea interactiva. Logaritmos OM realizada en Scratch

Enlace a Logaritmos OM en Scratch

 

Esta entrada participa en la Edición 11.6: Conjeturas del Carnaval de Matemáticas, que en esta ocasión organiza Gaussianos.

 

Más contenido matemático en redes sociales

Tarea rica elaborada y resuelta con Graspable Math para trabajar las expresiones algebraicas con 2 variables

En esta entrada comparto los materiales de una propuesta didáctica para trabajar las expresiones algebraicas con 2 variables.

Para ayudarte a implementar esta propuesta con tus estudiantes incluyo:

  1. Enunciado de la tarea
  2. Incomparable. Expresiones algebraicas con 2 variables realizado en Graspable Math.
  3. Vídeo con la resolución de la tarea usando Graspable Math.

Espero te animes a usar la propuesta con tu alumnado y os resulte atractiva y de utilidad.

Ya me contarás cómo te ha ido.

¡Ánimo!

 

Propuesta didáctica

 

1.Enunciado de la tarea

 

 

2. Tarea: Incomparable. Expresiones algebraicas con 2 variables realizada en Graspable Math.

 

3. Vídeo con la resolución de la tarea usando Graspable Math.

 

MÁS CONTENIDO MATEMÁTICO EN REDES SOCIALES

Laberinto de ecuaciones de primer y segundo grado con Graspable Math. Propuesta didáctica con plantilla editable y vídeos de ayuda

En esta entrada comparto los materiales de una propuesta didáctica para trabajar las ecuaciones de primer y segundo grado (cuadráticas) que diseñé y llevé a cabo con mi alumnado de Matemáticas de 3º de ESO (14-15 años) en modalidad online durante el cierre de los centros educativos españoles, periodo de la suspensión de la actividad docente presencial (marzo-junio 2020), con motivo de la COVID-19.

Para ayudarte a implementar esta propuesta con tus estudiantes incluyo:

  1. Plantilla en formato editable (.docx)
  2. Plantilla en formato imprimible (.pdf)
  3. Vídeo de ayuda para los estudiantes para que puedan cumplimentar la plantilla en formato digital para escribir las ecuaciones y su resolución.
  4. Vídeo con la resolución de un laberinto de ecuaciones de primer grado realizado en Graspable Math.
  5. Laberinto de ecuaciones de primer grado sencillas. Método de las transformaciones algebraicas realizado en Graspable Math.

Espero te animes a usar la propuesta con tu alumnado y os resulte atractiva y de utilidad.

Ya me contarás cómo te ha ido.

¡Ánimo!

 

Propuesta didáctica

 

1.Plantilla en formato editable (.docx)

Plantilla – Laberinto de ecuaciones de primer y segundo grado

 

2. Plantilla en formato imprimible (.pdf)

Plantilla – Laberinto de ecuaciones de primer y segundo grado

 

3. Vídeo de ayuda para los estudiantes para que puedan cumplimentar la plantilla en formato digital para escribir las ecuaciones y su resolución. 

 

4. Vídeo con la resolución de un laberinto de ecuaciones de primer grado realizado en Graspable Math.

 

5. Laberinto de ecuaciones de primer grado sencillas. Método de las transformaciones algebraicas realizado en Graspable Math.

 

 

MÁS CONTENIDO MATEMÁTICO EN REDES SOCIALES

Tareas Open Middle relacionadas con la suma y la resta elaboradas con Graspable Math

En esta entrada te propongo 4 tareas de tipo Open Middle, relacionadas con la suma y la resta, que he elaborado con ayuda de Graspable Math.

Puedes dejar las soluciones que encuentres haciendo comentarios a esta entrada.
¡Ánimo!

1. Tarea OM – Resta (I)

 

2. Tarea OM – Resta (II)

 

3. Tarea OM – Suma (I)

 

4. Tarea OM – Suma y Resta (I)

 

¿Qué es una tarea de tipo Open Middle (OM)?

El nombre “Open Middle” puede sonar como un nombre extraño para un tipo de problemas matemáticos. Sin embargo, hace referencia a un tipo de problema muy particular que se debe fomentar en el aula de matemáticas. Como habrás podido apreciar en las tareas anteriores, la mayoría de tareas OM presentan las siguiente características:

  • un “comienzo cerrado”: lo que significa que todos los alumnos comienzan con el mismo problema inicial.
  • un “final cerrado”: lo que significa que todos los alumnos terminan con el mismo resultado.
  • un “medio abierto”: lo que significa que hay múltiples maneras de acercarse a -y en última instancia, de resolver- el problema.

Los problemas de tipo “Open Middle” suelen requerir una carga cognitiva mayor que la mayoría de los problemas que evalúa solo la comprensión procedimental y conceptual. Además, trabajan con los contenidos del currículo y proveen a los estudiantes oportunidades para discutir su pensamiento, favoreciendo la fluidez, el razonamiento y la expresión oral/escrita.

Algunas características adicionales de los problemas de tipo “Open Middle” son:

  • Generalmente tienen múltiples maneras de ser resueltos en contraposición a los problemas en los que a uno se le pide que aplique un método específico para su resolución.
  • Pueden ser optimizados de manera tal que sea fácil encontrar un resultado, pero resulte más desafiante encontrar el resultado óptimo.
  • Pueden parecer de naturaleza simple y procedimental pero resultan siendo más desafiantes y complejos cuando uno comienza a resolverlos.
  • Generalmente no son tan complejos como una tarea contextualizada que puede requerir un contexto previo para ser completadas.

Los artífices y creadores originales de este tipo de tareas son Nanette Johnson y Robert Kaplinsky.

MÁS CONTENIDO MATEMÁTICO EN REDES SOCIALES

Decálogo para la mejora de la docencia online. Propuestas para educar en contextos presenciales discontinuos

Este post no trata de matemáticas de manera explícita pero, siendo este humilde rincón virtual un espacio para la didáctica específica de matemáticas mediada por tecnología, he considerado que el libro gratuito que comparto puede ser una obra que ayude a muchos docentes en la preparación de sus clases en el complejo escenario que nos ha tocado desempeñar nuestra labor educativa con motivo de la COVID-19.

Particularmente estoy disfruprendiendo mucho con su lectura :-).

Espero que resulte de utilidad.

Decálogo para la mejora de la docencia online. Propuestas para educar en contextos presenciales discontinuos

La pandemia por COVID-19 ha sacudido los cimientos de nuestra educación. Nos hemos encontrado ante la imposibilidad de que nuestro alumnado pueda desplazarse a los centros educativos, que han sido cerrados a causa del confinamiento decretado en la mayoría de países. De forma imprevista, las instituciones educativas se han visto obligadas a adoptar soluciones de emergencia, migrando hacia modelos de docencia no presencial remota, que han permitido parar el golpe.

A partir de esta experiencia, se empieza a valorar si la educación online puede ser una aliada válida que permita el desarrollo de soluciones híbridas en nuestros sistemas educativos. La respuesta es que sí, aunque lo que se ha hecho hasta ahora no es, propiamente, educación online.

 

Este libro presenta una serie de propuestas para mejorar la educación online y para hacer frente a futuras situaciones de presencialidad discontinua que puedan darse debidas a posibles nuevos confinamientos, totales o parciales. Quiere ser un instrumento de apoyo para todos los profesionales de la educación que necesitan o quieren aprovechar al máximo el potencial transformador que ofrece la educación online.

 

Índice
Agradecimientos………………………………………………………………… 17

 

Prólogo ……………………………………………………………………………….. 19
Teresa Guasch
Introducción ………………………………………………………………………. 21

 

Capítulo I. Enseñar y aprender en línea: superando
la distancia social………………………………………………………….. 27
Albert Sangrà
1. Introducción……………………………………………………………….. 27
2. La educación no presencial, solución en momentos
críticos………………………………………………………………………… 28
3. COVID-19: nuestra situación de emergencia……………… 30
4. Superar la distancia social …………………………………………… 32
4.1. Las personas: vuestros estudiantes………………………. 33
4.2. La organización……………………………………………………. 34
4.3. La interacción………………………………………………………. 35
4.4. Los recursos…………………………………………………………. 36
4.5. El apoyo: acompañamiento y seguimiento…………… 37
4.6. La evaluación……………………………………………………….. 38
4.7. La brecha digital…………………………………………………… 39
4.8. ¿Y cómo nos tenemos que organizar nosotros? ….. 40
5. Síntesis………………………………………………………………………… 40
Para saber más…………………………………………………………………. 41
Bibliografía………………………………………………………………………. 43

