Infantil

Aprovechamiento de bancos de Recursos Educativos Abiertos (REA). Conversión de SCORM a .elp con eXeLearning

En post anteriores hemos tratado el concepto de Transformación Digital Educativa (TDE) con Recursos Educativos Abiertos (REA). Bancos de REA institucionales de calidad.

En esta entrada comparto vídeo describiendo el proceso de descarga de un recurso del excelente repositorio CREA Andalucía y obtención de fuente .elp (eXe Learning Project) a partir de él.

Pasos
  1. Acceso a CREA Andalucía
  2. Localización y selección del REA a descargar
  3. Descarga del REA en formato SCORM 2004 desde el nodo andaluz de Agrega (Agrega Andalucía)
  4. Apertura del fichero .zip (descargado en el paso 3) en eXeLearning
  5. Modificación en eXeLearning
  6. Guardado como fichero fuente en formato .elp (eXe Learning Project)
  7. Ejemplo de exportación en formato carpeta autocontenida (para trabajar con el REA en pendrive, subir a un repositorio, trabajar en local en un ordenador…)

Vídeo

¡Feliz 2020!, sin cambio de década de siglo

Ante todo, feliz año 2020 a todos y a todas las lectoras de este blog.

El pasado 30 de diciembre, un pelín cansado de escuchar/leer todo tipo de comentarios (en la calle, en redes sociales y en los informativos de los distintos medios de comunicación), y sin ánimo alguno de polemizar, publiqué el siguiente tuit:

Pero, ya ves… el debate estaba implícito 🙂 y se ha generado un hilo de discusión muy divertido, con enfoques igualmente interesantes.

Yo, lo tengo claro. Y tú… ¿qué opinas? Tu opinión me interesa, como comentario en el blog o en Twitter.

Una bella historia de princesas para el primer día de clase de matemáticas. La mano de la princesa

Como docente, soy de los que piensan que: menos es más, y que cada cosa tiene su momento.

Y es que el curso escolar es bastante largo… y da lugar a todo. Es por ello, por lo que nunca comenzaré un curso escolar entregando una prueba de evaluación inicial a mis chicos en la primera clase (sesión) del curso.

¿Por qué? Son muchas las justificaciones que podría dar para ello: porque es antipedagógico,… pero voy a acabar rápido. Simple y llanamente porque no me gustaba, ni me gusta, ni me gustará nunca que me lo hagan a mí.

A todos nos gusta llegar a un sitio nuevo, iniciar una nueva etapa, conociendo un poco más de nuestro/a profesor/a, de su forma de explicar y expresarse y de cómo abordará la materia, así como conocer detalles de las personas que nos rodean, compañeros/as de clase con los que conviviremos 175 días lectivos, saber más acerca de sus intereses, preferencias, motivaciones,…

Es por ello por lo que, considero crucial una dinámica de conocimiento grupal, un rato de charla con nuestros alumnos, exponiendo el programa escolar de la asignatura de manera distendida, explicando la manera de trabajar, explicando los detalles de la evaluación, de lo que se espera de ellos/as, abriendo turno de palabra, dejando tiempo para que emanen las preguntas y los comentarios de los estudiantes, invitándolos a presentarse para favorecer la cohesión grupal e ir descubriendo aspectos de su personalidad que nos vendrán de perlas a lo largo del curso.

Pues bien, este curso, en la primera sesión de clase, contaré una historia de princesas a algunos de mis grupos de mis estudiantes, o tal vez a todos en función de cómo se desarrollen las distintas sesiones. 

Fuente: Pixabay, bajo licencia CC0

Sí, has leído bien. ¿Y por qué una historia de princesas? – te preguntarás-. Pues porque hablar de matemáticas no es únicamente demostrar o hacer ejercicios de aplicación del Teorema de Pitágoras, también es hablar de la belleza, del amor, contar relatos del mundo real e historias pertenecientes al imaginario de los sueños, o tal vez pertenecientes al mundo real en otro tiempo anterior, como son las historias de princesas.

Esta es la historia:

La mano de la princesa

Una conocida serie checa de dibujos animados cuenta, en sucesivos capítulos, la historia de una princesa cuya mano es disputada por un gran número de pretendientes.

Éstos deben convencerla: distintos episodios muestran los intentos de seducción que despliega cada uno de ellos, de los más variados e imaginativos.

Así, empleando diferentes recursos, algunos más sencillos y otros verdaderamente magníficos, uno tras otro pasan los pretendientes pero nadie logra conmover, siquiera un poco, a la princesa.

Recuerdo por ejemplo a uno de ellos mostrando una lluvia de luces y estrellas; a otro, efectuando un majestuoso vuelo y llenando el espacio con sus movimientos. Nada. Al fin de cada capítulo aparece el rostro de la princesa, el cual nunca deja ver gesto alguno.

El episodio que cierra la serie nos proporciona el impensado final: en contraste con las maravillas ofrecidas por sus antecesores, el último de los pretendientes extrae con humildad de su capa unas gafas (*), que da a probar a la princesa: ésta se las pone, sonríe y le brinda su mano.

Autor: Pablo Amster. Fuente Matemática, estás ahí (Paenza, A, 2005) (**)

¿Y qué tiene que ver ésta historia con las matemáticas? – te estarás preguntando.

Para empezar, la historia es bella, atractiva, intrigante, pues se masca la tensión, como en un buen problema de matemáticas, y hasta el final no observamos que todo encaje (solución del problema).

Durante buena parte del relato tenemos la sensación de que la princesa no se conformará con nada y que estamos ante una persona insaciable.

Pero, de repente, aparece un dato revelador, crucial para encontrar el desenlace (solución) de la historia (problema): «Al fin de cada capítulo aparece el rostro de la princesa, el cual no deja ver gesto alguno» –> ¡Ajá! La princesa no se emocionaba ante las maravillas ofrecidas por los distintos pretendientes… porque no podía verlas.

Si este dato hubiese aparecido antes, el resultado final no nos sorprendería. Al contrario, hubiésemos puesto nuestra mirada en los distintos pretendientes, viéndolos un poco tontos, al no darse cuenta de que no podía ver.

Pero, claro, al no conocer este dato crucial de que la princesa no puede ver, lo que se nos viene a la mente una y otra vez, es que algo falla en los pretendientes que no lo están haciendo bien con lo que ofrecen o que, tal vez, la princesa es una persona insaciable.

¿Qué es lo que hace que el último pretendiente para tener éxito?

Enterado del fracaso de los otros pretendientes al intentar conquistar a la princesa (resolver el problema), lo que hace es cambiar el enfoque del asunto, en otras palabras, «mirar el problema de otra manera, desde otra óptica». 

Porque como dijo el poeta portugúes Fernando Pessoa: «El binomio de Newton es tan hermoso como la Venus de Milo; lo que pasa es que muy poca gente se da cuenta».

Muy poca gente se da cuenta de lo más interesante, muchas veces pasa por delante de nosotros, está ahí y no lo vemos. En este caso el dato de que la princesa no hace ningún gesto ante las maravillas presentadas por los pretendientes, es fundamental, el más interesante de todos.

Como docente, hablo en primera persona pero puede que algunos/as compañeros/as de profesión compartan mis palabras, en alguna que otra ocasión me he sentido como los primeros pretendientes, es por ello por lo que siempre me esfuerzo/nos esforzamos e intento/amos mostrar la cara A (positiva y bella), de las matemáticas, o al menos suavizar la cara B (más árida y compleja, pero intrínseca y necesaria) a las mismas, aunque no siempre, mi/nuestro cariño y pasión, obtengan el resultado que esperamos en cuanto a motivación y aprendizaje por parte de nuestros estudiantes.

Aprovechando estos días de preparación y reflexión previos al comienzo del periodo lectivo, he decidido escribir esta entrada relatando cómo será mi primer día de clase con esta bella historia intentando conseguir que, desde el primer minuto, mis estudiantes miren los problemas, y la asignatura de matemáticas, de otra manera. De la misma manera que lo hizo el último pretendiente para tener éxito, aprendiendo de los errores anteriores de los que precedieron; porque el aprendizaje no es más que una sucesión de errores de los que aprender. Que la miren de otra manera, de la misma manera que lo hice yo al decidir cambiar el enfoque de una clase tradicional de matemáticas por la que planifiqué para darles la bienvenida. Asimismo, estaré encantado de conocer que otros/as compañeros/as docentes la llevaréis a vuestras aulas. 

Suerte a toda la comunidad educativa y feliz curso 2018/2019.

Una bella historia para el primer día de clase de matemáticas. La mano de la princesa apareció primero en MatemáTICas: 1,1,2,3,5,8,13,…

(*) En el relato original aparece «un par de anteojos» en lugar de «unas gafas».

(**) Gracias al maestro Adrián Paenza, por inspirarme el desarrollo de mi primer día de clase plasmado en este post. Vaya joyas tengo en mi biblioteca personal, gracias a la pluma del maestro argentino.

Investigación: Creencias, actitudes y presencia de los procesos matemáticos en la práctica docente

gt-c-a-p-matematicas

Cuestionario: Creencias, actitudes y presencia de los procesos matemáticos en la práctica docente.

Hace algún tiempo pusimos en marcha el GRUPO DE TRABAJO SOBRE ACTITUDES Y CREENCIAS HACIA LAS MATEMÁTICAS.

Nuestra intención con la creación de este grupo no es otra que realizar una investigación sobre las creencias, actitudes y presencia de los procesos matemáticos en la práctica docente.

Hace unos meses presentamos el primer avance de nuestro proyecto de investigación en el

Artículo: <<Las actitudes hacia las matemáticas en estudiantes y maestros de educación infantil y primaria: revisión de la adecuación de una escala para su medida>>

Raquel Fernández Cézar, Natalia Solano Pinto, Karina Rizzo, Ariadna Gomezescobar Camino, Luis Miguel Iglesias y Alejandro Espinosa presentan el primer avance de su proyecto de investigación sobre las actitudes hacia las matemáticas de estudiantes y maestros de educación infantil y primaria. Son investigadores y profesores de Argentina, Ecuador y España surgidos a propuesta de Raquel Fernández en la Comunidad de Educadores para la Cultura Científica de IBERCIENCIA. La energía potencial que tienen las redes y comunidades es la que les ha permitido conocerse, tratarse y ponerse de acuerdo en una investigación que consideramos muy importante para ir cambiando la imagen pública de la matemática escolar.

En este tiempo hemos estado trabajando en el diseño del cuestionario que servirá de base para nuestra investigación. Una vez concluida la elaboración del mismo, iniciamos la siguiente fase: la recogida de datos para su posterior análisis.
Es por ello por lo que te agradecemos tu colaboración con la cumplimentación del mismo, apenas te llevará unos minutos, y su difusión entre tus colegas docentes.
Gracias de antemano por colaborar con nuestra investigación. Tus respuestas son muy importantes para nosotros y nos permitirán seguir avanzando en esta línea en favor de una mejor Educación Matemática.
Asimismo te agradecemos tu colaboración con la difusión en redes sociales para que otros colegas conozcan y puedan participar en la investigación.
Más información sobre nuestra investigación, aquí: http://www.oei.es/cienciayuniversidad/spip.php?article6794

Tortitas matemáticas

Matemáticas hasta en el desayuno… #Feliz2017

tortitasmatematicas

Fuente: Center of Math ‏

Canvas editable para el desarrollo de proyectos/unidades/propuestas didácticas

Comparto en esta entrada documento de utilidad para planificación de acciones docentes,

ya sean de aprendizaje basado en proyectos (ABP), unidades didácticas o propuestas didácticas cualesquiera.

Comparto dos versiones:

  • Para imprimir directamente (pulsar para descargar fichero PDF) y realizar la planificación en papel. Su impresión en formato A3 da mucho juego para el trabajo de planificación colectivo, departamental, de área, propuestas interdisciplinares con otros compañeros docentes,…)

canvas-desarrollo-proyectos-unidades-propuestas-didacticas-luis-m-iglesias

Está compartido con licencia Creative Commons CC-BY-NC-SA para que puedas usarlo, modificarlo y distribuirlo libremente, con la única condición de citar la fuente original.

Espero sea de utilidad para tu trabajo diario a pie de aula. ¡Ya me contarás qué te parece!

Saludos y feliz domingo.

Caja registradora con #Scratch. Devuelve mínimo número de billetes y monedas.

caja-registradora-scratch-luismiglesias

Si recientemente compartía Ordenando…ando. Series lógicas, una pequeña aplicación para Educación Infantil/Primaria que permite ordenar series lógicas arrastrando cada elemento a su lugar correspondiente, hoy, comparto una aplicación que permite simular el comportamiento de una caja registradora, la cual devuelve el mínimo número de billetes y monedas posibles. 

 

¿Cómo funciona?

Al introducir un valor para el Importe de la compra y otro valor para el dinero que «Entrega» (cantidad con la que se quiere pagar la compra), la aplicación calcula la cantidad «A devolver» (el cambio) y va indicando uno a uno el número de billetes y/o monedas mínimas que son necesarios para efectuar este cambio.

 

Vídeo demostración

 

 

¿Quieres probarla?

Ordenando…ando. Series lógicas con #Scratch

Ordenando...ando_con_Scratch_luismiglesias

Si recientemente compartía Calcula la media aritmética con Scratch #Estadística, programa que calcula la media aritmética de un conjunto de datos, previa introducción del número total de datos (n) y el valor de cada uno de los datos (xi), hoy, comparto una pequeña aplicación para Educación Infantil/Primaria que permite ordenar series lógicas arrastrando cada elemento a su lugar a su lugar correspondiente. 

 

¿Cómo funciona?

Arrastra cada uno de los elementos de las distintas series lógicas que irán apareciendo, hasta las casillas sombreadas en verde en el orden creciente que le corresponda.

Cuando completes una serie, pulsa en la bandera verde y aparecerá otra.

 

¿Quieres jugar?

Nuevo descubrimiento matemático. Pentágono irregular que recubre el plano #teselaciónpentagonal #mosaicos

Soy un apasionado de cualquier cosa que lleva que lleve matemáticas detrás… (es decir, de la vida y del mundo que nos rodea… puesto que están por todas partes 🙂 ) pero, de manera especial, disfruto con los mosaicos y las teselaciones del plano.

Pues bien, recientemente, Casey Mann, Jennifer McLoud y David Von Derau, grupo de matemáticos de la Universidad de Washington Bothell, han descubierto un pentágono irregular que es capaz de rellenar completamente el plano, esto es, sin dejar espacios ni superponerse.

Se trata de un descubrimiento importante para un problema cuya resolución es bastante compleja, anque resulte aparentemente simple en su enunciado, el cual podría comprender perfectamente cualquier estudiante de Primaria. Dicho enunciado podría indicar algo como lo siguiente:

Rellenar un folio, usando únicamente piezas idénticas de un pentágono irregular.

 

Un ejemplo de teselación realizada con el nuevo pentágono descubierto:

teselacion-pentagonal-n15-1

Teselación del plano tomando como base el pentágono descubierto. Imagen: Casey Mann.

 

Las medidas del pentágono irregular hallado son:

teselacion-pentagonal-n15-2

Medidas de ángulos y lados del pentágono (tesela base). Imagen: Casey Mann.

 

Un poco de historia

El problema matemático de hallar pentágonos irregulares convexos que sean capaces de recubrir el plano completamente tiene más de un siglo de historia. Hasta el momento se habían descubierto 14 tipos. Hace unos 30 años del descubrimiento del último de los tipos conocidos. El presentado en este post, hace el número 15.

teselacion-pentagonal-1-a-15

Tipos de teselaciones pentagonales 1-15. Imagen: Ed Pegg.

 

Construcciones y animaciones interactivas

Si quieres divertirte y jugar un poco con los 15 tipos, adelante…

Teselación pentagonal 1 – Wolfram Alpha Teselación pentagonal 2 – Wolfram Alpha Teselación pentagonal 3 – Wolfram Alpha
Teselación pentagonal 4 – Wolfram Alpha Teselación pentagonal 5 – Wolfram Alpha Teselación pentagonal 6 – Wolfram Alpha
Teselación pentagonal 7 – Wolfram Alpha Teselación pentagonal 8 – Wolfram Alpha Teselación pentagonal 9 – Wolfram Alpha
Teselación pentagonal 10 – Wolfram Alpha Teselación pentagonal 11 – Wolfram Alpha Teselación pentagonal 12 – Wolfram Alpha
Teselación pentagonal 13 – Wolfram Alpha Teselación pentagonal 14 – Wolfram Alpha Todas las teselaciones pentagonales – incluida la nº 15

 

Propuesta didáctica para PDI: Aprendemos los números del 0 al 10 #SMART #PDI #Notebook

Hace unos días compartí en la galería de recursos de SMART un recurso de aprendizaje interactivo que contiene una variada selección de actividades para trabajar los números del 0 al 10 con los más pequeños del cole. He usado un tema de robots para hacerlo más atractivo para los peques.

propuesta-didactica-notebook-0al10-luismiglesias

Acceso al recurso y descarga del fichero notebook con la propuesta.

Espero que te guste y sea de utilidad, sino para ti, para alguien que conozcas de tu entorno.

WP2Social Auto Publish Powered By : XYZScripts.com
A %d blogueros les gusta esto: