Applets interactivos

Profundizando en la comprensión de la relación entre los coeficientes de una ecuación de segundo grado y sus raíces. Ejercicios resueltos en vídeo con Graspable Math

En esta entrada comparto tres vídeos en los que muestro cómo profundizar en la comprensión de la relación entre los coeficientes de una ecuación de segundo grado y sus raíces. En demasiadas ocasiones solemos abordar en clase la explicación de un concepto o contenido matemático y, a renglón seguido, pasamos a la aplicación práctica reiterada con una batería de ejercicios tipo, sin profundizar en la comprensión del concepto.

Lo que propongo con estos tres vídeos es desplazar un poco el ejercicio típico rutinario: «Resuelve la ecuación de segundo grado …» «Halla las soluciones de la ecuación de segundo grado …» por otros que ahondan en la estructura de la ecuación y que nos permite obtener sus soluciones a partir de los coeficientes y, viceversa, obtener la expresión algebraica a partir de sus soluciones, ahondando y permitiendo ver la conexión existente.

Todos ellos han sido elaborados usando la herramienta digital interactiva Graspable Math, de las que ya os he hablado en anteriores entradas en este blog. Una herramienta ideal para acercar el lenguaje algebraico a nuestro alumnado, la cual nos facilita sobremanera a  docentes y estudiantes la escritura en lenguaje científico. Además de todo ello, se antoja como una aliada extraordinaria en entornos de enseñanza semipresencial, distancia o híbrido en el momento tan complejo que nos ha tocado vivir con motivo de la COVID.

Demostración: Relación entre coeficientes de una ecuación de 2º grado y sus raíces

Ejercicio. Comprobar relación entre los coeficientes y las raíces de una ecuación de 2ºgrado

Ejercicio. Hallar coeficiente usando relación coeficientes-raíces en ecuación de 2º grado

Podrás encontrar estos vídeos y muchos más en mi canal de Youtube MatemáTICas: 1,1,2,3,5,8,13,…  Si te ayudaron, y crees que pueden ayudar a estudiantes y profesores, suscríbete y comparte.

 

Más contenido matemático en redes sociales

Reto matemático terrorífico para la noche de Halloween – Graspable Math

En esta entrada os propongo un reto terrorífico para la noche de Halloween, basado en un modelo de áreas.

¿Cómo lo ves? ¿Eres capaz de resolverla?

¿Truco o trato? 🙂

Tarea interactiva. Reto matemático terrorífico para la noche de Halloween, realizada en Graspable Math

Pulsa aquí para completar el reto en GMA y dejar registrada tu respuesta (First Name: Tu nombre – Last Initial: Inicial de tu apellido)

Más contenido matemático en redes sociales

Colaboración con el Observatorio de Tecnología Educativa del INTEF. Graspable Math: una nueva manera de explorar y hacer matemáticas

El pase de diapositivas requiere JavaScript.

En esta entrada tengo el gusto de compartir artículo elaborado para el Observatorio de Tecnología Educativa del INTEF, un espacio de referencia en torno a la innovación digital en el aula.

Está dedicado a Graspable Math, una herramienta joven, aún poco extendida en España y en el contexto iberoamericano, con mucha potencialidad didáctica para el aula de matemáticas y con la que he trabajado de manera intensiva el último año.

 

ARTÍCULO EN EL OBSERVATORIO

Se trata de  “Graspable Math: una nueva manera de explorar y hacer matemáticas”. Está escrito por Luis Miguel Iglesias Albarrán, profesor de enseñanza secundaria en la especialidad de Matemáticas y Director del IES San Antonio en Bollullos Par del Condado (Huelva).

Graspable Math es una herramienta digital interactiva innovadora que permite una nueva manera de explorar y comprender, mediante la interacción (tocando y arrastrando números y símbolos), las relaciones matemáticas. Forma parte de un proyecto de investigación financiado por el Institute of Education Sciences (IES) dependiente del U.S. Department of Education.

Es una herramienta permite “aprender haciendo” (learning by doing) matemáticas, favoreciendo el aprendizaje autónomo de los estudiantes y permitiéndoles poner el foco en las estructuras matemáticas. El diseño de la herramienta ayuda a salvar el obstáculo de la notación formal, haciendo posible que el alumnado se centre en cómo funcionan. Les brinda, en este sentido, oportunidades para razonar y deducir de manera flexible sobre las tareas matemáticas.

Con Graspable Math se nos presenta, en definitiva, una nueva manera de explorar, enseñar y de hacer matemáticas.

Si quieres saber más sobre Grapable Math, puedes leer el artículo elaborado por Luis Miguel Iglesias Albarrán en el que, además, hace una valoración personal y ofrece recomendaciones para el empleo de esta herramienta.

Acceso al artículo “Graspable Math: una nueva manera de explorar y hacer matemáticas” en formatos PDF y web

 

Dejo a continuación más material por si quieres iniciarte en el uso de esta versátil herramienta.

PUBLICACIONES SOBRE GRASPABLE MATH

En este espacio he realizado distintas publicaciones al respecto:

 

LISTA DE VÍDEOS SOBRE GRASPABLE MATH

Comparto también lista con más de una treintena de vídeos sobre diferentes usos didácticos de esta herramienta.

 

Lista de vídeos en Youtube sobre Graspable Math (33 vídeos)

Te animo a usarla con tu alumnado, a compartirla con tus contactos y compañeros a través de la red y quedo a tu disposición para cualquier duda o comentario al respecto, en forma de comentario bajo esta entrada o en mis perfiles en redes sociales.

¡Ya me contarás cómo te ha ido con tus alumnos en clase! 🙂

MÁS CONTENDO MATEMÁTICO EN REDES SOCIALES

Vídeo: Pi (π), la ridícula forma en la que se calculaba Pi… hasta que… llegó Isaac Newton

Lo que tienen las vacaciones de Semana Santa, máxime estas tan atípicas con motivo de la COVID. Tiempo para disfrutar en familia, leer, ver, escuchar, observar… y publicar.

Hace tiempo que un vídeo no me resultaba tan didáctico como este. De ahí que haya decidido compartirlo en esta entrada para contribuir a su difusión. Me encanta la manera tan didáctica que tienen de explicar la historia de la matemática, máxime sobre un concepto tan relevante como Pi. Desde ya, tengo claro que formará parte de mi propuesta didáctica para el aula: Porque Pi es mucho más que 3.1416. Aprendizaje de conceptos por investigación.

Espero que lo disfrutéis tanto como yo.

Vídeo: π ✔️ La ridícula forma en la que se calculaba Pi… hasta que… llegó Isaac Newton 💫

Durante miles de años, los matemáticos calcularon Pi de forma obvia pero numéricamente ineficiente. Entonces llegó Newton y cambió el juego.

Este descubrimiento transformó la manera en que calculamos para siempre. Para muchos científicos Isaac Newton ha sido el más grande científico de todos los tiempos. Una de sus más grandes contribuciones fue expresar el comportamiento físico de la naturaleza en forma de leyes naturales, demostrando que las que gobiernan el movimiento en la Tierra y las que gobiernan el movimiento de los cuerpos celestes son las mismas. Destacan sus trabajos sobre la naturaleza de la luz y la óptica y el desarrollo del cálculo matemático. Desarrollo la ley de convección térmica, sus estudios sobre la velocidad del sonido en el aire; y su propuesta de una teoría sobre el origen de las estrellas. Fue también un pionero de la mecánica de fluidos, estableciendo una ley sobre la viscosidad. El gran mérito de Newton fue tomar los conocimientos de Galileo y Kepler y a partir de sus discusiones con Hyugens, Leibniz, Halley sobre todo, Robert Hooke y formular leyes que explican tanto el movimiento de los astros como el de los movimientos de cualquier otro objeto y de paso la mecánica de las máquinas.