Capítulo II. Diseño de cursos online……………………………….. 45
Lourdes Guàrdia
1. El diseño de cursos online: un reto tecnológico
y pedagógico ……………………………………………………………… 45
2. El diseño tecnopedagógico en la educación online:
una visión integral e integradora ………………………………… 46
2.1. ¿Qué nos aporta adoptar una metodología
de diseño tecnopedagógico?………………………………… 48
2.2. Modelos de diseño tecnopedagógico …………………… 49
3. Fases del diseño: proceso holístico …………………………….. 51
3.1. Análisis ………………………………………………………………… 52
3.2. Planificación ………………………………………………………… 53
3.3. Diseño …………………………………………………………………. 54
3.4. Creación ………………………………………………………………. 55
3.5. Gestión………………………………………………………………… 55
3.6. Docencia ……………………………………………………………… 56
3.7. Evaluación……………………………………………………………. 57
4. Flujo para la toma de decisiones en el proceso
de diseño…………………………………………………………………….. 58
5. Síntesis………………………………………………………………………… 59
Para saber más…………………………………………………………………. 60
Bibliografía………………………………………………………………………. 61

 

Capítulo III. Claves para una evaluación en línea…………. 63
Nati Cabrera y Maite Fernández-Ferrer
1. Introducción……………………………………………………………….. 63
2. El reto: plantear una evaluación que sirva para aprender… 64
3. El objeto de la evaluación: ¿qué debemos evaluar? ……. 66
4. Los criterios de evaluación, esos grandes desconocidos…. 67
5. La importancia de la planificación en el proceso
de evaluación en línea…………………………………………………. 69
6. Estrategias y herramientas para evaluar: ¿cómo escoger?.. 71
7. De evaluado a evaluador: ¡cambiando los papeles!……… 73
8. Síntesis………………………………………………………………………… 75
Para saber más…………………………………………………………………. 77
Bibliografía………………………………………………………………………. 79

 

Capítulo IV. E-actividades para un aprendizaje activo …. 81
Marcelo Maina
1. E-actividades y aprendizaje activo………………………………. 83
2. E-actividades: metodologías activas……………………………. 85
3. E-actividades: el contexto y el entorno ……………………… 86
4. Componentes de una e-actividad ……………………………….. 88
5. Tipos de e-actividades………………………………………………… 89
6. E-actividades, aprendizaje mixto y en discontinuidad … 91
7. E-actividades: recomendaciones finales ……………………… 95
Bibliografía………………………………………………………………………. 97

 

Capítulo V. Herramientas y recursos imprescindibles
para la docencia no presencial ……………………………………. 99
Marc Romero
1. Algunas consideraciones previas ………………………………… 99
2. Herramientas para la docencia no presencial ……………… 100
2.1. Buscadores y curadores de contenidos………………… 102
2.2. Herramientas de comunicación personal/social ….. 103
2.3. Herramientas de creación de contenidos …………….. 104
2.4. Herramientas colaborativas………………………………….. 105
2.5. Creación de actividades ……………………………………….. 106
2.6. Consejos para el uso de herramientas digitales
en educación en línea…………………………………………… 107
3. Recursos para la docencia no presencial …………………….. 108
3.1. Principales recursos educativos en la red …………….. 110
4. Recomendaciones……………………………………………………….. 113
Para saber más…………………………………………………………………. 116
Bibliografía………………………………………………………………………. 117

 

Capítulo VI. Cinco estrategias clave para la docencia
en línea…………………………………………………………………………… 119
Teresa Romeu
1. Consideraciones previas……………………………………………… 119
2. Estrategia de comunicación e interacción…………………… 123
3. Estrategia de planificación y gestión…………………………… 125
4. Estrategia de dinamización…………………………………………. 126
5. Estrategia de orientación y motivación ………………………. 126
6. Estrategia de evaluación……………………………………………… 127
7. Síntesis………………………………………………………………………… 128
Para saber más…………………………………………………………………. 130
Bibliografía………………………………………………………………………. 132

 

Capítulo VII. La mediación pedagógica y tecnológica
para el desarrollo de competencias…………………………….. 133
Antoni Badia
1. El reto: la enseñanza competencial en entornos online….. 133
2. Cinco principios para promover el desarrollo
competencial ………………………………………………………………. 134
2.1. Definir y caracterizar una competencia específica …. 134
2.2. Realizar análisis detallados de una actuación
competencial en escenarios reales………………………… 136
2.3. Asegurarse de que la institución educativa está
suficientemente preparada……………………………………. 139
2.4. Preparar una propuesta formativa enfocada
al desarrollo de competencias………………………………. 140
2.5. Tener criterios para implementar apropiadamente
la propuesta formativa …………………………………………. 142
3. Síntesis y recomendaciones………………………………………… 145
Para saber más…………………………………………………………………. 147
Bibliografía………………………………………………………………………. 148

 

Capítulo VIII. Menos es más: menos correcciones
y más feedback para aprender……………………………………… 151
Teresa Guasch y Anna Espasa
1. ¿Qué entendemos por feedback? …………………………………. 153
2. ¿Qué características tiene o debe tener el feedback?……… 154
3. ¿Qué información debe contener el feedback?……………… 156
4. ¿En qué momento se debe dar el feedback?…………………. 157
5. ¿Cómo debe darse el feedback? Recursos y estrategias…. 159
6. ¿Cómo implicar al alumnado para que aproveche
el feedback?…………………………………………………………………… 162
7. Síntesis………………………………………………………………………… 165
Para saber más…………………………………………………………………. 166
Bibliografía………………………………………………………………………. 167

 

Capítulo IX. Generar actitudes digitales críticas
en el alumnado ……………………………………………………………… 169
Juliana E. Raffaghelli
1. Habitar el ciberespacio hoy, un reto……………………………. 169
2. Enfoque crítico en la teoría pedagógica
y tecnopedagógica ………………………………………………………. 171
3. Desarrollar la actitud digital crítica……………………………… 173
3.1. Nivel comportamental …………………………………………. 174
3.2. Nivel emocional …………………………………………………… 175
3.3. Nivel cognitivo…………………………………………………….. 176
3.4. Nivel social…………………………………………………………… 178
4. Conclusiones………………………………………………………………. 180
Para saber más…………………………………………………………………. 182
Bibliografía………………………………………………………………………. 183

 

Capítulo X. La colaboración en red para docentes
y para estudiantes…………………………………………………………. 187
Montse Guitert
1. Introducción……………………………………………………………….. 187
2. Colaboración en red en educación……………………………… 188
2.1. Niveles de colaboración……………………………………….. 190
2.2. Cuatro procesos críticos fundamentales………………. 191
2.3. Herramientas colaborativas………………………………….. 192
3. Docencia en colaboración en red……………………………….. 193
3.1. Fases de la docencia en línea ……………………………….. 193
3.2. Actividades colaborativas por fases……………………… 194
4. Colaboración entre estudiantes en red ……………………….. 195
4.1. Papel docente ………………………………………………………. 196
4.2. Actividades para fomentar los procesos críticos….. 196
5. A modo de conclusión y recomendaciones………………… 200
Para saber más…………………………………………………………………. 201
Bibliografía………………………………………………………………………. 203

 

Epílogo: Hacia modelos de presencialidad discontinua
o intermitente…………………………………………………………………….. 207
Albert Sangrà
Bibliografía………………………………………………………………………. 215

 

Agradecimientos
Nuestro agradecimiento a todas las personas que, con interés y ganas de contribuir, participaron, desde diversos lugares del planeta, en el ciclo de webinars Docencia no presencial de emergencia, organizado por la Universitat Oberta de Catalunya con motivo de la pandemia.

Coordinador
Albert Sangrà
Catedrático de Universidad en los Estudios de Psicología y Ciencias de la Educación de la Universitat Oberta de Catalunya. Miembro del grupo de investigación Edul@b. Director de la Cátedra UNESCO en Educación y Tecnología para el Cambio Social. Director del programa de Doctorados Industriales del Gobierno de Cataluña. Es miembro del equipo fundador de la Universitat Oberta de Catalunya.
Autores
Antoni Badia
Catedrático de Universidad en los estudios de Psicología y Ciencias de la Educación en la Universitat Oberta de Catalunya (UOC). Miembro del grupo SINTE. Interesado en la mejora del aprendizaje mediante la tecnología y en el desarrollo de la identidad del profesor mediante la indagación.
Nati Cabrera
Doctora en Educación por la Universitat de Barcelona y miembro del grupo de investigación Edul@b. Subdirectora de los Estudios de Psicología y Ciencias de la Educación de la Universitat Oberta de Catalunya y directora del Máster universitario de Evaluación y Gestión de la Calidad de la Educación Superior. Ha participado y coordinado numerosos proyectos de investigación y asesoramiento relacionados con la evaluación educativa, principalmente, en línea.
Anna Espasa
Investigadora sobre los procesos de feedback en contextos virtuales. Profesora de los Estudios de Psicología y Educación (Universitat Oberta de Catalunya). Actualmente, dirige el Máster Universitario en Psicopedagogía (2017) y codirige el grupo de investigación Feed2learn.
Maite Fernández-Ferrer
Doctora en Educación y Sociedad por la Universitat de Barcelona y miembro del grupo Learning, Media & Social Interactions. Ha formado parte de varios estudios sobre competencias y evaluación de aprendizajes y de la calidad en la educación superior. Es profesora lectora de los Estudios de Psicología y Ciencias de la Educación de la Universitat Oberta de Catalunya.
Lourdes Guàrdia
Doctora en Ciencias de la Educación por la Universidad del País Vasco / Euskal Herriko Unibertsitatea, profesora de los Estudios de Psicología y Ciencias de la Educación, directora del Máster en Educación y TIC (e-learning) e investigadora del grupo Edul@b de la Universitat Oberta de Catalunya.
Teresa Guasch
Apasionada de cómo contribuir a la mejora de la enseñanza y aprendizaje en entornos virtuales, dirige los Estudios de Psicología y Ciencias de la Educación de la Universitat Oberta de Catalunya (2014). Codirige el grupo de investigación Feed2learn.
Montse Guitert
Profesora agregada de los Estudios de Psicología y Ciencias de la Educación de la Universitat Oberta de Catalunya en el ámbito de la competencia digital. Coordinadora del grupo de investigación Edul@b. Distinción Jaume Vicens Vives de la Generalitat (2016) por el liderazgo ejercido en la formación online sobre competencias digitales en el entorno universitario y su impacto en la ciudadanía.
Marcelo Maina
Profesor agregado de la Universitat Oberta de Catalunya del Máster de Educación y TIC (e-learning) y del Máster de Evaluación y Gestión de la Calidad en Educación Superior. Es miembro del grupo de investigación Edul@b.
Juliana E. Raffaghelli
Investigadora Ramón y Cajal de los Estudios de Psicología y Ciencias de la Educación (Universitat Oberta de Catalunya). Máster y doctora en Educación (Università Ca’ Foscari, Italia). Exprofesora de la Universidad de Florencia. Investiga sobre aprendizaje profesional, media education y tecnologías educativas en la edad adulta y la universidad, con reciente foco sobre la alfabetización crítica en datos.
Marc Romero
Profesor agregado de los Estudios de Psicología y Ciencias de la Educación en el ámbito de la competencia digital en la Universitat Oberta de Catalunya. Investigador del grupo Edul@b. Doctor en Pedagogía por la Universitat Rovira i Virgili (URV). Licenciado en pedagogía por la URV.
Teresa Romeu
Profesora agregada de los Estudios de Psicología y Ciencias de la Educación de la Universitat Oberta de Catalunya. Imparte la docencia en grados, en la asignatura de Competencias Digitales y en el Máster de Educación y TIC (e-learning) en la Especialización de Docencia en línea. Además, es coordinadora académica de la formación inicial dirigida al profesorado que se incorpora por primera vez
a la universidad, que se lleva a cabo de forma virtual.

MÁS CONTENIDO MATEMÁTICO EN REDES SOCIALES

 

Decimales y fracciones entre textos e imágenes: una experiencia de aprendizaje basada en la elaboración de cómics digitales. Comunicación en El Congreso Iberoamericano «La educación ante el nuevo entorno digital»

El Congreso Iberoamericano «La educación ante el nuevo entorno digital» pretende ser un espacio donde cualquier docente pueda dar a conocer proyectos o experiencias relacionadas con cualquier área temática, pero con el denominador común del entorno digital en el que ya estamos inmersos. Se está desarrollando del 5 de noviembre al 15 de diciembre de 2019 en el Campus Virtual de Congresos de Formación IB.

A dicho evento online, el cual está resultando ser sumamente enriquecedor, hemos presentado la comunicación que indica el título de esta entrada, por si pudiera ser de utilidad y/o fuente de inspiración para nuevas propuestas didácticas.

Título 
Decimales y fracciones entre textos e imágenes: una experiencia de aprendizaje basada en la elaboración de cómics digitales. 

Autoría 

Resumen 
Esta investigación-acción tiene como objetivo la construcción de cómics matemáticos para facilitar el aprendizaje de fracciones y decimales. La justificación del uso del cómic radica en la motivación de los estudiantes por el uso de información visual, que al combinarla con el texto puede dar lugar a elementos de desarrollo de habilidades, creatividad y la lectura de contenido (Urbani, 1978, citado en Toh, 2009).  El soporte tecnológico se sostiene en una de las dimensiones de la competencia digital (Marqués, 2009), la dimensión del aprendizaje, expresada como transformación del contenido en adquisición del conocimiento. Además, el cómic se considera una herramienta con potencial para el aprendizaje de las matemáticas, por sus capacidades creativas y visuales (Cleaver, 2008) así como una posibilidad de mejora en la alfabetización de los estudiantes (Tilley, 2008).  

La investigación describe el proceso y resultados de una experiencia en el tercero de Enseñanza Secundaria Obligatoria, en Matemáticas orientadas a las enseñanzas académicas. El contenido a trabajar viene delimitado por el criterio de evaluación “utilizar las propiedades de los números racionales para operarlos, utilizando la forma de cálculo y notación adecuada, para resolver problemas de la vida cotidiana, y presentando los resultados con la precisión requerida” (RD. 1105/2014, p. 391).  

Los estudiantes construyen un cómic, utilizando una herramienta digital. Para el análisis de los resultados del conocimiento matemático expuesto se definen categorías que facilitan la identificación de cumplimiento de los estándares de aprendizaje. Estas categorías se construyen sustentadas en la investigación previa para el conocimiento matemático, desde la enseñanza y del aprendizaje de los números racionales. Las categorías que se utilizan son: el sentido dado a los algoritmos según su significado (que incluye la forma de utilizar los algoritmos y la resolución), la tipología del contexto que se utiliza para situar el objeto matemático, el rigor del lenguaje matemático, cómo se presentan los números (en forma decimal o fracción), y la reflexión final con los datos y resultados expuestos. 

Los resultados muestran distintos contextos que agrupamos como realistas y ficticios, donde estos últimos dan lugar a aquellos que dan sentido al objeto matemático y los que resultan forzados para introducir tanto el número como el algoritmo utilizado. Se utilizan distintos algoritmos, basados en suma y multiplicación; los cálculos implican usos como porcentaje, cálculo de las partes de un todo y equivalencia. En aquellas tareas que implican uso de algoritmos, los números base son fracciones en lugar de decimales. Encontramos tareas que finalizan de una manera reflexiva agrupando todos los datos utilizados a modo de recopilatorio para dar lugar a un ejercicio, y su solución. No aparecen demasiadas conversiones entre fracciones, y cuando lo hacen son para dar lugar a números que faciliten la interpretación de las partes de un todo. Los errores que aparecen surgen de cálculos encadenados entre fracciones, no siendo explícito si el cálculo es desde el paso anterior o desde el inicio, o cuando resultados dan lugar a números decimales y el contexto hubiese necesitado un número natural para su interpretación. 

Vídeo

 

https://congresoib.com/969joaquin-asenjo-perez/videos/video/302-decimales-y-fracciones-entre-textos-e-imagenes-una-experiencia-de-aprendizaje-basada-en-la

Esperando que os haya gustado esta investigación-acción en el campo de la Educación Matemática, queremos agradecer a Formación IB, a la UNED y a todas las personas que han apoyado y hecho posible este evento, de una u otra manera.

WP2Social Auto Publish Powered By : XYZScripts.com
A %d blogueros les gusta esto: