Apuntes y Exámenes

Colección de Apuntes y Exámenes de la materia de Matemáticas

Juego de algebra pictórica para promover el razonamiento matemático, con Geogebra. Sistemas de ecuaciones 3×3

Comparte MatemáTICas: 1,1,2,3,5,8,13,...
Comparto este applet interactivo elaborado con GeoGebra, para introducir a los alumnos en la resolución de sistemas de ecuaciones lineales con tres incógnitas mediante puzles lógicos. Este recurso facilita la comprensión de estos sistemas de forma visual e intuitiva, a partir de representaciones pictóricas, promoviendo el razonamiento matemático.

Su uso es sencillo: los alumnos pueden interactuar con los elementos del applet para encontrar las soluciones que satisfacen todas las ecuaciones del sistema. Además, el applet permite generar múltiples actividades de forma aleatoria, ofreciendo una variedad ilimitada de ejercicios para reforzar el aprendizaje.

Con un diseño limpio y claro, permite colocarlo a pantalla completa pulsando el cuadrado con borde discontinuo ubicado en la esquina inferior derecha.

Este recurso es de gran utilidad para enseñar y aprender la resolución de sistemas de ecuaciones lineales con tres incógnitas de forma interactiva y atractiva. Una de las principales ventajas de este juego es que permite a los alumnos experimentar de forma lúdica y aprender sin temor a cometer errores. Los alumnos pueden probar diferentes estrategias y recibir retroalimentación inmediata. Esto enriquece su razonamiento matemático y refuerza su confianza en la resolución de problemas.

Juego de algebra pictórica. Sistemas de ecuaciones 3×3

 

Enlace a la actividad en geogebra.org

Más contenido matemático en redes sociales

Comparte MatemáTICas: 1,1,2,3,5,8,13,...

Resolución ecuaciones primer grado (2 pasos – Tipo: ax + b = c) · Balanza · GeoGebra

Comparte MatemáTICas: 1,1,2,3,5,8,13,...

En esta entrada comparto un vídeo mostrando el proceso de resolución ecuaciones de primer grado con una variable (incógnita), apoyado en un recurso extraordinariamente visual como la balanza, con un applet interactivo realizado con Geogebra.

Con él se pretende mostrar al alumnado el proceso de resolución de ecuaciones de primer grado de dos pasos (del tipo ax + b = c). En el vídeo se muestra la interacción con el applet en varios ejemplos.

Vídeo explicativo

MÁS CONTENIDO MATEMÁTICO EN REDES SOCIALES

Comparte MatemáTICas: 1,1,2,3,5,8,13,...

Situación de Aprendizaje (SdA): IA para un mundo mejor. Pensamiento computacional, Scratch y Learning ML. #REA con eXeLearning

Comparte MatemáTICas: 1,1,2,3,5,8,13,...

En esta entrada quiero compartir una Situación de Aprendizaje (SdA) que elaboré hace casi dos años con la magnífica herramienta eXeLearning, para iniciar al alumnado en el uso de la IA, a través del Pensamiento Computacional, mostrando técnicas de Aprendizaje Automático, Machine Learning, haciendo uso de las herramientas Learning ML y Scratch.

SdA: IA para un mundo mejor

Mediante el trabajo en el aula con esta SdA pretendo introducir la Inteligencia Artificial (IA) y el Machine Learning (ML) al alumnado de ESO y Bachillerato. La misma presenta un enfoque práctico y guiado, paso a paso, facilitando la comprensión de conceptos complejos a través de ejemplos concretos, comprensibles por todos los alumnos, y el uso de herramientas visuales como Scratch y Learning ML. La inclusión de instrumentos de evaluación como las rúbricas presentes en el REA tienen la finalidad tiene la intención de ayudar a estimar de alguna manera, medir, el aprendizaje de los alumnos y asegurar un proceso educativo efectivo.

Se recomienda analizar con mayor profundidad todos el contenido del REA; enlaces a videos, así como explorar a fondo la SdA para obtener una visión más completa.

Quisiera destacar que el uso de la inteligencia artificial (IA), específicamente el Aprendizaje Automático (Machine Learning o ML) en Educación, a edades tempranas es posible a software educativo gratuitos; Scratch y la herramienta Learning ML.

Temas principales

  • Introducción a la programación con Scratch: Se destaca a Scratch como una herramienta ideal para iniciar a cualquier persona en la programación. Se mencionan sus características principales: lenguaje visual por bloques, comunidad online para compartir proyectos, fomento del pensamiento creativo y el trabajo colaborativo. 
  • Bloques de programación en Scratch: Se describe la función de los diferentes bloques de código en Scratch: Movimiento, Apariencia, Sonido, Control y Sensores. Se ejemplifica su uso para controlar objetos, crear animaciones, interactuar con el usuario y más. 
  • La importancia de los algoritmos: Se define un algoritmo como un conjunto de instrucciones ordenadas para obtener un resultado específico. Se menciona al matemático persa Al-Juarismi como el origen del término «algoritmo». 
  • Creación de modelos de IA con Learning ML: Se explica el proceso de generar un modelo de clasificación de datos en Learning ML, haciendo hincapié en la importancia de la cantidad y calidad de los datos. 
  • Aplicaciones prácticas de LearningML, en Matemáticas y en Biología (STEM): Se presentan dos ejemplos concretos de cómo usar Learning ML para:
  1. Predecir el cuadrante de un punto dadas sus coordenadas: Se describe el proceso de entrenar un modelo con datos de coordenadas y su cuadrante correspondiente, para luego probar su capacidad de predicción con nuevas coordenadas. 
  2. Clasificar flores Iris según sus características: Se detalla el uso de un conjunto de datos famoso sobre flores Iris para entrenar un modelo que clasifique nuevas flores en base a la longitud y anchura de sus sépalos y pétalos. 
  • Evaluación del aprendizaje: Se propone una rúbrica para evaluar el aprendizaje de los estudiantes en proyectos de IA, abarcando aspectos como la comprensión de la función de la IA, la importancia de los datos y la capacidad de desarrollar y programar una IA. 

Otros aspectos importantes del REA

  • La importancia del orden en la programación: Un algoritmo implica la realización de una instrucciones ordenadas.
  • El aprendizaje automático como reconocimiento de patrones: A partir de los datos introducidos, busca patrones entre ellos.
  • La potencia de la IA para predecir y clasificar: En los ejemplos se muestra la potencia de las herramientas sobre cómo son capaces de aprender y de obtener los patrones que les permite predecir.
  • El valor educativo de experimentar con datos erróneos: «Puede haber datos que sean erróneos, que estén contaminados. Pues ahí es donde realmente estaría la potencia didáctica y el trabajo en el aula con el alumnado».

Enlace al Recurso Educativo Abierto (REA) con la Situación de Aprendizaje (SdA)

https://luismiglesias.es/iaparaunmundomejor/SA/index.html 

Playlist en Youtube: Uso didáctico de la IA

Más contenido matemático en redes sociales
Comparte MatemáTICas: 1,1,2,3,5,8,13,...

Factorización de expresiones algebraicas cuadráticas usando azulejos algebraicos con Geogebra

Comparte MatemáTICas: 1,1,2,3,5,8,13,...

Comparto este applet interactivo realizado con Geogebra. Se trata de un manipulativo virtual de mucha utilidad para facilitar la comprensión de nuestros alumnos sobre el proceso de factorización de polinomios cuadráticos (trinomios del tipo ax^2+bx+c) de manera visual, gracias a esta excelente y clara representación.

Sencillo de usar, basta arrastrar el deslizador, además de permitir generar múltiples actividades de manera aleatoria pulsando en el botón OTRO POLINOMIO.

Con un diseño limpio y claro, permite colocarlo a pantalla completa pulsando el cuadrado con borde discontinuo ubicado en la esquina inferior derecha.

Factorización de expresiones algebraicas cuadráticas usando azulejos algebraicos (fichas algebraicas)

Enlace a la actividad en geogebra.org

Más contenido matemático en redes sociales

Comparte MatemáTICas: 1,1,2,3,5,8,13,...

Resolución de problemas y razonamiento matemático. Ejercicios vs. Problemas en Matemáticas

Comparte MatemáTICas: 1,1,2,3,5,8,13,...

El nuevo currículo de Matemáticas de la LOMLOE, tiene como líneas principales en la definición de las competencias específicas de matemáticas: la resolución de problemas y las destrezas socioafectivas.

En la introducción de la materia se recoge literalmente:

La investigación en didáctica ha demostrado que el rendimiento en matemáticas puede mejorar si se cuestionan los prejuicios y se desarrollan emociones positivas hacia las matemáticas. Por ello, el dominio de destrezas socioafectivas como identificar y manejar emociones, afrontar los desafíos, mantener la motivación y la perseverancia y desarrollar el autoconcepto, entre otras, permitirá al alumnado aumentar su bienestar general, construir resiliencia y prosperar como estudiante de matemáticas.

Por otro lado, resolver problemas no es solo un objetivo del aprendizaje de las matemáticas, sino que también es una de las principales formas de aprender matemáticas. En la resolución de problemas destacan procesos como su interpretación, la traducción al lenguaje matemático, la aplicación de estrategias matemáticas, la evaluación del proceso y la comprobación de la validez de las soluciones. Relacionado con la resolución de problemas se encuentra el pensamiento computacional. Este incluye el análisis de datos, la organización lógica de los mismos, la búsqueda de soluciones en secuencias de pasos ordenados y la obtención de soluciones con instrucciones que puedan ser ejecutadas por una herramienta tecnológica programable, una persona o una combinación de ambas, lo cual amplía la capacidad de resolver problemas y promueve el uso eficiente de recursos digitales.

En este nuevo paradigma curricular se hace necesario poner la mirada en lo que la investigación educativa ha caracterizado como buenos resolutores de problemas, así como aquellos alumnos que presentan dificultades a la hora para resolver problemas matemáticos.

Infografía. Presentación interactiva. Ejercicios vs. Problemas

Mostrar presentación: Ejercicios vs. Problemas · MatemáTICas: 1,1,2,3,5,8,13,…

Enlaces de interés

Más contenido matemático en redes sociales

Comparte MatemáTICas: 1,1,2,3,5,8,13,...

Material del Taller: «Integración de GeoGebra y Phyton: PyGgb» en el V Día Nacional Geogebra · FESPM

Comparte MatemáTICas: 1,1,2,3,5,8,13,...

Los pasados días 4 y 5 de octubre tuvo lugar en la Facultad de Educación del Campus de Cuenca de la Universidad de Castilla La Mancha, el V Día Nacional Geogebra, organizado por la Federación Española de Sociedades de Profesores de Matemáticas (FESPM), con el apoyo de distintas administraciones.

Fueron dos días intensos de aprendizaje y compartiendo con colegas de todo el territorio nacional en torno a la mejora de la Educación Matemática con ayuda de esta potente herramienta digital y los excelentes recursos digitales compartidos por la comunidad docente mundial. 

Libro Geogebra. Material del Taller sobre PyGgb

 
PyGgb es una herramienta aún en estado embrionario, pero con una potencialidad didáctica increíble, como pudimos ver durante el desarrollo del taller y se puede comprobar en el libro Geogebra que elaboré expresamente para el mismo el cual os comparto a continuación:
T3-V-DNG-TALLER-PYTHON-GEOGEBRA-PYGGB-LUIS-MIGUEL-IGLESIAS-ALBARRAN-5
T3-V-DNG-TALLER-PYTHON-GEOGEBRA-PYGGB-LUIS-MIGUEL-IGLESIAS-ALBARRAN-1
T3-V-DNG-TALLER-PYTHON-GEOGEBRA-PYGGB-LUIS-MIGUEL-IGLESIAS-ALBARRAN-2
T3-V-DNG-TALLER-PYTHON-GEOGEBRA-PYGGB-LUIS-MIGUEL-IGLESIAS-ALBARRAN-3
T3-V-DNG-TALLER-PYTHON-GEOGEBRA-PYGGB-LUIS-MIGUEL-IGLESIAS-ALBARRAN-4

INTEGRACIÓN DE GEOGEBRA Y PYTHON: PYGGB. EXPLORANDO NUEVAS FRONTERAS EN LA ENSEÑANZA Y EN EL APRENDIZAJE DE LAS MATEMÁTICAS
Luis Miguel Iglesias Albarrán
luismiglesias@gmail.com · https://luismiglesias.es
IES San Antonio (Bollullos Par del Condado – Huelva) · España

Nivel educativo: Educación Secundaria Obligatoria y Bachillerato

Palabras clave: GeoGebra, Python, Pensamiento Computacional, Competencias Específicas

Resumen
En el marco del V Día GeoGebra en España, presentamos PyGgb, una poderosa combinación de GeoGebra y Python que abre nuevas posibilidades para la Enseñanza y para el Aprendizaje de las Matemáticas. GeoGebra es una herramienta ampliamente utilizada por la comunidad educativa matemática, y de otras disciplinas, a nivel mundial, para visualizar y apoyar las explicaciones facilitando la comprensión e interpretación de los conceptos matemáticos, modelizar fenómenos y situaciones de la vida real,… Por otra parte, Python es un lenguaje de programación versátil y popular en la ciencia de datos y la automatización. La herramienta PyGgb es un puente que conecta estas dos potentes herramientas, permitiendo a los usuarios, en nuestro caso profesores y alumnos, aprovechar lo mejor de ambos mundos.

Libro Geogebra: https://www.geogebra.org/m/mzzmnwus

Fotos de momentos del evento y con amigos

VDNGGBFESPM-luismiglesias-07
VDNGGBFESPM-luismiglesias-01
VDNGGBFESPM-luismiglesias-05
VDNGGBFESPM-luismiglesias-09
VDNGGBFESPM-luismiglesias-03
« de 4 »

Las palabras de mi amigo Juan Martínez-Tébar Giménez, merecen mención especial: «De Huelva me encantan las gambas 🦐, el jamón 🐖 y Luismi 🧑‍💻» 🤗.

 
 
En resumidas cuentas, regresé con la mochila 🎒 cargada de aprendizajes, libros y buenos momentos de convivencia con los colegas de las sociedades de profesores de matemáticas del país.

Enlaces de interés

Más contenido matemático en redes sociales

Comparte MatemáTICas: 1,1,2,3,5,8,13,...

Taller: «Integración de GeoGebra y Phyton: PyGgb» en el V Día Nacional Geogebra · FESPM

Comparte MatemáTICas: 1,1,2,3,5,8,13,...

Los próximos días 4 y 5 de octubre tendrá lugar en Cuenca el V Día Nacional Geogebra, organizado por la Federación Española de Sociedades de Profesores de Matemáticas (FESPM), con el apoyo de distintas administraciones. Serán dos días intensos compartiendo con colegas de todo el territorio nacional en torno a esta potente y versátil herramienta, fundamental para el desarrollo de los procesos de Enseñanza-Aprendizaje en las aulas de todo el mundo.

Además compartir buenos ratos de tertulia matemática con los compañeros, aprender en sus talleres y conferencias, tendré la oportunidad de impartir un taller, en la mañana del sábado día 5, sobre PyGGb =  Python + Geogebra

INTEGRACIÓN DE GEOGEBRA Y PYTHON: PYGGB. EXPLORANDO NUEVAS FRONTERAS EN LA ENSEÑANZA Y EN EL APRENDIZAJE DE LAS MATEMÁTICAS
Luis Miguel Iglesias Albarrán
luismiglesias@gmail.com · https://luismiglesias.es
IES San Antonio (Bollullos Par del Condado – Huelva) · España

Nivel educativo: Educación Secundaria Obligatoria y Bachillerato

Palabras clave: GeoGebra, Python, Pensamiento Computacional, Competencias Específicas

Resumen
En el marco del V Día GeoGebra en España, presentamos PyGgb, una poderosa combinación de GeoGebra y Python que abre nuevas posibilidades para la Enseñanza y para el Aprendizaje de las Matemáticas. GeoGebra es una herramienta ampliamente utilizada por la comunidad educativa matemática, y de otras disciplinas, a nivel mundial, para visualizar y apoyar las explicaciones facilitando la comprensión e interpretación de los conceptos matemáticos, modelizar fenómenos y situaciones de la vida real,… Por otra parte, Python es un lenguaje de programación versátil y popular en la ciencia de datos y la automatización. La herramienta PyGgb es un puente que conecta estas dos potentes herramientas, permitiendo a los usuarios, en nuestro caso profesores y alumnos, aprovechar lo mejor de ambos mundos.

ENTRADA SOBRE PyGgb EN MATEMÁTICAS: 1,1,2,3,5,8,13,…

 

 

INFORMACIÓN DE LA FESPM SOBRE LOS DÍAS GEOGEBRA

Durante los últimos años se han venido celebrando distintas actividades de formación que tenían como tema de trabajo el uso de este software con fines didácticos, para dar a conocer las posibilidades que a lo largo de sus sucesivas versiones ha ido incorporando.

En particular han sido numerosas las actividades realizadas en torno al programa GeoGebra, tanto en cada Comunidad Autónoma como de carácter más general, entre las que cabe mencionar el Día GeoGebra Iberoamericano celebrado en Madrid en 2017, el I Congreso Internacional GeoGebra de Córdoba, en 2023, o el último Día GeoGebra estatal celebrado en Albacete en 2018.

Desde la FESPM consideramos que es el momento de retomar esta última actividad, aprovechando el éxito del pasado I Congreso internacional, que tendrá continuidad en 2025 con una nueva edición, que en este caso se celebrará en Portugal.

La convocatoria de un Día GeoGebra con carácter estatal servirá para retomar la coordinación entre los distintos Institutos de GeoGebra creados en las distintas comunidades autónomas, con el objetivo de aunar esfuerzos para lograr que se siga trabajando para generalizar el uso de este software como recurso en el aula, de manera que se puedan aprovechar las posibilidades didácticas que ofrece para promover un cambio metodológico en la enseñanza de las matemáticas en los diferentes niveles educativos, desde Educación Infantil hasta Universidad.

Con estos objetivos se propone la celebración de una nueva edición estatal del Día GeoGebra, que tendrá lugar en Cuenca, durante los días 4 y 5 de octubre de 2024.

Enlace a web FESPM: Descarga la convocatoria aquí

Enlace a web FESPM: Descarga el programa aquí

 
Comparte MatemáTICas: 1,1,2,3,5,8,13,...

Explorando la magia de GeoGebra y Python: PyGgb. Visualizaciones matemáticas interactivas para el aula

Comparte MatemáTICas: 1,1,2,3,5,8,13,...
En el proceso de aprendizaje de las matemáticas, la visualización y la interacción son clave para entender conceptos complejos. Asimismo facilita sobremanera la labor docente, como apoyo a las explicaciones. En los últimos meses, he estado disfrutando muchísimo de la combinación de dos herramientas poderosas: GeoGebra y Python. Juntas no solo nos permiten crear construcciones geométricas dinámicas y precisas, sino que también nos abren la puerta a explorar las matemáticas de forma más creativa e interactiva.
 

GeoGebra + Python: PyGgb

GeoGebra es ya una herramienta esencial en nuestras clases de matemáticas, conocida por su capacidad para modelar y explorar conceptos de forma visual. Pero al combinarla con Python, un lenguaje de programación accesible y potente, las posibilidades se multiplican. Esta combinación nos permite automatizar procesos, crear animaciones complejas y generar visualizaciones que de otra manera serían más difíciles de elaborar.

Fuente: @GeoGebra en X

Acceso al entorno de programación PyGgb

Basta introducir la url: https://geogebra.org/python/index.html y dar rienda suelta a tu imaginación. 

Tablero de ajedrez

8 aplicaciones prácticas para el aula

A continuación, os comparto algunos de los proyectos que he desarrollado y que he publicado en mi canal de YouTube. Cada uno de estos vídeos muestra cómo podemos usar esta combinación para crear visualizaciones matemáticas interactivas y atractivas que pueden llevar nuestras clases a otro nivel:

  • 1. Serie de polígonos regulares con GeoGebra + Python
    En este vídeo, exploro cómo generar una serie de polígonos regulares utilizando GeoGebra y Python. Es una forma excelente de mostrar la simetría y las propiedades geométricas de estos polígonos de manera visual y dinámica.

  • 2. Diseños geométricos variados con GeoGebra + Python
    Aquí podéis ver cómo usamos GeoGebra y Python para crear diseños geométricos variados y estéticamente atractivos. Es una oportunidad fantástica para que los alumnos vean cómo las matemáticas también pueden ser arte.

  • 3. Cicloide con GeoGebra + Python
    En este vídeo, construyo una cicloide, una curva generada por un punto en el borde de un círculo que rueda a lo largo de una línea recta. Es una aplicación perfecta para enseñar sobre curvas y sus propiedades tanto en cinemática como en geometría (sentido de la medida y espacial).

  • 4. Representación de rectas y tabla de valores: Ecuación explícita y=mx+n con GeoGebra + Python
    Este proyecto es ideal para mostrar la relación entre la ecuación de una recta y su representación gráfica, resaltando la importancia de las conexiones intramatemáticas, viendo el saber matemático como un todo integrado. Además, se genera automáticamente una tabla de valores, lo que facilita la comprensión de la pendiente y la intersección.

  • 5. Diseños geométricos variados: Cuadrados marchosos con GeoGebra + Python
    Aquí presento un diseño geométrico dinámico donde los cuadrados parecen «bailar» al ritmo de la programación. Es un recurso genial para captar la atención de los estudiantes y mostrar la belleza de la geometría dinámica. Un ejemplo claro del enfoque STEAM en el aula de Matemáticas

  • 6. Parábola y arte reglado con GeoGebra + Python
    Este vídeo explora cómo construir una parábola y cómo esta se puede utilizar para crear patrones geométricos atractivos. Es una excelente manera de conectar conceptos algebraicos con aplicaciones geométricas.

  • 7. Teselación hexagonal: Panal de abejas con GeoGebra + Python
    En este proyecto, exploro la teselación hexagonal, mostrando cómo se forma un panal de abejas. Es una forma perfecta de introducir a los estudiantes en conceptos de simetría, teselación y sus aplicaciones en la naturaleza.

  • 8. Diseños geométricos: Rotación de segmentos con GeoGebra + Python
    Finalmente, en este vídeo muestro cómo la rotación de segmentos puede generar patrones geométricos interesantes. Es ideal para discutir temas como la rotación y la simetría en el aula.

Ventajas pedagógicas

Incorporar Python en el uso de GeoGebra no solo añade una capa técnica interesante, sino que también introduce a los alumnos a la programación de una manera intuitiva y orientada a resultados, artefactos digitales concretos que pueden ser perfectamente el producto final de Situaciones de Aprendizaje competenciales. Esto no solo refuerza sus habilidades matemáticas, sino que también desarrolla competencias digitales que son cada vez más necesarias en el mundo actual.

 

Os animo a que veáis los vídeos que he compartido y que consideréis cómo estas herramientas podrían integrarse en vuestras clases. La combinación de GeoGebra y Python tiene el potencial de transformar la enseñanza de las matemáticas, haciendo que conceptos abstractos sean más tangibles y atractivos para los estudiantes.

Seguiré explorando nuevas formas de aprovechar esta potente combinación y compartiendo mis descubrimientos. ¡No os perdáis las próximas publicaciones y, como siempre, estaré encantado de conocer vuestras experiencias y comentarios!

Más contenido matemático en redes sociales

Comparte MatemáTICas: 1,1,2,3,5,8,13,...

Matemáticas con herramientas digitales. Problema geométrico: dos cuadrados y un rectángulo, con Geogebra

Comparte MatemáTICas: 1,1,2,3,5,8,13,...

Navegando por la red me topé con este bonito problema:

«Dos cuadrados y un rectángulo. ¿Cuánto vale el área del rectángulo?»

Tras analizarlo con detalle y resolverlo usando un poco de trigonometría me di cuenta que era bastante más rico de lo que aparentaba y que escondía un bonito invariante geométrico relacionado con él área del cuadrado inicial, independientemente de cuales fueran las áreas de los cuadrados adyacentes dibujados. 

Y, en efecto, con ayuda de este magnífico software de geometría dinámica, Geogebra, pude certificar que era cierta mi observación. 

Es por ello por lo que he pensado que tal vez sería de utilidad para otros compañeros docentes que quieran trabajarlo en el aula. 

Bien como problema aislado, para analizar en detalle y promover un escenario de conjeturas (razonamiento y prueba), para seguir el protocolo de construcción y que los alumnos realicen construcciones del problema con diferentes tamaños, compartan sus resultados y conjeturen,…

Applet interactivo en Geogebra.org

Applet interactivo en Geogebra.org

Pulsa para colocar a pantalla completa (esquina inferior derecha) y pulsa el botón de reproducir (play)

 

Vídeo con explicación del problema e interacción con el applet

 

Espero que resulte de utilidad. Ya me contarás qué te parece y si te ha funcionado en el aula. 

Saludos y feliz domingo 😉

Más contenido matemático en redes sociales

Comparte MatemáTICas: 1,1,2,3,5,8,13,...

Matemáticas con herramientas digitales. Posición relativa de rectas en el plano: resolución analítica (hoja de cálculo) y gráfica (Geogebra)

Comparte MatemáTICas: 1,1,2,3,5,8,13,...

En esta entrada comparto un ejercicio de estudio de la posición relativa de dos rectas en el plano, apoyado en dos herramientas digitales:

  1. Para la resolución analítica hemos usado la Hoja de cálculo de Google.
  2. Para la resolución gráfica hemos usado la archiconocida Geogebra.

Esta doble resolución favorece la comprensión por parte de nuestro alumnado, así ha ocurrido en Matemáticas B de 4º de ESO, y es por ello por lo que os lo he querido dejar por aquí. Al disponer de la representación gráfica y enfrentarla con la resolución analítica, favorece la conexión intra-matemática entre la ecuación, el significado de los distintos coeficientes y la representación gráfica de la recta. 

Posición relativa de rectas en el plano – Resolución gráfica (Pulsar para acceder a Geogebra)

Esto puede ser utilizado para enseñar, proyectando en la Pizarra Digital, o para que el alumnado elabore sus propios productos digitales, favoreciendo el aprendizaje significativo y el desarrollo competencial del mismo.

Espero que resulte de utilidad. Ya me contarás qué te parece y si te ha funcionado en el aula. 

Saludos y buen finde 😉

Más contenido matemático en redes sociales

Comparte MatemáTICas: 1,1,2,3,5,8,13,...
WP2Social Auto Publish Powered By : XYZScripts.com