Arndt, J., & Haenel, C. (2001). Pi-unleashed. Springer Science & Business Media – https://ve42.co/Arndt2001

Dunham, W. (1990). Journey through genius: The great theorems of mathematics. Wiley – https://ve42.co/Dunham1990

Borwein, J. M. (2014). La vida de π: De Arquímedes a ENIAC y más allá. En De Alejandría, a través de Bagdad (pp. 531-561). Springer, Berlín, Heidelberg – https://ve42.co/Borwein2012

Un agradecimiento especial a Alex Kontorovich, Profesor de Matemáticas de la Universidad de Rutgers, y Profesor Visitante Distinguido para la Difusión Pública de las Matemáticas Museo Nacional de Matemáticas MoMath por formar parte de este vídeo del Día de Pi.

Más contenido matemático en redes sociales

Graspable Math y Geogebra; aliadas extraordinarias para enseñar y aprender matemáticas en contextos presenciales discontinuos. 5 tareas resueltas en vídeos sobre funciones lineales, afines, paralelismo y ecuaciones de la recta

Los lectores asiduos de este rincón virtual matemático conocen sobradamente mi predilección por estas dos poderosas herramientas digitales. En mi opinión, indispensables ambas para la enseñanza y el aprendizaje de la matemática en el siglo XXI, siendo especialmente útiles en los contextos de enseñanza-aprendizaje semipresencial y a distancia especialmente extendidos con motivo de la COVID-19.

Aprovecho estas líneas para invitarte a visitar las distintas publicaciones sobre propuestas didácticas para trabajar en el aula y los materiales que he compartido sobre ambas en los últimos años:

Pues bien, si juntamos ambas, el resultado no puede ser catalogado de otro modo que excelente.

Como muestra de ello comparto en esta entrada 5 tareas resueltas paso a paso, en otros tantos vídeos, con ayuda de Geogebra y Graspable Math. 

Estos materiales los desarrollé para mis estudiantes de Matemáticas de 3º de ESO (14-15 años) para trabajar en modalidad online durante el cierre de los centros educativos españoles, periodo de la suspensión de la actividad docente presencial (marzo-junio 2020), con motivo de la COVID-19.

Espero te animes a usar los vídeos con tu alumnado si los consideras de utilidad.

 

Vídeos

1. Funciones lineales. Pertenencia a recta. Ecuación de la recta Geométrico – Graspable Math & Geogebra

 

2. Funciones lineales. Pertenencia a recta. Ecuación de la recta. Geometría Analítica. Graspable Math

 

3. Funciones afines. Ecuación de la recta. Recta paralela pasando por un punto – Graspable Math & Geogebra

 

4. Funciones lineales – Paralelismo – Significado de m y n en la ecuación explícita – Graspable Math & Geogebra

 

5. Funciones afines. Ecuación de la recta. Recta paralela pasando por un punto – Graspable Math & Geogebra

Más contenido matemático en redes sociales

Tarea Open Middle sobre logaritmos (cambio de base) elaborada en Graspable Math y en Scratch

Comenzamos la semana con esta entrada donde comparto los materiales de una propuesta didáctica para trabajar los logaritmos (teorema del cambio de base).

Se trata de una tarea de tipo Open Middle, traducida al español y adaptada a partir de la original en inglés del profesor Bryan Anderson. La he implementado en dos herramientas que en mi opinión presentan un potencial didáctico increible y a las que soy adicto; Graspable Math y Scratch.

Para ayudarte a implementar esta propuesta con tus estudiantes incluyo:

  1. Enunciado de la tarea en Graspable Math
  2. Tarea interactiva. Logaritmos OM realizada en Graspable Math
  3. Tarea interactiva. Logaritmos OM realizada en Scratch

Espero te animes a usar la propuesta con tu alumnado y os resulte atractiva y de utilidad.

Ya me contarás cómo te ha ido.

¡Ánimo!

 

Propuesta didáctica

 

1. Enunciado de la tarea en Graspable Math

 

2. Tarea interactiva. Logaritmos OM, realizada en Graspable Math.

 

3. Tarea interactiva. Logaritmos OM realizada en Scratch

Enlace a Logaritmos OM en Scratch

 

Esta entrada participa en la Edición 11.6: Conjeturas del Carnaval de Matemáticas, que en esta ocasión organiza Gaussianos.

 

Más contenido matemático en redes sociales

Applet interactivo Geogebra y vídeo. Ecuaciones de primer grado sencillas 1 paso (suma, resta). Método de la balanza

En esta entrada comparto sencillo applet interactivo realizado con Geogebra para mostrar al alumnado y permitirle practicar de manera autónoma la resolución de ecuaciones de primer grado sencillas de un solo paso (del tipo x + a = b o x – a = b). Incluyo también un pequeño vídeo explicativo mostrando la interacción con el applet.

Vídeo explicativo

Applet interactivo. Ecuaciones de primer grado sencillas 1 paso (suma, resta). Método de la balanza – Geogebra

Ayuda: Pulsar en el icono para ver el applet a pantalla completa y trabajar con él correctamente.

Pulsar para acceder al applet en geogebra.org

MÁS CONTENIDO MATEMÁTICO EN REDES SOCIALES

Tarea rica elaborada y resuelta con Graspable Math para trabajar las expresiones algebraicas con 2 variables

En esta entrada comparto los materiales de una propuesta didáctica para trabajar las expresiones algebraicas con 2 variables.

Para ayudarte a implementar esta propuesta con tus estudiantes incluyo:

  1. Enunciado de la tarea
  2. Incomparable. Expresiones algebraicas con 2 variables realizado en Graspable Math.
  3. Vídeo con la resolución de la tarea usando Graspable Math.

Espero te animes a usar la propuesta con tu alumnado y os resulte atractiva y de utilidad.

Ya me contarás cómo te ha ido.

¡Ánimo!

 

Propuesta didáctica

 

1.Enunciado de la tarea

 

 

2. Tarea: Incomparable. Expresiones algebraicas con 2 variables realizada en Graspable Math.

 

3. Vídeo con la resolución de la tarea usando Graspable Math.

 

MÁS CONTENIDO MATEMÁTICO EN REDES SOCIALES

Laberinto de ecuaciones de primer y segundo grado con Graspable Math. Propuesta didáctica con plantilla editable y vídeos de ayuda

En esta entrada comparto los materiales de una propuesta didáctica para trabajar las ecuaciones de primer y segundo grado (cuadráticas) que diseñé y llevé a cabo con mi alumnado de Matemáticas de 3º de ESO (14-15 años) en modalidad online durante el cierre de los centros educativos españoles, periodo de la suspensión de la actividad docente presencial (marzo-junio 2020), con motivo de la COVID-19.

Para ayudarte a implementar esta propuesta con tus estudiantes incluyo:

  1. Plantilla en formato editable (.docx)
  2. Plantilla en formato imprimible (.pdf)
  3. Vídeo de ayuda para los estudiantes para que puedan cumplimentar la plantilla en formato digital para escribir las ecuaciones y su resolución.
  4. Vídeo con la resolución de un laberinto de ecuaciones de primer grado realizado en Graspable Math.
  5. Laberinto de ecuaciones de primer grado sencillas. Método de las transformaciones algebraicas realizado en Graspable Math.

Espero te animes a usar la propuesta con tu alumnado y os resulte atractiva y de utilidad.

Ya me contarás cómo te ha ido.

¡Ánimo!

 

Propuesta didáctica

 

1.Plantilla en formato editable (.docx)

Plantilla – Laberinto de ecuaciones de primer y segundo grado

 

2. Plantilla en formato imprimible (.pdf)

Plantilla – Laberinto de ecuaciones de primer y segundo grado

 

3. Vídeo de ayuda para los estudiantes para que puedan cumplimentar la plantilla en formato digital para escribir las ecuaciones y su resolución. 

 

4. Vídeo con la resolución de un laberinto de ecuaciones de primer grado realizado en Graspable Math.

 

5. Laberinto de ecuaciones de primer grado sencillas. Método de las transformaciones algebraicas realizado en Graspable Math.

 

 

MÁS CONTENIDO MATEMÁTICO EN REDES SOCIALES

Reloj interactivo Geogebra para trabajar la magnitud tiempo (actividades horarias) en Educación Primaria

Comparto en esta entrada un recurso interactivo realizado con Geogebra que elaboré hace más de 5 años para trabajar la magnitud tiempo en el aula de Primaria.

Propuesta didáctica. ¿Cómo usar el recurso?
1. Accede al recurso: http://luismiglesias.es/geogebra/Reloj_Interactivo.html
2. Se trata un applet interactivo realizado con Geogebra que permite trabajar un amplio abanico de actividades horarias, previa configuración de los distintos ajustes de configuración que ofrece.
+ Descripción: Reloj con motivo infantil que permite trabajar actividades horarias de manera interactiva.
+ Opciones:
(·) Ayuda. Describe cómo usar el applet.
(·) Créditos. Información sobre autoría.
(·) Mostar/Ocultar manecillas. Muestra u oculta las manecillas permitiendo obtener un reloj mudo para trabajar actividades varias sobre él e incluso imprimirlo.
(·) Mostrar/Ocultar horas. Muestra u oculta los números.
(·) Reproducir/Detener. Simula el funcionamiento normal de un reloj. Basta con desplazar los puntos rojos de cada una de las manecillas para obtener distintas posiciones horarias. Configura la hora deseada y pulsar en Reproducir/Detener.
3. Ideal para el trabajo con pizarra digital interactiva, con dispositivos móviles, e incluso en papel, mediante captura de pantalla e impresión con los diferentes ajustes de configuración que proporciona el mismo.
4. Posibilidad de colocarlo como reloj proyectado (proyector/pizarra digital) en vuestra aula.
+ Acceder al recurso: http://luismiglesias.es/geogebra/Reloj_Interactivo.html.
+ Un alumno/a lo pone en hora.
+ Pulsa Reproducir.

5. Trabajar situaciones problemáticas, como por ejemplo:

Cuestiones relacionadas con la imagen de la izquierda:
1. ¿Qué hora indica el reloj?
2. ¿Cuánto tiempo falta para la 1?
3. Javi tenía cita con el dentista a las 11:45 y al mirar el reloj se ha acordado de la cita. ¿Cuánto tiempo acumula de retraso?

 

 

Otra potencialidad del recurso es el trabajo con dispositivos móviles, como se muestra a continuación:

En una sesión de tutoría con un grupo de futuros maestros, los cuales deben realizar un trabajo de diseño de sesiones de clase para trabajar los ángulos en la asignatura de Didáctica de la Matemática de 3º curso del grado de Educación Primaria, les indiqué que con la posición de las manecillas de un reloj se pueden trabajar todos los ángulos y recordé que años atrás había elaborado este reloj interactivo para trabajar la magnitud tiempo. Gracias a ellos lo he compartido en este espacio… 5 años después. Vemos como no hace falta buscar mucho para trabajar en contextos reales y cercanos al alumnado, un simple reloj, nos puede dar mucho juego; aquí tenemos dos: ángulos y tiempo.

Espero resulte de utilidad.

Acceso al reloj a pantalla completa: http://luismiglesias.es/geogebra/Reloj_Interactivo.html

WP2Social Auto Publish Powered By : XYZScripts.com
A %d blogueros les gusta esto: