Competencia cultural y artística

MatemáTICas: 1,1,2,3,5,8,13… cumple 13 años en la red

Comparte MatemáTICas: 1,1,2,3,5,8,13,...

Hoy es un día especial para quien escribe ya que, tal día como hoy, hace 13 años (14 de marzo de 2009), en el hueco que gentilmente me cedieron los compañeros de Profeblog, escribía los primeros renglones de mi libro virtual matemático; MatemáTICas: 1,1,2,3,5,8,13,…  

Pastel de cumpleaños con vela rosa número 13 en backgraund azul prendido fuego por encendedor. vista de primer plano | Foto Premium

Fuente: Freepik

Lo bauticé con este nombre, en honor a una de las sucesiones más conocidas de la matemática, la sucesión de Fibonacci

File:Fibonacci sequence - starting with zero.jpg

File:Fibonacci blocks.svg

Fuente: Wikimedia commons

Llegó a este mundo cuando ya incluso anunciaban la muerte de los blogs. Ya veis que no hice mucho caso a tales rumores :-). Lo tenía claro. Necesitaba un espacio que complementara mis clases, un rincón que apostase de manera clara por la inclusión de la tecnología en la práctica educativa, en mis clases de matemáticas. Un lugar en la red donde centralizar los materiales didácticos que fuese elaborando para mis alumnos. Ese sitio, ese lugar, ese espacio debía de ser un blog, este blog.

Y claro, no podía ser de otra forma. Su fecha de lanzamiento, el día de Pi #díadePi o #Piday, por aquello del inglés, 3/14 (14 de marzo). Mi primer post, un modesto y tímido, Bienvenid@ . La 40ª Conferencia General de la UNESCO proclamó el 14 de marzo de cada año como el Día Internacional de las Matemáticas en noviembre de 2019 (40C/Resolución 30).

Por este motivo, hoy, la comunidad matemática mundial también está de celebración, aunque no podamos hacerlo como quisiéramos y nos gustaría. El mundo y especialmente Europa está viviendo días negros por la invasión de Ucrania a manos de Rusia. Si no tuvimos bastante con la COVID-19, la tragedia humanitaria causada por esta violación de las fronteras de un país y de los derechos humanos nos tiene bastante apenados y sonrojados, al ver día tras día a través de los medios de comunicación la barbarie que la especie humana pude llegar a cometer. Desde estas líneas, todo mi apoyo y fuerza al pueblo ucraniano.

Mucho ha llovido desde aquel 14/03/2009. El termino competencia digital había realizado su incursión junto al resto de Competencia Básicas de la LOE (Ley Orgánica de Educación, 2006). Los docentes que usábamos los blogs como medio para ampliar nuestra aula física, lo que hoy sería un entorno blended-learning, lo hacíamos a voluntad propia y éramos considerado una especie un tanto singular. Recuerdo aquella mesa de debate en el primer EABE (Encuentro Andaluz de Blogs Educativos) donde en la mesa de trabajo simultánea ya hablamos del reconocimiento de la competencia digital. ¡Qué cosas se nos ocurrían! 😉

13 años más tarde, dos nuevas leyes educativas LOMCE (2013) y LOMLOE (2020), celebro que Europa y España lo tengan claro, y con un buen marco de la Competencia Digital Docente elaborado por INTEF con colaboración de las comunidades, habrá un proceso certificador y acreditador de la competencia a través de actividades formativas alineadas con dicho marco, que se desencadenará en nuestro país en próximas fechas. La Educación de hoy día no se concibe sin Tecnología, y en Matemáticas son imprescindibles para Enseñar y para Aprender.

Iglesias-Albarrán, Luis M. Enseñanza y aprendizaje de las matemáticas en la era digital. Ambientes de aprendizaje mediados por TIC,SCOPEO MONOGRÁFICO Nº4: e-MatemáTICas,,4,41-80,2012,Universidad de Salamanca. Servicio de Innovación y Producción Digital

 

Desde aquel día, reconocimiento del ITE, ahora INTEF, como Buena Práctica 2.0 por la inclusión de las TIC en la práctica educativa,  muchas vivencias, reconocimientos en certámenes y otras muy buenas experiencias profesionales a través de las cuales he conocido, compartido y descubierto grandes compañeros/as de viaje, más de 500 entradas publicadas, multitud de materiales de elaboración propia o recopilados, material de conferencias, jornadas de trabajo en las que he participado, artículos publicados en revistas o reseñas de colaboraciones en libros, más de 6 millones de visitas,… hacen que hoy deba daros las GRACIAS, y confirmar que seguiré viniendo por aquí mientras tenga fuerzas, a compartir cada vez que tenga o sea capaz de encontrar la manera de hacer un hueco para escribir y publicar sobre Matemáticas (con Tecnología): MatemáTICas.

Para terminar os dejo con tres vídeos sobre Pi y dos poemas. Espero que os guste.

Vídeo: ¿Para qué sirve el número Pi? BBC Mundo

 

Vídeo: El número Pi Canal encuentro Adrián Paenza

Vídeo: Spock («Star Trek») desactiva una computadora malvada pidiéndole que calcule el último dígito de Pi :-). Fuente: Mathigon

 

Poema: El número Pi (Wislawa Szymborska, Premio Nobel de Literatura 1996). Fuente: Yosoytuprofe

El admirable número Pi
tres coma uno cuatro uno.
Las cifras que siguen son también preliminares
cinco nueve dos porque jamás acaba.
No puede abarcarlo seis cinco tres cinco la mirada,
ocho nueve ni el cálculo
siete nueve ni la imaginación,
ni siquiera tres dos tres ocho un chiste, es decir, una comparación
cuatro seis con cualquier otra cosa
dos seis cuatro tres de este mundo.

La serpiente más larga de la tierra suma equis metros y se acaba.
Y lo mismo las serpientes míticas aunque tardan más.
El séquito de dígitos del número Pi
llega al final de la página y no se detiene,
sigue, recorre la mesa, el aire,
una pared, una hoja, un nido de pájaros, las nubes, hasta llegar
directo al cielo,
perderse en la insondable hinchazón del cielo.
¡Qué breve la cola de un cometa, cual la de un ratón!
¡Qué endeble el rayo de un astro si se curva en la insignificancia
del espacio!

Mientras aquí dos tres quince trescientos diecinueve
mi número de teléfono la talla de tu camisa
el año mil novecientos sesenta y tres sexto piso
el número de habitantes sesenta y cinco céntimos
dos pulgadas de cintura una charada y un mensaje cifrado
que dice vuela mi ruiseñor y canta
y también se ruega guardar silencio,
y se extinguirán cielo y tierra,
pero el número Pi no, jamás,
seguirá su camino con su nada despreciable cinco
con su en absoluto vulgar ocho
con su ni por asomo postrero siete,
empujando, ¡ay!, empujando a durar
a la perezosa eternidad.

Poema: El número  π (A Pilar Bayer y A F Walter May). Fuente: Repoelas


3

 

1

 

4

 

1

5

 

 

9

 

 

 

 

2

 

6

 

 

5

 

 

3

 

5

 

 

8

 

 

 

 

9

 

 

 

 

7

 

 

 

9

 

 

 

 

3

 

2

3

 

8

 

 

 

4

 

 

6

 

 

2

 

6

 

 

 

4

 

3

 

3

 

8

 

 

 

3

 

2

 

7

 

 

 

9

 

 

 

 

5

 

0

2

 

8

 

 

 

8

 

 

 

4

 

1

 

 

9

 

 

 

 

7

 

1

 

6

 

 

9

 

 

 

 

3

 

9

 

 

 

 

9

 

 

 

 

3

 

7

 

 

 

 

5

 

1

0

5

 

8

 

 

 

2

 

9

 

 

 

 

7

 

 

 

4

 

 

9

 

 

 

 

4

 

 

4

La longitud de la circunferencia,
la longitud del diámetro:
¡qué fuerza su cociente,

siempre el mismo, constante, eterno!,

tres coma catorce,
tres coma catorce dieciséis,
primeros balbuceos de un río infinito
de decimales sin período, siempre nuevos,

único e infinito, único y diverso,

tres coma catorce,
el recuerdo escolar de tantos cálculos,
tres coma catorce dieciséis,
el recuerdo de números en clave,
como barcos en un puerto,

humeantes, a punto de partir
río abajo, mientras el agua fluye
hecha números y caricia,
y el lomo de los cocodrilos de las preguntas
que van haciendo los matemáticos
anuncia ya todo tipo de peligros:
es fácil que una de ellas os pille
en sus mandíbulas plagadas de agudezas
y os arranque años de vida con un problema,

el área del círculo
Dividida por el cuadrado del radio

seductor, desafiante,
muy difícil de resolver,
pero tan atractivo que ni siquiera os déis cuenta
de que estáis quemando en él la vida,
de tan adentro como os ha entrado
aquella pregunta que tan pocos pueden comprender,

y los cinco sentidos se ponen al acecho
de algo que desborda los sentidos,
de las extrañas propiedades de un número
llamado irracional y que desborda la razón,
pero que está en el fondo de la razón del universo.

El primer problema: calcularlo,
obtener más y más decimales,
escalar un monte de decimales,

penetrando cada vez más en un mundo
que ya no pertenece al universo de la medida
–si medís las longitudes
de circunferencias reales, de diámetros reales,
y obtenéis su cociente,

sólo hallaréis dos decimales, tres decimales,
quizás cuatro decimales del número ?
(lo que de él sabían los egipcios):
los otros quedarán más allá
de los límites de la precisión de la medida-;
una definición, pues, que parece tan simple,
–un cociente de dos longitudes que estáis viendo
dibujadas en el papel–

y lleva, en cambio, a un desbordamiento de decimales.
¿Y cómo han calculado tantos decimales?
Durante más de dos mil quinientos años,
los que se atrevieron a embarcarse en la aventura,
siguiendo los pasos del gran Arquímedes,
inscribían polígonos en un círculo,
decágonos, dodecágonos, pentadecágonos,
polígonos de más y más lados,
y calculaban su perímetro

y lo dividían por el diámetro del círculo circunscrito;
naturalmente, cuanto más lados,
más se aproxima el polígono a la circunferencia
y más precisión se consigue en los decimales,
pero también encontraban
más y más dificultades;
parece duro, lo sé,

parece árido, lo sé,
pero también sé ver los atractivos
de navegar por un río en una selva espesa,
sin saber cómo será su curso un poco más allá,
ahora lento –decimales pequeños–,
ahora rápido –decimales grandes–,
siempre fluyente pero siempre impredictible:
¿cuál será el siguiente decimal?
¿Valdrá dos?, ¿valdrá cinco?, ¿valdrá nueve?

no hay manera de saberlo,
salvo que hagáis el cálculo;
¿cuál será el valor del decimal quinquagésimo?

el área de la esfera
dividida por cuatro veces el cuadrado del radio,

no hay otra manera de saberlo
que hacer todos y cada uno de los cálculos
que conducen hasta este decimal,

es decir, calcular todos los decimales anteriores
sin saltarse ni uno
–como en el tiempo de nuestra vida:
no hay otra manera de saber
lo que pasará dentro de un año
que vivir día a día todo el año,
hora a hora, minuto a minuto todo el año,
un tiempo, pues, diferente del tiempo de los astros,

predictible a largo término.
Pero sigamos con los decimales del número ?:
el método de los polígonos se hace largo y fatigoso:
¿habría manera de hallar un camino más rápido?

John Wallis, hacia mil seiscientos ochenta,
encuentra (en Oxford) que ? puede ser expresado
-tomad nota-
como el doble del producto de los cuadrados
de todos los números pares
dividido por el producto de los cuadrados

el volumen de la esfera
dividido por cuatro tercios del cubo de su radio,

de todos los números impares;
parece misterioso, lo sé,
no es evidente, ni fácil de demostrar,
pero es un salto, ¿no lo véis?:
hemos pasado, por primera vez en dos mil años,
de la geometría a la aritmética,

vemos el número ? con una luz diferente,
nos cuesta reconocer en este cociente
de productos de números
aquel cociente de longitudes inmediatas,

tan directamente visibles y sensibles,
y ahora nos parece arisco y misterioso,
pero su cálculo se ha hecho más fácil,

más y más decimales;
el proceso se acelera todavía más
cuando se hallan otras formas aritméticas

de escribir el número π, :
como suma de potencias,
como suma de inversos de potencias,
como raíz de sumas de inversos de potencias…
Pero se necesita, para eso,
afinar los instrumentos de las matemáticas,
inventar las derivadas,
inventar las integrales

–¿inventar o descubrir?:
observad que son conceptos diferentes
que suponen, también, ideas muy diversas

dos veces el producto de los cuadrados de todos los pares
dividido por el producto de los cuadrados de todos los impares

sobre qué son los números y la mente–,
inventar series de Taylor,
inventar series de Fourier,
inventar muchos otros procedimientos
que no quiero mencionar para evitar
que este escrito deje de ser lo que quiero:
un poema, en cierta forma, y no una lección

de matemáticas o historia
–por eso no hablo de otras propiedades
del número π, como la transcendencia,
ni doy ningún detalle de lo que digo.
No hablo de fórmulas concretas,
sino de emociones que he sentido,
y que antes que yo han sentido muchos otros,
y que sentirán muchos otros cuando yo ya no esté,
emociones de belleza y de vértigo

de viaje y de aventura,
de esfuerzo, de derrota, de victoria,
de rebeldía, de perseverancia,
de fusión con el mundo y de lejanía del mundo,
que algún día también sentiréis vosotros

el área de la elipse,
dividida por el producto de sus ejes,

si pensáis, con detalle, en este número
o en otros números que le son familiares
–la raíz cuadrada de dos, por ejemplo,
es decir, el cociente de la diagonal
y el lado de un cuadrado,
cociente irracional
que amargó la vejez de Pitágoras,
quien había enseñado que el mundo

estaba hecho de números puramente racionales
–pero ¡qué ironía, que dos formas,
el círculo y el cuadrado, que encontramos por doquier,
rehúsen expresarse en estos números!.
Pero podéis preguntaros otras cosas
que cuál será el siguiente decimal:
con los ordenadores, el proceso se ha acelerado
enormemente y conocemos ya

miles de decimales,
en lugar de los quinientos a que se había llegado
con el ingenio y las fuerzas estrictamente humanas;
así, pues, suponed que ya tenemos

miles de decimales,

todos ellos irrelevantes a efectos prácticos,
salvo los cinco primeros o, como máximo,
de los quince o veinte primeros, hilando fino.
Os podéis preguntar por la abundancia
relativa de las diversas cifras:
la del uno, la del dos, la del tres, la del cuatro,
la del cinco, la del seis, la del siete, la del ocho,
la del nueve, la del cero.
Pues bien: se comprueba –pero mucho antes

de que esto hubiera sido comprobado ya lo había demostrado
Borel y otros matemáticos–
que la abundancia relativa de las diversas cifras
es la misma,
que la abundancia relativa de todos los grupos de dos cifras
–quince, veintitrés, noventa y cinco, por ejemplo–
es la misma

que la abundancia relativa de todos los grupos de tres cifras

–ciento veintiuno, quinientos veintitrés, pongamos por caso-
es la misma,
y así sucesivamente para grupos
de más y más cifras;
en otras palabras: es seguro
que en los decimales de π, encontraréis la fecha

de vuestro nacimiento
(23-10-1953, en mi caso,
o bien 31-4-1592, si nos fijamos
en las siete primeras cifras de pi)
y también la fecha de vuestra muerte
(que no sabréis reconocer,
como en mi caso),
y vuestro número de teléfono;
más aún: si designamos las letras mediante números

–1 la A, 2 la B, 3 la C, 4 la D
y así sucesivamente–
sabed desde ahora que vuestro nombre está escrito

en los decimales del número π, ,
y que en algún lugar del número π, podéis hallar,
juntos, vuestro nombre y el de vuestro amor
y el nombre de vuestros hijos,
y las fechas del nacimiento y de la muerte
de cada uno de vosotros
Es vertiginoso, ciertamente, pero he de decir
que al lado de vuestro nombre también está escrito
el nombre de cualquier hombre o mujer

que hayan existido o que nunca existirán:
es, pues, vertiginoso y fútil:
está toda vuestra historia
pero también todas las otras posibles historias
que habríais podido vivir,
todos los otros amores
que hubierais podido tener,
de manera que lo dice todo y nada,
como algunos oráculos antiguos,

o como pasa a menudo cuando se habla demasiado.
Si miráis el número π, después de haber leído
este poema, os parecerá, quizás, vertiginoso,

como un pozo sin fondo, como un infinito
que se despliega ilimitadamente delante vuestro,
pero moriréis antes de haber podido leer
una mínima parte de sus decimales.
En el número π, hay el reposo y el movimiento
(como en el círculo),
la eternidad y el tiempo

(como en Dios),
la finitud y la infinidad
(como en el universo),
la armonía y el caos
(como en el mundo):

una definición breve y precisa,

y una inacabable sucesión de decimales
que no repiten su orden en ningún período.
Pero hay casos aún más inquietantes:
números que no es posible definir,
ristras infinitas de decimales

colocados al azar, al puro azar,
números, pues, que nunca podréis reducir
a una definición breve y concisa,
como π, o raíz de dos,
sino números que son movimiento sin reposo,
caos sin armonía, tiempo sin eternidad,
números que ni tan sólo podemos pronunciar,
números que nos recuerdan que el mundo es inefable,

la longitud de la circunferencia
dividida por dos veces el radio

y por eso conviene que, de vez en cuando,
la poesía hable de esta clase de números
que comparten con ella los límites del lenguaje,
y quien sabe si del mundo,
tal como los números hablan en ella
mediante los acentos, las sílabas, las estrofas.
O quizás son números que no pueden existir
si es que el mundo, en el fondo, es palabra
–no nuestra, claro está, sino de un Dios

que hubiera querido hacerse palabra a la medida
de nuestra limitada capacidad de escucha–,
pero esto nos conduciría a otros derroteros
–los de Dios y de su presencia
en el mundo y en nosotros–
que convendría no esquivar como lo hacemos,
tan desdeñosamente, en estos tiempos.

Pero me detengo aquí
y doy por acabado este poema
–de hecho, inacabado y discursivo–,
sabiendo, empero, que el número π, sigue,

caudaloso como todos los ríos a un tiempo,
con más cifras que gotas el Nilo o el Ganges,
el Volga o el Amazonas,
con más cifras que granos de arena
hay en todas las playas de la Tierra,
con más cifras que átomos hay
en todos los planetas del sistema solar,
y rehusando siempre un orden claro y repetitivo,
como un río espumoso y turbulento, infinito,

pero también lento, sutil, discreto,
modesto en su apariencia
pero con más propiedades que oro hay
en las minas del mundo,

o hasta que Dios se canse de él y diga basta,
y haga terminar el universo por la fatiga
de tener que soportar números como éste,
el número π.

(GRACIAS)^∞

Más contenido matemático en redes sociales

Comparte MatemáTICas: 1,1,2,3,5,8,13,...

¿Por qué tenemos 12 notas musicales? La relación entre la Música y las Matemáticas, una simbiosis perfecta

Comparte MatemáTICas: 1,1,2,3,5,8,13,...

A medida que avanzo, des-pa-ci-to :-), en mis estudios como aprendiz de músico en las clases del conservatorio disfruto de manera doble comprobando en cada lección la estrechísima relación entre la música y las matemáticas. Es realmente impresionante.

En esta entrada voy a compartir algún material básico al respecto: dos vídeos y un documento.

En el primero de los vídeos, del más que recomendable canal Aprendemos Juntos – BBVA, el archiconocido y famoso matemático y divulgador británico Marcus du Satoy nos habla con pasión, desde su experiencia personal, de la música escondida de las matemáticas.

En el segundo de los vídeos, del excelente canal Lemnismath, se explica el proceso de construcción de la escala cromática o dodecafónica de manera muy atractiva, simplificada y haciendo comprensible a cualquier espectador conocimientos no tan básicos de matemáticas y de música.

Escala cromática de do. Fuente: Wikipedia

Para finalizar compartiré un Trabajo Fin de Máster (TFM) que ahonda y explica en la Relación entre Música y Matemáticas.

Espero que disfrutéis igual que yo de esta combinación a la que, metafóricamente hablando, podríamos catalogarla como una ¡simbiosis perfecta!

Estrella de la Escala Cromática. Fuente: Lemnismath

VIDEO: La música escondida de las matemáticas. Marcus du Sautoy, matemático y divulgador científico

VIDEO: ¿Por qué tenemos 12 notas musicales? | Música y matemáticas?

La música occidental consta de doce notas agrupadas en siete blancas y cinco negras según el teclado del piano. Vamos, siete notas naturales y cinco alteraciones. ¿Por qué esta disposición tan random? Las matemáticas son protagonistas de una historia de pasión y desenfreno entre conjuntos cociente y frecuencias que le gustan al oído.

* Información adicional y bibliografía: https://lemnismath.org/2018/09/por-que-tenemos-12-notas-musicales-musica-y-matematicas/

Ya que has continuado la lectura hasta aquí, una cosica extra. Fíjate que la disposición de igual temperamento es una piedra en el riñón de la teoría sonora. Al principio buscábamos sonidos que encajaban entre sí debido a que seguían relaciones simples (de 1/2 o de 2/3).

Si ahora las relaciones dependen de la raíz duodécima de dos (un número abiertamente irracional) nunca las podremos expresar como una fracción. Es decir, que TODOS los sonidos de la escala cromática son disonantes entre sí. A tomar viento fresco la teoría. Por suerte, el oído humano no es tan tiquismiquis y le cuesta distinguir estas pequeñas diferencias en la frecuencia de los sonidos. Por eso la escala nos sigue sonando afinada, aunque matemáticamente no lo esté.

TFM: Relación entre Música y Matemáticas

TFM de Samuel Diciembre Sanahuja realizado dirigido por Gil Lorenzo Valentín durante el curso 2018-2019 en el Máster de Profesorado de Educación Secundaria de la Universitat Jaume I.

Resumen
Este documento es un trabajo de final del Máster en Profesor/a de Educación Secundaria Obligatoria y Bachillerato, Formación Profesional i Enseñanza de Idiomas de la Universitat Jaume I de Castellón. Por lo tanto, se trata de un trabajo orientado hacia el campo de la educación. Este trabajo forma parte de la especialidad de matemáticas del máster, por lo que todas las aportaciones que haga están pensadas para el aula de matemáticas.

El título del trabajo es “Relación entre Música y Matemáticas”, por lo que se trata de una ayuda para poder hacer ver a los alumnos y alumnas esta relación, que es mucho más profunda de lo que uno pudiera pensar en un principio. El documento no pretende indagar de
una manera muy profunda en la teoría musical ni explicar conceptos matemáticos muy complicados. Se trata del resultado de una búsqueda bibliográfica sobre el tema expuesto en el título para ver la relación histórica que han tenido, diferentes técnicas que composición basadas en matemáticas que se han empleado y aportaciones al mundo de la música hechas por algunos matemáticos.

El documento aporta un material para el profesor de matemáticas que quiera hacer ver al alumnado esta importante relación. La música tiene su origen en las matemáticas, en el estudio de los números y sus relaciones. Esto hace que a lo largo de la historia esta relación no se haya separado. Durante mi investigación he encontrado una gran cantidad de artículos y trabajos elaborados por matemáticos que tratan de explicar esta relación o algún concepto concreto. Esto me ha hecho pensar que los matemáticos, efectivamente, tenemos mucho que decir a la hora de hablar de la música.

Podemos hacer muchas explicaciones, no solo respecto a la relación de las matemáticas con la música, sino de las matemáticas con la arquitectura o las matemáticas con la pintura. Sin embargo, resulta necesario averiguar si los alumnos asumen estos conocimientos, si están
aprendiendo no solo que esta relación existe, sino que les permite aprender matemáticas a través de la música y música a través de las matemáticas. Para esto el trabajo también aporta una serie de actividades al final para ver esta relación.

TFM: Música y matemáticas – UJI

Más contenido matemático en redes sociales

Comparte MatemáTICas: 1,1,2,3,5,8,13,...

17/6/17 Teselado, mosaicos, matemáticas, arte, geometría… #worldtessellationday

Comparte MatemáTICas: 1,1,2,3,5,8,13,...

Imagen de Eider Antxustegi-Etxarte

A disfrutar…

¡¡ Feliz domingo #worldtessellationday !!

Comparte MatemáTICas: 1,1,2,3,5,8,13,...

Demostrando el teorema de Pitágoras… con piezas de LEGO

Comparte MatemáTICas: 1,1,2,3,5,8,13,...

Comparto en esta entrada una divertida y didáctica animación, la cual nos ofrece una demostración sin palabras del popularmente conocido Teorema de Pitágoras.

Espero que te diviertas aprendiendo.

¿Te animas a realizar, grabar y compartir tu propia demostración con otras medidas para los catetos y la hipotenusa (ternas pitagóricas) :-)?

Comparte MatemáTICas: 1,1,2,3,5,8,13,...

Tarea STEM. Modelización matemática con Geogebra: Embaldosado geométrico

Comparte MatemáTICas: 1,1,2,3,5,8,13,...

Comparto vídeo y applet interactivo realizado con Geogebra que nos permitirá visualizar la resolución de esta tarea, paso a paso.

Tarea STEM. Modelización matemática con Geogebra: Embaldosado geométrico
Cálculo del coste del material necesario para realizar el embaldosado de una edificación combinando distintos tipos de baldosas geométricas (octogonales, triangulares, cuadradas,…) y colores.

 

Comparte MatemáTICas: 1,1,2,3,5,8,13,...

I CONCURSO DE DIBUJO MATEMÁTICO EN HUELVA

Comparte MatemáTICas: 1,1,2,3,5,8,13,...

I CONCURSO DE DIBUJO MATEMÁTICO EN HUELVA de SAEM-THALES Huelva

 

¡Vamos a dibujar las matemáticas! Tal y como tú las ves; con colores, témperas, lápices, …  Queremos ver lo que sabes de mates y además lo bien que lo dibujas. Queremos dibujos divertidos y que nos demuestres que te diviertes dibujando las matemáticas.

 

Organiza

Sociedad Andaluza de Educación Matemática Thales – Huelva (SAEM – Thales Huelva).

 

Participantes

Alumnado de EDUCACIÓN PRIMARIA y de NECESIDADES EDUCATIVAS ESPECÍFICAS de toda la provincia de Huelva.

 

Tema

Cualquier situación en donde se encuentren las matemáticas. Ahí van algunas ideas: números, juegos, formas geométricas de las edificaciones, mosaicos, en el supermercado, en las noticias, en los diseños de la ropa que vestimos a diario, señales de tráfico, obras de arte, matrículas de los coches, en las rebajas, etc.

 

Envío de los dibujos

EXCLUSIVAMENTE por correo postal, a la siguiente dirección:

I CONCURSO DE DIBUJOS MATEMÁTICOS EN HUELVA

SAEM THALES – HUELVA

CEIP GARCÍA LORCA

Calle Emilio Molero, S/N

21004 Huelva

Premios

  • 1 Premio para 1º CICLO: Diploma + Lote de libros de literatura infantil y juvenil + Calculadora
  • 1 Premio para 2º CICLO: Diploma + Lote de libros de literatura infantil y juvenil + Calculadora
  • 1 Premio para 3º CICLO: Diploma + Lote de libros de literatura infantil y juvenil + Calculadora
  • 1 Premio especial al Matemátic@ + Creativ@: Diploma + Lote de libros de literatura infantil y juvenil + Calculadora

 

Jurado

Seis personas (maestros/as, profesores/as, artistas, etc.) designadas por SAEM-Thales Huelva.

 

Recepción de Dibujos

Del 13 de febrero al 24 de marzo de 2017.

 

Notas Importantes

  1. Dibujos a COLOR o B/N, también valen COLLAGES.
  2. El dibujo se realizará en la plantilla adjunta, a ser posible como actividad en clase.
  3. Rellenar todos los datos de la plantilla.
  4. Se admitirán 2 dibujos como máximo por alumno/a.
  5. Los dibujos deberán ser inéditos. No se admitirán dibujos que hayan sido premiados en otros concursos o estén participando actualmente en otros eventos similares, exceptuando la participación en Concursos de Dibujos realizados en Colegios.
  6. Las obras quedarán en propiedad de SAEM-Thales Huelva, que se reserva el derecho de editarlas y utilizarlas, sin ánimo de lucro y haciendo siempre mención del autor/a de las mismas.
  7. La SAEM-Thales no se hace responsable de las reclamaciones que se produjeran por derechos de imagen y terceros.
  8. El fallo del concurso se hará público a finales de marzo de 2017 a través de la página web de SAEM-Thales Huelva (http://thales.cica.es/huelva) y se comunicará individualmente a los premiados/as. Este fallo será inapelable. Si el jurado así lo estimase todos o algunos de los premios podrían quedar desiertos.
  9. La fecha y lugar de entrega de premios será anunciado con suficiente antelación. La no presentación a este acto supondrá la exclusión del concurso.
  10. INSCRIPCIÓN GRATUITA.
  11. La participación en el concurso implica la aceptación de las presentes bases.

 

SAEM THALES – HUELVA · Web: http://thales.cica.es/huelva

Correo electrónico: thaleshuelva@gmail.com · Twitter: @ThalesHuelva – Facebook: SAEM-Thales-Huelva

Comparte MatemáTICas: 1,1,2,3,5,8,13,...

Actividades para la celebración del Día de Pi en España. Sin Pi (Π) no soy nada

Comparte MatemáTICas: 1,1,2,3,5,8,13,...

logopidayLa Real Sociedad Matemática Española (RSME), la Consejería de Economía y Conocimiento (CEC) de la Junta de Andalucía, la Fundación Descubre (Descubre), la Sociedad Andaluza de Educación Matemática Thales (SAEM Thales) y la Federación Española de Profesores de Matemáticas (FESPM) organizan el día Pi en España, el 14 de marzo, considerado el Día Internacional de Pi, Pi Day, según la escritura de la fecha en anglosajón (3.14).

El objetivo es la celebración de una gran fiesta de las Matemáticas, con la organización de un evento el PiDay (14 de marzo), que este año se celebrará en Sevilla, denominada “Sin Pi no soy nada”.

Las actividades programadas son:

Certamen de vídeo, cómic, relato, material y recursos didácticos, y de carteles (los premios se entregarán el 14 de marzo).
Ciencia en el Bulebar. Microconferencia divulgativa de Ciencia en el Bar Bulebar de Sevilla.
Café con Ciencia. Se promoverá la celebración de Cafés con Ciencia Matemática en diferentes emplazamientos.
¿Qué haces por Pi? (Propuestas de todo el que quiera para celebrar este día)
Acciones paralelas en redes Sociales, como Pi en un tuit.

pidaysp-banner

http://www.piday.es/

Sobre el Certamen

El Certamen tendrá las siguientes modalidades:

 

  1. Relatos (hasta 1000 palabras), bien de divulgación sobre Pi y sus propiedades, bien de ficción en los que Pi tenga un papel protagonista.
  2. Vídeos (de 3 minutos como máximo), bien de divulgación sobre Pi y sus propiedades, bien de ficción en los que Pi tenga un papel protagonista.
  3. Cómics, bien de divulgación sobre Pi y sus propiedades, bien de ficción en los que Pi tenga un papel protagonista.

En cada una de estas modalidades, dirigidas al alumnado, se establecerán, además, cuatro categorías:
(a) Primaria
(b) 1º y 2º de ESO.
(c) 3º y 4º de ESO.
(d) 1º y 2º de Bachillerato

 

 

 

 

Materiales y recursos didácticos. Tratará sobre Pi y sus propiedades e irá dirigida al profesorado.

 

 

Carteles. Dirigida al público general.
Habrá catorce premios: uno en cada una de las categorías de las cuatro primeras modalidades, uno en la modalidad de Materiales y recursos didácticos y uno en la modalidad de Carteles.

En esta convocatoria cada premio será una tableta. Han de considerarse recompensa y símbolo cotidiano de la fusión de las Matemáticas con otras ciencias, lo que permite la creatividad.
Las bases de la convocatoria y más información se pueden consultar en la convocatoria y en la web http://www.piday.es/ cuyo plazo de presentación será hasta el día 28 de febrero de 2017.

Comparte MatemáTICas: 1,1,2,3,5,8,13,...

Tortitas matemáticas

Comparte MatemáTICas: 1,1,2,3,5,8,13,...

Matemáticas hasta en el desayuno… #Feliz2017

tortitasmatematicas

Fuente: Center of Math ‏

Comparte MatemáTICas: 1,1,2,3,5,8,13,...

Materiales en Abierto (REAs) para trabajar por proyectos (ABP) en Matemáticas en Secundaria. Proyecto EDIA

Comparte MatemáTICas: 1,1,2,3,5,8,13,...

Permitir que cualquier docente pueda introducir la metodología de trabajo por proyectos en el aula de Matemáticas. Este es el objetivo fundamental del Proyecto EDIA de CeDeC, que inicia la publicación de recursos educativos abiertos (REAs) para Matemáticas en Secundaria, continuando así la serie ya iniciada en otras materias de esta misma etapa y también para Primaria.

Cabeceras-cedec-educalab-intef-ministerio

EDIA-REA-ABP-ESSI

Evento’s Solutions, servicios integrales (ESSI)

Es el sugerente título del primer REA publicado, el cual he tenido el gusto de diseñar y elaborar ;-), el cual, por supuesto, puedes descargar, modificar y adaptar libremente para tu grupo/clase, ya que se publican bajo licencia abierta CC-BY-SA, o bien, usar tal cual en tu aula ya que como se indica en la propia Guía didáctica del proyecto incluida en el propio REA.

El presente proyecto está dirigido al alumnado del Primer Ciclo de la Educación Secundaria Obligatoria, consta de distintas secuencias didácticas que giran en torno al estudio del bloque 2, Números y Álgebra del currículo de Secundaria (Materia 29. Matemáticas) publicado por Real Decreto 1105/2014, de 26 de diciembre, por el que se establece el currículo básico de la Educación Secundaria Obligatoria y del Bachillerato.

Planteamiento del proyecto

Propuesta docente

La aquí presentada es una propuesta basada en el aprendizaje activo de los estudiantes, los cuales deberán ver el trabajo colaborativo e investigativo como parte esencial del aprendizaje matemático. El docente es clave en la gestión de las dinámicas de aula que surgen al introducir estos nuevos modelos de enseñanza-aprendizaje en el aula de matemáticas.

Propuesta de investigación / acción

El objetivo del siguiente REA es favorecer que el alumnado de 1º – 2º de ESO adquiera un aprendizaje significativo y comprensivo de los distintos conjuntos de números (naturales, enteros, decimales,…), operaciones combinadas con ellos en contextos reales, porcentajes, proporcionalidad y escala, que les proporcione su uso instantáneo y con soltura en situaciones de la vida cotidiana que requieran de ellos para su resolución.

Objetivos y producto final

Este conocimiento será impulsado a través de retos, tareas conectadas con el mundo real que requieran de cierta indagación y modelización matemática.

A partir de una situación real de experiencia negativa de una pareja en la celebración de su boda, se le presenta al alumnado la creación de una empresa desde cero, a la que hemos bautizado como Evento’s Solutions, servicios integrales (ESSI), dedicada a la gestión integral de eventos.

En los primeros meses de vida se inicia la selección del local de celebraciones, la distribución del salón, la compra del material para el catering, elaboración de anuncios publicitarios para dar a conocer la empresa y elaboración de oferta promocional de lanzamiento para llevar a cabo la captación de los primeros clientes. Finalmente recopilaremos y difundiremos los distintos productos elaborados durante todo el desarrollo del proyecto y reflexionaremos sobre todo el proyecto.

essi-procomun-1

En definitiva, con la elaboración y publicación de estos recursos se pretende ofrecer a los docentes un recurso completo y flexible para trabajar en el aula los contenidos, objetivos, criterios de evaluación y estándares de aprendizaje evaluables de Matemáticas por medio de metodologías activas de aprendizaje, en un contexto real que favorece de manera clara un aprendizaje competencial integral por parte del alumnado.

En el marco del Proyecto EDIA se irán publicando en los próximos meses más recursos educativos para trabajar por proyectos en Matemáticas en Secundaria, en los que estamos implicados un grupo de compañero/as, comandados por el CeDeC, a quien agradezco la confianza depositada en mi persona para participar en este atractivo y vanguardista proyecto de creación de materiales curriculares digitales en abierto para trabajar por proyectos (ABP) en el aula de matemáticas, que espero sea de ayuda y utilidad para que muchos docentes se animen a trabajar en clase usando esta metodología de trabajo.

essi-procomun-2

Desde estas líneas te animo a visitar y explorar este primer proyecto y a difundirlo entre los compañero/as de tu claustro y en tus contactos en redes sociales, así como te invito a estar vigilante a la publicación de los siguientes proyectos.

¡Feliz y merecido descanso estival!

Comparte MatemáTICas: 1,1,2,3,5,8,13,...

Tarea: Matemáticas en la “Fiesta de los patios de Córdoba” #STEM #STEAM

Comparte MatemáTICas: 1,1,2,3,5,8,13,...

Os dejo por aquí la tarea a realizar sobre un uso utilitario de las matemáticas en la “Fiesta de los patios de Córdoba”

Contiene varios retos atractivos ;-).

Ya me contaréis en clase cómo os ha ido.

Tarea-matematicas-patios-cordoba-luismiglesias

Acceso a la tarea: http://luismiglesias.es/tarea-patios-cordoba/

Seguimos…

Comparte MatemáTICas: 1,1,2,3,5,8,13,...
WP2Social Auto Publish Powered By : XYZScripts.com