LOMCE

Artículo sobre este blog en El Recreo Diario · ‘MatemáTICas: 1,1,2,3,5,8,13,…’: 15 años mejorando el aprendizaje en las aulas

Comparte MatemáTICas: 1,1,2,3,5,8,13,...

Hoy traigo a este espacio una bonita publicación que dedica El Recreo Diario (Periódico escolar, educativo y cultural) a esta bitácora virtual matemática, con motivo de su 15 cumpleaños.

Agradecido y sorprendido, he recordado los inicios de este blog, que coincidieron con un bonito periodo, época dorada de la blogosfera educativa y efervescencia y consolidación de la Web 2.0 educativa.

El Recreo Diario · ‘MatemáTICas: 1,1,2,3,5,8,13,…’: 15 años mejorando el aprendizaje en las aulas

El blog ‘MatemáTICas: 1,1,2,3,5,8,13,…‘, del reconocido profesor onubense de matemáticas Luis Miguel Iglesias Albarrán, cumple este jueves 14 de marzo, Día Internacional de las Matemáticas, la friolera de 15 años, una efemérides y un número redondo que bien merecen una mención especial en este periódico educativo sobre este blog que tanto bien ha hecho y hace por la didáctica de esta materia, con lo que, de paso, El Recreo Diario también quiere promover un impulso a la recuperación de la blogosfera educativa, tan escasa en la actualidad.

Funcionario de carrera del cuerpo de profesores de Enseñanza Secundaria de la especialidad de Matemáticas, Luis Miguel Iglesias Albarrán es actualmente el director del IES San Antonio de Bollullos Par del Condado (Huelva), una responsabilidad que ejerce después de una amplísima trayectoria en la que ha sido profesor de Didáctica de la Matemática en la Universidad de Huelva y que le ha llevado a participar y coordinar Proyectos de Investigación Educativa (PIV) y Elaboración de Materiales Curriculares (PEM) de la Consejería de Desarrollo Educativo y Formación Profesional.

 

«Por desgracia apenas quedan espacios de aquella blogosfera educativa, generada con la Web 2.0 y el nacimiento de redes sociales como Twitter, hoy X, que estén en activo», destaca el autor del blog ‘MatemáTICas: 1,1,2,3,5,8,13,…’, que aboga por «recuperar, recordar, homenajear y, por qué no, hacer llamamiento para continuar con los blogs para difundir los ricos productos finales de las situaciones de aprendizaje competenciales que se desarrollan en las escuelas en el contexto LOMLOE», prosigue el profesor en declaraciones realizadas a El Recreo Diario.

Autor de diversas publicaciones como artículos, monográficos y capítulos de libros sobre didáctica, innovación y tecnología educativa para enseñar y aprender, Luis Miguel Iglesias Albarrán ha participado en los últimos años en el diseño del currículo de Matemáticas LOMLOE a nivel nacional; en el Proyecto REA/DUA Andalucía, como coordinador técnico del proyecto y persona experta en Gestión de Objetos Digitales Educativos (ODE); en el Proyecto Situaciones de Aprendizaje Matemáticas INTEF-MEFP y el proyecto EDIA-CEDEC; en el grupo de trabajo encargado del ‘Análisis del Marco Común de la Competencia Digital Docente (CDD) y el asesoramiento de las actividades formativas que proporcional al personal docente lo distintos niveles de progresión de la Competencia Digital Docente’; o en el Proyecto europeo FAIaS (Fomentando la Inteligencia Artificial en las Escuelas), entre otros.

 

Más contenido matemático en redes sociales

Comparte MatemáTICas: 1,1,2,3,5,8,13,...

Propuesta didáctica LingMáTICas. Fortaleciendo la competencia linguística: comunicación, representación y resolución de problemas matemáticos de decimales y fracciones elaborando cómics digitales

Comparte MatemáTICas: 1,1,2,3,5,8,13,...

Los lectores de este blog conocen bien mi predilección por vincular lengua y matemáticas. Ello me llevó hace más de una década a bautizarla. Es decir, a buscar un término, un palabro, con el que poder categorizarlas. Le llamé LingMáTICas.

Así, definí LingMáTICas como el conjunto de propuestas didácticas, contextos de aprendizaje, encaminados a fortalecer la competencia lingüística, en todos sus ámbitos, desde el aula de matemáticas, con ayuda de la tecnología (TIC).

Definición de LingMáTICas. Luis M. Iglesias

Son muchos los compañeros docentes que en estos momentos están inmersos en la elaboración del plan de trabajo para el tratamiento de la lectura en el aula de matemáticas en sus respectivos centros educativos, de manera especial en Andalucía, atendiendo a las INSTRUCCIONES DE 21 DE JUNIO DE 2023, DE LA VICECONSEJERÍA DE DESARROLLO EDUCATIVO Y FORMACIÓN PROFESIONAL, SOBRE EL TRATAMIENTO DE LA LECTURA PARA EL DESPLIEGUE DE LA COMPETENCIA EN COMUNICACIÓN LINGÜÍSTICA EN EDUCACIÓN PRIMARIA Y EDUCACIÓN SECUNDARIA OBLIGATORIA.

Con la idea de aportar mi granito de arena, para ayudar en la medida de lo posible, quiero compartir en esta entrada un trabajo de investigación-acción que llevé a cabo hace unos años por si fuera de utilidad. 

El mismo fue presentado en el Congreso Iberoamericano «La educación ante el nuevo entorno digital», a finales del 2019. Este Congreso fue un espacio donde se pretendía dar a conocer proyectos o experiencias relacionadas con cualquier área temática, pero con el denominador común del entorno digital en el que ya estamos inmersos.

Título 
Decimales y fracciones entre textos e imágenes: una experiencia de aprendizaje basada en la elaboración de cómics digitales. 

Autoría 

Resumen 
Esta investigación-acción tiene como objetivo la construcción de cómics matemáticos para facilitar el aprendizaje de fracciones y decimales. La justificación del uso del cómic radica en la motivación de los estudiantes por el uso de información visual, que al combinarla con el texto puede dar lugar a elementos de desarrollo de habilidades, creatividad y la lectura de contenido (Urbani, 1978, citado en Toh, 2009).  El soporte tecnológico se sostiene en una de las dimensiones de la competencia digital (Marqués, 2009), la dimensión del aprendizaje, expresada como transformación del contenido en adquisición del conocimiento. Además, el cómic se considera una herramienta con potencial para el aprendizaje de las matemáticas, por sus capacidades creativas y visuales (Cleaver, 2008) así como una posibilidad de mejora en la alfabetización de los estudiantes (Tilley, 2008).  

La investigación describe el proceso y resultados de una experiencia en el tercero de Enseñanza Secundaria Obligatoria, en Matemáticas orientadas a las enseñanzas académicas. El contenido a trabajar venía delimitado por el criterio de evaluación “utilizar las propiedades de los números racionales para operarlos, utilizando la forma de cálculo y notación adecuada, para resolver problemas de la vida cotidiana, y presentando los resultados con la precisión requerida” (RD. 1105/2014, p. 391). 

Nota:

En esa fecha estaba en vigor el currículo LOMCE por lo que es evidente que habría que hacer la traslación al currículo actual LOMLOE, RD 217/2022 – Decreto 102/203 de 9 de mayo – Orden 30 de mayo 2023 Currículo Secundaria Andalucía, aunque no es excesivamente complicado. De manera clara tiene vinculación con el Sentido numérico (en lo relativo a saberes básicos) y con los Criterios de Evaluación correspondientes de las Competencias Específicas relativas a la resolución de problemas [RESPRO] y a la comunicación y representación [COMREP] Y socioemocionales [SOCAFE].

Los estudiantes construyen un cómic, utilizando una herramienta digital. Para el análisis de los resultados del conocimiento matemático expuesto se definen categorías que facilitan la identificación de cumplimiento de los estándares de aprendizaje. Estas categorías se construyen sustentadas en la investigación previa para el conocimiento matemático, desde la enseñanza y del aprendizaje de los números racionales. Las categorías que se utilizan son: el sentido dado a los algoritmos según su significado (que incluye la forma de utilizar los algoritmos y la resolución), la tipología del contexto que se utiliza para situar el objeto matemático, el rigor del lenguaje matemático, cómo se presentan los números (en forma decimal o fracción), y la reflexión final con los datos y resultados expuestos. 

Los resultados muestran distintos contextos que agrupamos como realistas y ficticios, donde estos últimos dan lugar a aquellos que dan sentido al objeto matemático y los que resultan forzados para introducir tanto el número como el algoritmo utilizado. Se utilizan distintos algoritmos, basados en suma y multiplicación; los cálculos implican usos como porcentaje, cálculo de las partes de un todo y equivalencia. En aquellas tareas que implican uso de algoritmos, los números base son fracciones en lugar de decimales. Encontramos tareas que finalizan de una manera reflexiva agrupando todos los datos utilizados a modo de recopilatorio para dar lugar a un ejercicio, y su solución. No aparecen demasiadas conversiones entre fracciones, y cuando lo hacen son para dar lugar a números que faciliten la interpretación de las partes de un todo. Los errores que aparecen surgen de cálculos encadenados entre fracciones, no siendo explícito si el cálculo es desde el paso anterior o desde el inicio, o cuando resultados dan lugar a números decimales y el contexto hubiese necesitado un número natural para su interpretación. 

Descarga del material

 

DESCARGAR: LingMáTICas. Comunicación, representación y resolución de problemas matemáticos mediante cómics digitales

Más contenido matemático en redes sociales

Comparte MatemáTICas: 1,1,2,3,5,8,13,...

MatemáTICas: 1,1,2,3,5,8,13… cumple 13 años en la red

Comparte MatemáTICas: 1,1,2,3,5,8,13,...

Hoy es un día especial para quien escribe ya que, tal día como hoy, hace 13 años (14 de marzo de 2009), en el hueco que gentilmente me cedieron los compañeros de Profeblog, escribía los primeros renglones de mi libro virtual matemático; MatemáTICas: 1,1,2,3,5,8,13,…  

Pastel de cumpleaños con vela rosa número 13 en backgraund azul prendido fuego por encendedor. vista de primer plano | Foto Premium

Fuente: Freepik

Lo bauticé con este nombre, en honor a una de las sucesiones más conocidas de la matemática, la sucesión de Fibonacci

File:Fibonacci sequence - starting with zero.jpg

File:Fibonacci blocks.svg

Fuente: Wikimedia commons

Llegó a este mundo cuando ya incluso anunciaban la muerte de los blogs. Ya veis que no hice mucho caso a tales rumores :-). Lo tenía claro. Necesitaba un espacio que complementara mis clases, un rincón que apostase de manera clara por la inclusión de la tecnología en la práctica educativa, en mis clases de matemáticas. Un lugar en la red donde centralizar los materiales didácticos que fuese elaborando para mis alumnos. Ese sitio, ese lugar, ese espacio debía de ser un blog, este blog.

Y claro, no podía ser de otra forma. Su fecha de lanzamiento, el día de Pi #díadePi o #Piday, por aquello del inglés, 3/14 (14 de marzo). Mi primer post, un modesto y tímido, Bienvenid@ . La 40ª Conferencia General de la UNESCO proclamó el 14 de marzo de cada año como el Día Internacional de las Matemáticas en noviembre de 2019 (40C/Resolución 30).

Por este motivo, hoy, la comunidad matemática mundial también está de celebración, aunque no podamos hacerlo como quisiéramos y nos gustaría. El mundo y especialmente Europa está viviendo días negros por la invasión de Ucrania a manos de Rusia. Si no tuvimos bastante con la COVID-19, la tragedia humanitaria causada por esta violación de las fronteras de un país y de los derechos humanos nos tiene bastante apenados y sonrojados, al ver día tras día a través de los medios de comunicación la barbarie que la especie humana pude llegar a cometer. Desde estas líneas, todo mi apoyo y fuerza al pueblo ucraniano.

Mucho ha llovido desde aquel 14/03/2009. El termino competencia digital había realizado su incursión junto al resto de Competencia Básicas de la LOE (Ley Orgánica de Educación, 2006). Los docentes que usábamos los blogs como medio para ampliar nuestra aula física, lo que hoy sería un entorno blended-learning, lo hacíamos a voluntad propia y éramos considerado una especie un tanto singular. Recuerdo aquella mesa de debate en el primer EABE (Encuentro Andaluz de Blogs Educativos) donde en la mesa de trabajo simultánea ya hablamos del reconocimiento de la competencia digital. ¡Qué cosas se nos ocurrían! 😉

13 años más tarde, dos nuevas leyes educativas LOMCE (2013) y LOMLOE (2020), celebro que Europa y España lo tengan claro, y con un buen marco de la Competencia Digital Docente elaborado por INTEF con colaboración de las comunidades, habrá un proceso certificador y acreditador de la competencia a través de actividades formativas alineadas con dicho marco, que se desencadenará en nuestro país en próximas fechas. La Educación de hoy día no se concibe sin Tecnología, y en Matemáticas son imprescindibles para Enseñar y para Aprender.

Iglesias-Albarrán, Luis M. Enseñanza y aprendizaje de las matemáticas en la era digital. Ambientes de aprendizaje mediados por TIC,SCOPEO MONOGRÁFICO Nº4: e-MatemáTICas,,4,41-80,2012,Universidad de Salamanca. Servicio de Innovación y Producción Digital

 

Desde aquel día, reconocimiento del ITE, ahora INTEF, como Buena Práctica 2.0 por la inclusión de las TIC en la práctica educativa,  muchas vivencias, reconocimientos en certámenes y otras muy buenas experiencias profesionales a través de las cuales he conocido, compartido y descubierto grandes compañeros/as de viaje, más de 500 entradas publicadas, multitud de materiales de elaboración propia o recopilados, material de conferencias, jornadas de trabajo en las que he participado, artículos publicados en revistas o reseñas de colaboraciones en libros, más de 6 millones de visitas,… hacen que hoy deba daros las GRACIAS, y confirmar que seguiré viniendo por aquí mientras tenga fuerzas, a compartir cada vez que tenga o sea capaz de encontrar la manera de hacer un hueco para escribir y publicar sobre Matemáticas (con Tecnología): MatemáTICas.

Para terminar os dejo con tres vídeos sobre Pi y dos poemas. Espero que os guste.

Vídeo: ¿Para qué sirve el número Pi? BBC Mundo

 

Vídeo: El número Pi Canal encuentro Adrián Paenza

Vídeo: Spock («Star Trek») desactiva una computadora malvada pidiéndole que calcule el último dígito de Pi :-). Fuente: Mathigon

 

Poema: El número Pi (Wislawa Szymborska, Premio Nobel de Literatura 1996). Fuente: Yosoytuprofe

El admirable número Pi
tres coma uno cuatro uno.
Las cifras que siguen son también preliminares
cinco nueve dos porque jamás acaba.
No puede abarcarlo seis cinco tres cinco la mirada,
ocho nueve ni el cálculo
siete nueve ni la imaginación,
ni siquiera tres dos tres ocho un chiste, es decir, una comparación
cuatro seis con cualquier otra cosa
dos seis cuatro tres de este mundo.

La serpiente más larga de la tierra suma equis metros y se acaba.
Y lo mismo las serpientes míticas aunque tardan más.
El séquito de dígitos del número Pi
llega al final de la página y no se detiene,
sigue, recorre la mesa, el aire,
una pared, una hoja, un nido de pájaros, las nubes, hasta llegar
directo al cielo,
perderse en la insondable hinchazón del cielo.
¡Qué breve la cola de un cometa, cual la de un ratón!
¡Qué endeble el rayo de un astro si se curva en la insignificancia
del espacio!

Mientras aquí dos tres quince trescientos diecinueve
mi número de teléfono la talla de tu camisa
el año mil novecientos sesenta y tres sexto piso
el número de habitantes sesenta y cinco céntimos
dos pulgadas de cintura una charada y un mensaje cifrado
que dice vuela mi ruiseñor y canta
y también se ruega guardar silencio,
y se extinguirán cielo y tierra,
pero el número Pi no, jamás,
seguirá su camino con su nada despreciable cinco
con su en absoluto vulgar ocho
con su ni por asomo postrero siete,
empujando, ¡ay!, empujando a durar
a la perezosa eternidad.

Poema: El número  π (A Pilar Bayer y A F Walter May). Fuente: Repoelas


3

 

1

 

4

 

1

5

 

 

9

 

 

 

 

2

 

6

 

 

5

 

 

3

 

5

 

 

8

 

 

 

 

9

 

 

 

 

7

 

 

 

9

 

 

 

 

3

 

2

3

 

8

 

 

 

4

 

 

6

 

 

2

 

6

 

 

 

4

 

3

 

3

 

8

 

 

 

3

 

2

 

7

 

 

 

9

 

 

 

 

5

 

0

2

 

8

 

 

 

8

 

 

 

4

 

1

 

 

9

 

 

 

 

7

 

1

 

6

 

 

9

 

 

 

 

3

 

9

 

 

 

 

9

 

 

 

 

3

 

7

 

 

 

 

5

 

1

0

5

 

8

 

 

 

2

 

9

 

 

 

 

7

 

 

 

4

 

 

9

 

 

 

 

4

 

 

4

La longitud de la circunferencia,
la longitud del diámetro:
¡qué fuerza su cociente,

siempre el mismo, constante, eterno!,

tres coma catorce,
tres coma catorce dieciséis,
primeros balbuceos de un río infinito
de decimales sin período, siempre nuevos,

único e infinito, único y diverso,

tres coma catorce,
el recuerdo escolar de tantos cálculos,
tres coma catorce dieciséis,
el recuerdo de números en clave,
como barcos en un puerto,

humeantes, a punto de partir
río abajo, mientras el agua fluye
hecha números y caricia,
y el lomo de los cocodrilos de las preguntas
que van haciendo los matemáticos
anuncia ya todo tipo de peligros:
es fácil que una de ellas os pille
en sus mandíbulas plagadas de agudezas
y os arranque años de vida con un problema,

el área del círculo
Dividida por el cuadrado del radio

seductor, desafiante,
muy difícil de resolver,
pero tan atractivo que ni siquiera os déis cuenta
de que estáis quemando en él la vida,
de tan adentro como os ha entrado
aquella pregunta que tan pocos pueden comprender,

y los cinco sentidos se ponen al acecho
de algo que desborda los sentidos,
de las extrañas propiedades de un número
llamado irracional y que desborda la razón,
pero que está en el fondo de la razón del universo.

El primer problema: calcularlo,
obtener más y más decimales,
escalar un monte de decimales,

penetrando cada vez más en un mundo
que ya no pertenece al universo de la medida
–si medís las longitudes
de circunferencias reales, de diámetros reales,
y obtenéis su cociente,

sólo hallaréis dos decimales, tres decimales,
quizás cuatro decimales del número ?
(lo que de él sabían los egipcios):
los otros quedarán más allá
de los límites de la precisión de la medida-;
una definición, pues, que parece tan simple,
–un cociente de dos longitudes que estáis viendo
dibujadas en el papel–

y lleva, en cambio, a un desbordamiento de decimales.
¿Y cómo han calculado tantos decimales?
Durante más de dos mil quinientos años,
los que se atrevieron a embarcarse en la aventura,
siguiendo los pasos del gran Arquímedes,
inscribían polígonos en un círculo,
decágonos, dodecágonos, pentadecágonos,
polígonos de más y más lados,
y calculaban su perímetro

y lo dividían por el diámetro del círculo circunscrito;
naturalmente, cuanto más lados,
más se aproxima el polígono a la circunferencia
y más precisión se consigue en los decimales,
pero también encontraban
más y más dificultades;
parece duro, lo sé,

parece árido, lo sé,
pero también sé ver los atractivos
de navegar por un río en una selva espesa,
sin saber cómo será su curso un poco más allá,
ahora lento –decimales pequeños–,
ahora rápido –decimales grandes–,
siempre fluyente pero siempre impredictible:
¿cuál será el siguiente decimal?
¿Valdrá dos?, ¿valdrá cinco?, ¿valdrá nueve?

no hay manera de saberlo,
salvo que hagáis el cálculo;
¿cuál será el valor del decimal quinquagésimo?

el área de la esfera
dividida por cuatro veces el cuadrado del radio,

no hay otra manera de saberlo
que hacer todos y cada uno de los cálculos
que conducen hasta este decimal,

es decir, calcular todos los decimales anteriores
sin saltarse ni uno
–como en el tiempo de nuestra vida:
no hay otra manera de saber
lo que pasará dentro de un año
que vivir día a día todo el año,
hora a hora, minuto a minuto todo el año,
un tiempo, pues, diferente del tiempo de los astros,

predictible a largo término.
Pero sigamos con los decimales del número ?:
el método de los polígonos se hace largo y fatigoso:
¿habría manera de hallar un camino más rápido?

John Wallis, hacia mil seiscientos ochenta,
encuentra (en Oxford) que ? puede ser expresado
-tomad nota-
como el doble del producto de los cuadrados
de todos los números pares
dividido por el producto de los cuadrados

el volumen de la esfera
dividido por cuatro tercios del cubo de su radio,

de todos los números impares;
parece misterioso, lo sé,
no es evidente, ni fácil de demostrar,
pero es un salto, ¿no lo véis?:
hemos pasado, por primera vez en dos mil años,
de la geometría a la aritmética,

vemos el número ? con una luz diferente,
nos cuesta reconocer en este cociente
de productos de números
aquel cociente de longitudes inmediatas,

tan directamente visibles y sensibles,
y ahora nos parece arisco y misterioso,
pero su cálculo se ha hecho más fácil,

más y más decimales;
el proceso se acelera todavía más
cuando se hallan otras formas aritméticas

de escribir el número π, :
como suma de potencias,
como suma de inversos de potencias,
como raíz de sumas de inversos de potencias…
Pero se necesita, para eso,
afinar los instrumentos de las matemáticas,
inventar las derivadas,
inventar las integrales

–¿inventar o descubrir?:
observad que son conceptos diferentes
que suponen, también, ideas muy diversas

dos veces el producto de los cuadrados de todos los pares
dividido por el producto de los cuadrados de todos los impares

sobre qué son los números y la mente–,
inventar series de Taylor,
inventar series de Fourier,
inventar muchos otros procedimientos
que no quiero mencionar para evitar
que este escrito deje de ser lo que quiero:
un poema, en cierta forma, y no una lección

de matemáticas o historia
–por eso no hablo de otras propiedades
del número π, como la transcendencia,
ni doy ningún detalle de lo que digo.
No hablo de fórmulas concretas,
sino de emociones que he sentido,
y que antes que yo han sentido muchos otros,
y que sentirán muchos otros cuando yo ya no esté,
emociones de belleza y de vértigo

de viaje y de aventura,
de esfuerzo, de derrota, de victoria,
de rebeldía, de perseverancia,
de fusión con el mundo y de lejanía del mundo,
que algún día también sentiréis vosotros

el área de la elipse,
dividida por el producto de sus ejes,

si pensáis, con detalle, en este número
o en otros números que le son familiares
–la raíz cuadrada de dos, por ejemplo,
es decir, el cociente de la diagonal
y el lado de un cuadrado,
cociente irracional
que amargó la vejez de Pitágoras,
quien había enseñado que el mundo

estaba hecho de números puramente racionales
–pero ¡qué ironía, que dos formas,
el círculo y el cuadrado, que encontramos por doquier,
rehúsen expresarse en estos números!.
Pero podéis preguntaros otras cosas
que cuál será el siguiente decimal:
con los ordenadores, el proceso se ha acelerado
enormemente y conocemos ya

miles de decimales,
en lugar de los quinientos a que se había llegado
con el ingenio y las fuerzas estrictamente humanas;
así, pues, suponed que ya tenemos

miles de decimales,

todos ellos irrelevantes a efectos prácticos,
salvo los cinco primeros o, como máximo,
de los quince o veinte primeros, hilando fino.
Os podéis preguntar por la abundancia
relativa de las diversas cifras:
la del uno, la del dos, la del tres, la del cuatro,
la del cinco, la del seis, la del siete, la del ocho,
la del nueve, la del cero.
Pues bien: se comprueba –pero mucho antes

de que esto hubiera sido comprobado ya lo había demostrado
Borel y otros matemáticos–
que la abundancia relativa de las diversas cifras
es la misma,
que la abundancia relativa de todos los grupos de dos cifras
–quince, veintitrés, noventa y cinco, por ejemplo–
es la misma

que la abundancia relativa de todos los grupos de tres cifras

–ciento veintiuno, quinientos veintitrés, pongamos por caso-
es la misma,
y así sucesivamente para grupos
de más y más cifras;
en otras palabras: es seguro
que en los decimales de π, encontraréis la fecha

de vuestro nacimiento
(23-10-1953, en mi caso,
o bien 31-4-1592, si nos fijamos
en las siete primeras cifras de pi)
y también la fecha de vuestra muerte
(que no sabréis reconocer,
como en mi caso),
y vuestro número de teléfono;
más aún: si designamos las letras mediante números

–1 la A, 2 la B, 3 la C, 4 la D
y así sucesivamente–
sabed desde ahora que vuestro nombre está escrito

en los decimales del número π, ,
y que en algún lugar del número π, podéis hallar,
juntos, vuestro nombre y el de vuestro amor
y el nombre de vuestros hijos,
y las fechas del nacimiento y de la muerte
de cada uno de vosotros
Es vertiginoso, ciertamente, pero he de decir
que al lado de vuestro nombre también está escrito
el nombre de cualquier hombre o mujer

que hayan existido o que nunca existirán:
es, pues, vertiginoso y fútil:
está toda vuestra historia
pero también todas las otras posibles historias
que habríais podido vivir,
todos los otros amores
que hubierais podido tener,
de manera que lo dice todo y nada,
como algunos oráculos antiguos,

o como pasa a menudo cuando se habla demasiado.
Si miráis el número π, después de haber leído
este poema, os parecerá, quizás, vertiginoso,

como un pozo sin fondo, como un infinito
que se despliega ilimitadamente delante vuestro,
pero moriréis antes de haber podido leer
una mínima parte de sus decimales.
En el número π, hay el reposo y el movimiento
(como en el círculo),
la eternidad y el tiempo

(como en Dios),
la finitud y la infinidad
(como en el universo),
la armonía y el caos
(como en el mundo):

una definición breve y precisa,

y una inacabable sucesión de decimales
que no repiten su orden en ningún período.
Pero hay casos aún más inquietantes:
números que no es posible definir,
ristras infinitas de decimales

colocados al azar, al puro azar,
números, pues, que nunca podréis reducir
a una definición breve y concisa,
como π, o raíz de dos,
sino números que son movimiento sin reposo,
caos sin armonía, tiempo sin eternidad,
números que ni tan sólo podemos pronunciar,
números que nos recuerdan que el mundo es inefable,

la longitud de la circunferencia
dividida por dos veces el radio

y por eso conviene que, de vez en cuando,
la poesía hable de esta clase de números
que comparten con ella los límites del lenguaje,
y quien sabe si del mundo,
tal como los números hablan en ella
mediante los acentos, las sílabas, las estrofas.
O quizás son números que no pueden existir
si es que el mundo, en el fondo, es palabra
–no nuestra, claro está, sino de un Dios

que hubiera querido hacerse palabra a la medida
de nuestra limitada capacidad de escucha–,
pero esto nos conduciría a otros derroteros
–los de Dios y de su presencia
en el mundo y en nosotros–
que convendría no esquivar como lo hacemos,
tan desdeñosamente, en estos tiempos.

Pero me detengo aquí
y doy por acabado este poema
–de hecho, inacabado y discursivo–,
sabiendo, empero, que el número π, sigue,

caudaloso como todos los ríos a un tiempo,
con más cifras que gotas el Nilo o el Ganges,
el Volga o el Amazonas,
con más cifras que granos de arena
hay en todas las playas de la Tierra,
con más cifras que átomos hay
en todos los planetas del sistema solar,
y rehusando siempre un orden claro y repetitivo,
como un río espumoso y turbulento, infinito,

pero también lento, sutil, discreto,
modesto en su apariencia
pero con más propiedades que oro hay
en las minas del mundo,

o hasta que Dios se canse de él y diga basta,
y haga terminar el universo por la fatiga
de tener que soportar números como éste,
el número π.

(GRACIAS)^∞

Más contenido matemático en redes sociales

Comparte MatemáTICas: 1,1,2,3,5,8,13,...

Decimales y fracciones entre textos e imágenes: una experiencia de aprendizaje basada en la elaboración de cómics digitales. Comunicación en El Congreso Iberoamericano «La educación ante el nuevo entorno digital»

Comparte MatemáTICas: 1,1,2,3,5,8,13,...

El Congreso Iberoamericano «La educación ante el nuevo entorno digital» pretende ser un espacio donde cualquier docente pueda dar a conocer proyectos o experiencias relacionadas con cualquier área temática, pero con el denominador común del entorno digital en el que ya estamos inmersos. Se está desarrollando del 5 de noviembre al 15 de diciembre de 2019 en el Campus Virtual de Congresos de Formación IB.

A dicho evento online, el cual está resultando ser sumamente enriquecedor, hemos presentado la comunicación que indica el título de esta entrada, por si pudiera ser de utilidad y/o fuente de inspiración para nuevas propuestas didácticas.

Título 
Decimales y fracciones entre textos e imágenes: una experiencia de aprendizaje basada en la elaboración de cómics digitales. 

Autoría 

Resumen 
Esta investigación-acción tiene como objetivo la construcción de cómics matemáticos para facilitar el aprendizaje de fracciones y decimales. La justificación del uso del cómic radica en la motivación de los estudiantes por el uso de información visual, que al combinarla con el texto puede dar lugar a elementos de desarrollo de habilidades, creatividad y la lectura de contenido (Urbani, 1978, citado en Toh, 2009).  El soporte tecnológico se sostiene en una de las dimensiones de la competencia digital (Marqués, 2009), la dimensión del aprendizaje, expresada como transformación del contenido en adquisición del conocimiento. Además, el cómic se considera una herramienta con potencial para el aprendizaje de las matemáticas, por sus capacidades creativas y visuales (Cleaver, 2008) así como una posibilidad de mejora en la alfabetización de los estudiantes (Tilley, 2008).  

La investigación describe el proceso y resultados de una experiencia en el tercero de Enseñanza Secundaria Obligatoria, en Matemáticas orientadas a las enseñanzas académicas. El contenido a trabajar viene delimitado por el criterio de evaluación “utilizar las propiedades de los números racionales para operarlos, utilizando la forma de cálculo y notación adecuada, para resolver problemas de la vida cotidiana, y presentando los resultados con la precisión requerida” (RD. 1105/2014, p. 391).  

Los estudiantes construyen un cómic, utilizando una herramienta digital. Para el análisis de los resultados del conocimiento matemático expuesto se definen categorías que facilitan la identificación de cumplimiento de los estándares de aprendizaje. Estas categorías se construyen sustentadas en la investigación previa para el conocimiento matemático, desde la enseñanza y del aprendizaje de los números racionales. Las categorías que se utilizan son: el sentido dado a los algoritmos según su significado (que incluye la forma de utilizar los algoritmos y la resolución), la tipología del contexto que se utiliza para situar el objeto matemático, el rigor del lenguaje matemático, cómo se presentan los números (en forma decimal o fracción), y la reflexión final con los datos y resultados expuestos. 

Los resultados muestran distintos contextos que agrupamos como realistas y ficticios, donde estos últimos dan lugar a aquellos que dan sentido al objeto matemático y los que resultan forzados para introducir tanto el número como el algoritmo utilizado. Se utilizan distintos algoritmos, basados en suma y multiplicación; los cálculos implican usos como porcentaje, cálculo de las partes de un todo y equivalencia. En aquellas tareas que implican uso de algoritmos, los números base son fracciones en lugar de decimales. Encontramos tareas que finalizan de una manera reflexiva agrupando todos los datos utilizados a modo de recopilatorio para dar lugar a un ejercicio, y su solución. No aparecen demasiadas conversiones entre fracciones, y cuando lo hacen son para dar lugar a números que faciliten la interpretación de las partes de un todo. Los errores que aparecen surgen de cálculos encadenados entre fracciones, no siendo explícito si el cálculo es desde el paso anterior o desde el inicio, o cuando resultados dan lugar a números decimales y el contexto hubiese necesitado un número natural para su interpretación. 

Vídeo

 

https://congresoib.com/969joaquin-asenjo-perez/videos/video/302-decimales-y-fracciones-entre-textos-e-imagenes-una-experiencia-de-aprendizaje-basada-en-la

Esperando que os haya gustado esta investigación-acción en el campo de la Educación Matemática, queremos agradecer a Formación IB, a la UNED y a todas las personas que han apoyado y hecho posible este evento, de una u otra manera.

Comparte MatemáTICas: 1,1,2,3,5,8,13,...

Errores conceptuales que no afloran en pruebas tipo tests. Un ejemplo del área de #matemáticas

Comparte MatemáTICas: 1,1,2,3,5,8,13,...

¿Se puede acertar en matemáticas aunque haya una probabilidad bajísima de hacerlo y cometiendo errores conceptuales gravísimos?

¿La respuesta? Sí.

Basta observar la siguiente imagen… 🙂

¿Para echarnos unas risas? Por supuesto.

Pero también nos vale para reflexionar profundamente sobre el uso de las pruebas tipo tests, repletas de ítems de selección múltiple, que obvian y dejan completamente de lado la tan temida para cualquier estudiante pero, al mismo tiempo, potentísima expresión: «Justifica tu respuesta».

¿Coincides conmigo? El ejemplo que muestro corresponde al área de matemáticas, mi hábitat natural, aunque estoy convencido de que ocurre algo similar en diferentes áreas.

Si conoces más errores matemáticos que no afloren en pruebas tipo tests (cargadas de ítems de selección múltiple) y quieres compartirlo, puedes hacerlo en comentarios, por correo electrónico, vía Twitter en @luismiglesias o en Facebook MatemáTICas Compartidas.

 

Ventajas y desventajas del ítem de selección múltiple 
Las preguntas de selección múltiple han sido criticadas por algunos autores, debido a su filiación con un modelo pedagógico conductista. Sin embargo, ello depende del uso que se dé a este tipo de instrumento. Por ello, es importante que conozcas cuáles son las ventajas y desventajas de este tipo de ejercicios.

Ventajas

  • Permite medir conocimientos generales, conocimientos especializados, competencias, habilidades y destrezas pre-establecidas en una taxonomía.
  • Elimina el factor de ambigüedad (o de polisemia) propio de las respuestas abiertas.
  • Su aplicación necesita de menos tiempo que las preguntas de desarrollo.
  • La cantidad de ítemes a utilizar depende del grado de medición que se vaya a utilizar: un contenido específico, la materia de un tema general, un control trimestral o semestral, una prueba final, etc.
  • La corrección es rápida e incluso puede mecanizarse.

Desventajas

  • No evalúan aspectos de producción como los ítemes de respuesta de desarrollo.
  • Presentan ciertas dificultades en su construcción, como saber determinar con precisión qué contenido se está evaluando y cómo se está haciendo (habilidad cognitiva).
  • A veces, no es fácil elaborar distractores posibles para los problemas.

Fuente: educarchile

Esta entrada participa en la Edición 8.4 “Matemáticas de todos y para todos” del Carnaval de Matemáticas cuyo anfitrión es, en esta ocasión, matematicascercanas

Comparte MatemáTICas: 1,1,2,3,5,8,13,...

Las matemáticas y la vida cotidiana

Comparte MatemáTICas: 1,1,2,3,5,8,13,...

Reproduzco a continuación, artículo publicado en IBERCIENCIA – Comunidad de Educadores para la Cultura Científica. Su autor es José Javier Segura Márquez, Ciudad de México (México) y describe, de manera muy sintética y, a mi parecer, precisa, los matices de la definición de Competencia Matemática en el siglo XXI, a partir de la definición de la misma establecida por PISA.

Recomiendo su lectura, así como la de muchos otros textos de divulgación de este portal.

Fuente: IBERCIENCIA – Las matemáticas y la vida cotidiana

Nota de José Javier Segura Ramírez, IBERCIENCIA, Comunidad de Educadores para la Cultura Científica. Ciudad de México, México.
El concepto general de competencia matemática hace referencia no tan sólo a razonar y resolver operaciones matemáticas y situaciones y problemas que suelen presentarse en las aulas, sino se centra en la capacidad del estudiante para enfrentarse y resolver problemas que aparecen en diversos contextos en la vida cotidiana.

El Programa para la Evaluación Internacional de los Alumnos (PISA, por sus siglas en inglés), considera que la Competencia Matemática es “una capacidad del individuo para identificar y entender la función que desempeñan las matemáticas en el mundo, emitir juicios fundados y utilizar y relacionarse con las matemáticas de forma que se puedan satisfacer las necesidades de la vida de los individuos como ciudadanos constructivos, comprometidos y reflexivos.”

De esta definición se desprende que la competencia matemática no se limita a manejar el lenguaje matemático y resolver eficazmente los problemas que se plantean académicamente; sino, además, ser capaz de utilizar esos contenidos en diversos contextos y situaciones sociales.

Los estudiantes suelen preguntar: “¿Esto para qué me sirve? ¿Dónde voy a emplear esto?” Sus preguntas enmarcan el enfoque tradicional que se ha dado a “la enseñanza de las matemáticas”: el enfoque enciclopédico, en el que mientras más rellenemos el cerebro vacío de los estudiantes con el conocimiento acumulado y éstos lo repitan intachablemente, mejores alumnos serán y, consecuentemente, también los docentes mejores serán.

Enseñamos matemáticas descontextualizadas, ajenas al mundo real, olvidándonos que las matemáticas nacieron (y seguirán desarrollándose y creciendo) para resolver situaciones del mundo real, cotidiano. La Aritmética se creó para contar; la Geometría para medir; el Álgebra para generalizar; el Cálculo para analizar lo continuo e infinito; y así, todas y cada una de sus ramas tiene su parte cotidiana.

Esta palabra “cotidiano”, en mi opinión, es la que causa problemas de aceptación. ¿Qué tan cotidiano es para una persona resolver una ecuación de segundo grado? Creo que la respuesta es que una situación será cotidiana según el área o profesión de la persona. ¿Qué tan cotidiano es para una persona hacer un pan? La respuesta no será la misma si se la hacemos a un ama de casa o a un panadero.

Y el reto es precisamente ése: acercar las diversas situaciones cotidianas a las situaciones que se analizan y resuelven en las aulas. Una estrategia que se propone es trabajar los contenidos programáticos mediante la matematización de situaciones en diversos contextos, esto es, identificar un problema en la realidad o entorno de los estudiantes, modelar matemáticamente el problema, identificar el contenido matemático de aplicación pertinente, resolver el problema matemático y, finalmente, verificar el resultado matemático con los datos del problema real. Esto se puede hacer trabajando tanto individualmente como de manera colaborativa.

La gama de situaciones en contexto está abierta: desde los identificados como puramente matemáticos, hasta los que aparentan no pertenecer al campo matemático. Es competencia de quien plantea o trata de resolver el problema, establecer de forma satisfactoria la estructura matemática pertinente. Y esto nos lleva a que se ha desarrollado esta habilidad en las aulas.

El conocimiento de las bases estructurales de las matemáticas implica conocer los términos, conceptos y procedimientos básicos que normalmente se enseñan en las aulas, pero también implica saber cómo se utilizan en los diversos contextos sociales y disciplinarios.

Entonces, debemos contextualizar los contenidos programáticos de las matemáticas. Identificar las matemáticas derivadas de la actividad humana; las derivadas de los fenómenos naturales y la matemática de las matemáticas. En suma, lo que se solía llamar matemáticas puras y matemáticas aplicadas.

Aprender a matematizar debe ser uno de los objetivos prioritarios en la educación matemática. Desarrollar en los estudiantes la habilidad para emplear las matemáticas en la vida cotidiana, nos acerca a lograr que participe de forma plena y competente en el mundo real.

Comparte MatemáTICas: 1,1,2,3,5,8,13,...

Estructura de la prueba final de la ESO 2016/2017 – Competencia Matemática (Orden ECD/393/2017)

Comparte MatemáTICas: 1,1,2,3,5,8,13,...
En lo relativo a la Competencia Matemática (Matemáticas orientadas a las enseñanzas académicas y Matemáticas orientadas a las enseñanzas aplicadas), la estructura, análoga a la del resto de competencias evaluadas, queda definida mediante una matriz de especificaciones compuesta por:
  • Bloques de contenido.
  • Porcentajes asignado a cada uno de los bloques.
  • Estándares de aprendizaje relacionados con los bloques de contenidos y con los procesos cognitivos correspondientes, clasificados estos últimos en: conocer, aplicar y razonar.

de la siguiente manera:

 

Matriz de especificaciones de la Competencia Matemática

Orden ECD/393/2017, de 4 de mayo – BOE 6 de mayo de 2017.

Comparte MatemáTICas: 1,1,2,3,5,8,13,...

Canvas para la resolución gráfica (paso a paso) de sistemas de ecuaciones lineales #FlippedClassroom

Comparte MatemáTICas: 1,1,2,3,5,8,13,...

Comparto en esta entrada documento de utilidad he elaborado y usado esta misma mañana en clase, con una buena acogida por parte de mis aprendices de 2º de ESO. Visto el grado de aceptación de la misma, he decidido compartirla en el blog para su uso tanto en el aula como fuera de ella.

Dicho documento contiene:

  • Un modelo esquematizado, tipo canvas, que describe paso a paso el método gráfico de resolución de un sistema de dos ecuaciones lineales con dos incógnitas (pulsar para descargar fichero PDF). Este documento es idóneo tanto para proyección y uso en Pizarra Digital Interactiva, como para su impresión y que el alumnado practique el proceso usando esta plantilla guiada, lo que le facilitará su asimilación para resolver otros sistemas de ecuaciones a futuro.

Canvas-Resolucion-Sist2EcuLin-Metodo-Gráfico

  • Enlace a un applet interactivo realizado con Geogebra donde el alumnado puede introducir el sistema y comprobar si ha realizado correctamente la actividad, potenciando de este modo el aprendizaje autónomo de nuestro alumnado, así como dar la vuelta a la clase (#FlippedClassroom), sacando la rutina fuera de ella y ganando tiempo para abordar la resolución de problemas y tareas competenciales más enriquecedoras en clase.

Canvas-Resolucion-Sist2EcuLin-Metodo-Gráfico

Está compartido con licencia Creative Commons CC-BY-NC-SA para que puedas usarlo y distribuirlo libremente, con la única condición de citar la fuente original.

Espero sea de utilidad. ¡Ya me contarás qué te parece!

 

Comparte MatemáTICas: 1,1,2,3,5,8,13,...

Tarea STEM. Modelización matemática con Geogebra: Embaldosado geométrico

Comparte MatemáTICas: 1,1,2,3,5,8,13,...

Comparto vídeo y applet interactivo realizado con Geogebra que nos permitirá visualizar la resolución de esta tarea, paso a paso.

Tarea STEM. Modelización matemática con Geogebra: Embaldosado geométrico
Cálculo del coste del material necesario para realizar el embaldosado de una edificación combinando distintos tipos de baldosas geométricas (octogonales, triangulares, cuadradas,…) y colores.

 

Comparte MatemáTICas: 1,1,2,3,5,8,13,...

Canvas editable para el desarrollo de proyectos/unidades/propuestas didácticas

Comparte MatemáTICas: 1,1,2,3,5,8,13,...

Comparto en esta entrada documento de utilidad para planificación de acciones docentes,

ya sean de aprendizaje basado en proyectos (ABP), unidades didácticas o propuestas didácticas cualesquiera.

Comparto dos versiones:

  • Para imprimir directamente (pulsar para descargar fichero PDF) y realizar la planificación en papel. Su impresión en formato A3 da mucho juego para el trabajo de planificación colectivo, departamental, de área, propuestas interdisciplinares con otros compañeros docentes,…)

canvas-desarrollo-proyectos-unidades-propuestas-didacticas-luis-m-iglesias

Está compartido con licencia Creative Commons CC-BY-NC-SA para que puedas usarlo, modificarlo y distribuirlo libremente, con la única condición de citar la fuente original.

Espero sea de utilidad para tu trabajo diario a pie de aula. ¡Ya me contarás qué te parece!

Saludos y feliz domingo.

Comparte MatemáTICas: 1,1,2,3,5,8,13,...
WP2Social Auto Publish Powered By : XYZScripts.com