Transformación Digital Educativa

Entrevista en Ideal en Clase «Viajamos a Bollullos Par del Condado, con Luis M. Iglesias Albarrán»

En esta entrada comparto entrevista que me realizó Rafael Bailón hace unos días para #IDEALENCLASE 📰 👨‍💻, la sección educativa del periódico Ideal de Granada.

Es un honor que cuenten contigo y piensen que puedes aportar ideas para otros compañeros sobre la dirección escolar, la innovación educativa y otros otros temas de vital importancia para la escuela del siglo XXI.

Rafael Bailón: «Viajamos a Bollullos Par del Condado, con Luis M. Iglesias Albarrán»

Para él, resulta especialmente relevante, para la consecución de los objetivos del proyecto educativo de cualquier centro del siglo XXI, un liderazgo sólido y claro de la innovación educativa, a todos los niveles; desde la organización del centro, pasando por la información, y, por supuesto, en lo referente a los procesos de enseñanza-aprendizaje.

Ese liderazgo, inexorablemente, pasa por una apuesta por la Transformación Digital Educativa (TDE), apoyándose o colocando a lo digital (tecnología, TIC, TAC, TEP o como queramos llamarle) en la punta de lanza, siempre con una mirada al humanismo tecnológico, desde una óptica inclusiva. A juicio de este docente, la tecnología ha de estar al servicio de la enseñanza y el aprendizaje, a disposición de las personas.

Entrevista completa en el portal de #IDEALENCLASE

https://twitter.com/luismiglesias/status/1546524945773109253?s=20&t=jxxhTtLMYK0A5Xvcy6jdtg

Puedes dejarme tu comentario a continuación. Si te gustó y crees que puede ser de utilidad para otros compañeros, compártela. 

Más contenido matemático en redes sociales

MatemáTICas: 1,1,2,3,5,8,13… cumple 13 años en la red

Hoy es un día especial para quien escribe ya que, tal día como hoy, hace 13 años (14 de marzo de 2009), en el hueco que gentilmente me cedieron los compañeros de Profeblog, escribía los primeros renglones de mi libro virtual matemático; MatemáTICas: 1,1,2,3,5,8,13,…  

Pastel de cumpleaños con vela rosa número 13 en backgraund azul prendido fuego por encendedor. vista de primer plano | Foto Premium

Fuente: Freepik

Lo bauticé con este nombre, en honor a una de las sucesiones más conocidas de la matemática, la sucesión de Fibonacci

File:Fibonacci sequence - starting with zero.jpg

File:Fibonacci blocks.svg

Fuente: Wikimedia commons

Llegó a este mundo cuando ya incluso anunciaban la muerte de los blogs. Ya veis que no hice mucho caso a tales rumores :-). Lo tenía claro. Necesitaba un espacio que complementara mis clases, un rincón que apostase de manera clara por la inclusión de la tecnología en la práctica educativa, en mis clases de matemáticas. Un lugar en la red donde centralizar los materiales didácticos que fuese elaborando para mis alumnos. Ese sitio, ese lugar, ese espacio debía de ser un blog, este blog.

Y claro, no podía ser de otra forma. Su fecha de lanzamiento, el día de Pi #díadePi o #Piday, por aquello del inglés, 3/14 (14 de marzo). Mi primer post, un modesto y tímido, Bienvenid@ . La 40ª Conferencia General de la UNESCO proclamó el 14 de marzo de cada año como el Día Internacional de las Matemáticas en noviembre de 2019 (40C/Resolución 30).

Por este motivo, hoy, la comunidad matemática mundial también está de celebración, aunque no podamos hacerlo como quisiéramos y nos gustaría. El mundo y especialmente Europa está viviendo días negros por la invasión de Ucrania a manos de Rusia. Si no tuvimos bastante con la COVID-19, la tragedia humanitaria causada por esta violación de las fronteras de un país y de los derechos humanos nos tiene bastante apenados y sonrojados, al ver día tras día a través de los medios de comunicación la barbarie que la especie humana pude llegar a cometer. Desde estas líneas, todo mi apoyo y fuerza al pueblo ucraniano.

Mucho ha llovido desde aquel 14/03/2009. El termino competencia digital había realizado su incursión junto al resto de Competencia Básicas de la LOE (Ley Orgánica de Educación, 2006). Los docentes que usábamos los blogs como medio para ampliar nuestra aula física, lo que hoy sería un entorno blended-learning, lo hacíamos a voluntad propia y éramos considerado una especie un tanto singular. Recuerdo aquella mesa de debate en el primer EABE (Encuentro Andaluz de Blogs Educativos) donde en la mesa de trabajo simultánea ya hablamos del reconocimiento de la competencia digital. ¡Qué cosas se nos ocurrían! 😉

13 años más tarde, dos nuevas leyes educativas LOMCE (2013) y LOMLOE (2020), celebro que Europa y España lo tengan claro, y con un buen marco de la Competencia Digital Docente elaborado por INTEF con colaboración de las comunidades, habrá un proceso certificador y acreditador de la competencia a través de actividades formativas alineadas con dicho marco, que se desencadenará en nuestro país en próximas fechas. La Educación de hoy día no se concibe sin Tecnología, y en Matemáticas son imprescindibles para Enseñar y para Aprender.

Iglesias-Albarrán, Luis M. Enseñanza y aprendizaje de las matemáticas en la era digital. Ambientes de aprendizaje mediados por TIC,SCOPEO MONOGRÁFICO Nº4: e-MatemáTICas,,4,41-80,2012,Universidad de Salamanca. Servicio de Innovación y Producción Digital

 

Desde aquel día, reconocimiento del ITE, ahora INTEF, como Buena Práctica 2.0 por la inclusión de las TIC en la práctica educativa,  muchas vivencias, reconocimientos en certámenes y otras muy buenas experiencias profesionales a través de las cuales he conocido, compartido y descubierto grandes compañeros/as de viaje, más de 500 entradas publicadas, multitud de materiales de elaboración propia o recopilados, material de conferencias, jornadas de trabajo en las que he participado, artículos publicados en revistas o reseñas de colaboraciones en libros, más de 6 millones de visitas,… hacen que hoy deba daros las GRACIAS, y confirmar que seguiré viniendo por aquí mientras tenga fuerzas, a compartir cada vez que tenga o sea capaz de encontrar la manera de hacer un hueco para escribir y publicar sobre Matemáticas (con Tecnología): MatemáTICas.

Para terminar os dejo con tres vídeos sobre Pi y dos poemas. Espero que os guste.

Vídeo: ¿Para qué sirve el número Pi? BBC Mundo

 

Vídeo: El número Pi Canal encuentro Adrián Paenza

Vídeo: Spock («Star Trek») desactiva una computadora malvada pidiéndole que calcule el último dígito de Pi :-). Fuente: Mathigon

 

Poema: El número Pi (Wislawa Szymborska, Premio Nobel de Literatura 1996). Fuente: Yosoytuprofe

El admirable número Pi
tres coma uno cuatro uno.
Las cifras que siguen son también preliminares
cinco nueve dos porque jamás acaba.
No puede abarcarlo seis cinco tres cinco la mirada,
ocho nueve ni el cálculo
siete nueve ni la imaginación,
ni siquiera tres dos tres ocho un chiste, es decir, una comparación
cuatro seis con cualquier otra cosa
dos seis cuatro tres de este mundo.

La serpiente más larga de la tierra suma equis metros y se acaba.
Y lo mismo las serpientes míticas aunque tardan más.
El séquito de dígitos del número Pi
llega al final de la página y no se detiene,
sigue, recorre la mesa, el aire,
una pared, una hoja, un nido de pájaros, las nubes, hasta llegar
directo al cielo,
perderse en la insondable hinchazón del cielo.
¡Qué breve la cola de un cometa, cual la de un ratón!
¡Qué endeble el rayo de un astro si se curva en la insignificancia
del espacio!

Mientras aquí dos tres quince trescientos diecinueve
mi número de teléfono la talla de tu camisa
el año mil novecientos sesenta y tres sexto piso
el número de habitantes sesenta y cinco céntimos
dos pulgadas de cintura una charada y un mensaje cifrado
que dice vuela mi ruiseñor y canta
y también se ruega guardar silencio,
y se extinguirán cielo y tierra,
pero el número Pi no, jamás,
seguirá su camino con su nada despreciable cinco
con su en absoluto vulgar ocho
con su ni por asomo postrero siete,
empujando, ¡ay!, empujando a durar
a la perezosa eternidad.

Poema: El número  π (A Pilar Bayer y A F Walter May). Fuente: Repoelas


3

 

1

 

4

 

1

5

 

 

9

 

 

 

 

2

 

6

 

 

5

 

 

3

 

5

 

 

8

 

 

 

 

9

 

 

 

 

7

 

 

 

9

 

 

 

 

3

 

2

3

 

8

 

 

 

4

 

 

6

 

 

2

 

6

 

 

 

4

 

3

 

3

 

8

 

 

 

3

 

2

 

7

 

 

 

9

 

 

 

 

5

 

0

2

 

8

 

 

 

8

 

 

 

4

 

1

 

 

9

 

 

 

 

7

 

1

 

6

 

 

9

 

 

 

 

3

 

9

 

 

 

 

9

 

 

 

 

3

 

7

 

 

 

 

5

 

1

0

5

 

8

 

 

 

2

 

9

 

 

 

 

7

 

 

 

4

 

 

9

 

 

 

 

4

 

 

4

La longitud de la circunferencia,
la longitud del diámetro:
¡qué fuerza su cociente,

siempre el mismo, constante, eterno!,

tres coma catorce,
tres coma catorce dieciséis,
primeros balbuceos de un río infinito
de decimales sin período, siempre nuevos,

único e infinito, único y diverso,

tres coma catorce,
el recuerdo escolar de tantos cálculos,
tres coma catorce dieciséis,
el recuerdo de números en clave,
como barcos en un puerto,

humeantes, a punto de partir
río abajo, mientras el agua fluye
hecha números y caricia,
y el lomo de los cocodrilos de las preguntas
que van haciendo los matemáticos
anuncia ya todo tipo de peligros:
es fácil que una de ellas os pille
en sus mandíbulas plagadas de agudezas
y os arranque años de vida con un problema,

el área del círculo
Dividida por el cuadrado del radio

seductor, desafiante,
muy difícil de resolver,
pero tan atractivo que ni siquiera os déis cuenta
de que estáis quemando en él la vida,
de tan adentro como os ha entrado
aquella pregunta que tan pocos pueden comprender,

y los cinco sentidos se ponen al acecho
de algo que desborda los sentidos,
de las extrañas propiedades de un número
llamado irracional y que desborda la razón,
pero que está en el fondo de la razón del universo.

El primer problema: calcularlo,
obtener más y más decimales,
escalar un monte de decimales,

penetrando cada vez más en un mundo
que ya no pertenece al universo de la medida
–si medís las longitudes
de circunferencias reales, de diámetros reales,
y obtenéis su cociente,

sólo hallaréis dos decimales, tres decimales,
quizás cuatro decimales del número ?
(lo que de él sabían los egipcios):
los otros quedarán más allá
de los límites de la precisión de la medida-;
una definición, pues, que parece tan simple,
–un cociente de dos longitudes que estáis viendo
dibujadas en el papel–

y lleva, en cambio, a un desbordamiento de decimales.
¿Y cómo han calculado tantos decimales?
Durante más de dos mil quinientos años,
los que se atrevieron a embarcarse en la aventura,
siguiendo los pasos del gran Arquímedes,
inscribían polígonos en un círculo,
decágonos, dodecágonos, pentadecágonos,
polígonos de más y más lados,
y calculaban su perímetro

y lo dividían por el diámetro del círculo circunscrito;
naturalmente, cuanto más lados,
más se aproxima el polígono a la circunferencia
y más precisión se consigue en los decimales,
pero también encontraban
más y más dificultades;
parece duro, lo sé,

parece árido, lo sé,
pero también sé ver los atractivos
de navegar por un río en una selva espesa,
sin saber cómo será su curso un poco más allá,
ahora lento –decimales pequeños–,
ahora rápido –decimales grandes–,
siempre fluyente pero siempre impredictible:
¿cuál será el siguiente decimal?
¿Valdrá dos?, ¿valdrá cinco?, ¿valdrá nueve?

no hay manera de saberlo,
salvo que hagáis el cálculo;
¿cuál será el valor del decimal quinquagésimo?

el área de la esfera
dividida por cuatro veces el cuadrado del radio,

no hay otra manera de saberlo
que hacer todos y cada uno de los cálculos
que conducen hasta este decimal,

es decir, calcular todos los decimales anteriores
sin saltarse ni uno
–como en el tiempo de nuestra vida:
no hay otra manera de saber
lo que pasará dentro de un año
que vivir día a día todo el año,
hora a hora, minuto a minuto todo el año,
un tiempo, pues, diferente del tiempo de los astros,

predictible a largo término.
Pero sigamos con los decimales del número ?:
el método de los polígonos se hace largo y fatigoso:
¿habría manera de hallar un camino más rápido?

John Wallis, hacia mil seiscientos ochenta,
encuentra (en Oxford) que ? puede ser expresado
-tomad nota-
como el doble del producto de los cuadrados
de todos los números pares
dividido por el producto de los cuadrados

el volumen de la esfera
dividido por cuatro tercios del cubo de su radio,

de todos los números impares;
parece misterioso, lo sé,
no es evidente, ni fácil de demostrar,
pero es un salto, ¿no lo véis?:
hemos pasado, por primera vez en dos mil años,
de la geometría a la aritmética,

vemos el número ? con una luz diferente,
nos cuesta reconocer en este cociente
de productos de números
aquel cociente de longitudes inmediatas,

tan directamente visibles y sensibles,
y ahora nos parece arisco y misterioso,
pero su cálculo se ha hecho más fácil,

más y más decimales;
el proceso se acelera todavía más
cuando se hallan otras formas aritméticas

de escribir el número π, :
como suma de potencias,
como suma de inversos de potencias,
como raíz de sumas de inversos de potencias…
Pero se necesita, para eso,
afinar los instrumentos de las matemáticas,
inventar las derivadas,
inventar las integrales

–¿inventar o descubrir?:
observad que son conceptos diferentes
que suponen, también, ideas muy diversas

dos veces el producto de los cuadrados de todos los pares
dividido por el producto de los cuadrados de todos los impares

sobre qué son los números y la mente–,
inventar series de Taylor,
inventar series de Fourier,
inventar muchos otros procedimientos
que no quiero mencionar para evitar
que este escrito deje de ser lo que quiero:
un poema, en cierta forma, y no una lección

de matemáticas o historia
–por eso no hablo de otras propiedades
del número π, como la transcendencia,
ni doy ningún detalle de lo que digo.
No hablo de fórmulas concretas,
sino de emociones que he sentido,
y que antes que yo han sentido muchos otros,
y que sentirán muchos otros cuando yo ya no esté,
emociones de belleza y de vértigo

de viaje y de aventura,
de esfuerzo, de derrota, de victoria,
de rebeldía, de perseverancia,
de fusión con el mundo y de lejanía del mundo,
que algún día también sentiréis vosotros

el área de la elipse,
dividida por el producto de sus ejes,

si pensáis, con detalle, en este número
o en otros números que le son familiares
–la raíz cuadrada de dos, por ejemplo,
es decir, el cociente de la diagonal
y el lado de un cuadrado,
cociente irracional
que amargó la vejez de Pitágoras,
quien había enseñado que el mundo

estaba hecho de números puramente racionales
–pero ¡qué ironía, que dos formas,
el círculo y el cuadrado, que encontramos por doquier,
rehúsen expresarse en estos números!.
Pero podéis preguntaros otras cosas
que cuál será el siguiente decimal:
con los ordenadores, el proceso se ha acelerado
enormemente y conocemos ya

miles de decimales,
en lugar de los quinientos a que se había llegado
con el ingenio y las fuerzas estrictamente humanas;
así, pues, suponed que ya tenemos

miles de decimales,

todos ellos irrelevantes a efectos prácticos,
salvo los cinco primeros o, como máximo,
de los quince o veinte primeros, hilando fino.
Os podéis preguntar por la abundancia
relativa de las diversas cifras:
la del uno, la del dos, la del tres, la del cuatro,
la del cinco, la del seis, la del siete, la del ocho,
la del nueve, la del cero.
Pues bien: se comprueba –pero mucho antes

de que esto hubiera sido comprobado ya lo había demostrado
Borel y otros matemáticos–
que la abundancia relativa de las diversas cifras
es la misma,
que la abundancia relativa de todos los grupos de dos cifras
–quince, veintitrés, noventa y cinco, por ejemplo–
es la misma

que la abundancia relativa de todos los grupos de tres cifras

–ciento veintiuno, quinientos veintitrés, pongamos por caso-
es la misma,
y así sucesivamente para grupos
de más y más cifras;
en otras palabras: es seguro
que en los decimales de π, encontraréis la fecha

de vuestro nacimiento
(23-10-1953, en mi caso,
o bien 31-4-1592, si nos fijamos
en las siete primeras cifras de pi)
y también la fecha de vuestra muerte
(que no sabréis reconocer,
como en mi caso),
y vuestro número de teléfono;
más aún: si designamos las letras mediante números

–1 la A, 2 la B, 3 la C, 4 la D
y así sucesivamente–
sabed desde ahora que vuestro nombre está escrito

en los decimales del número π, ,
y que en algún lugar del número π, podéis hallar,
juntos, vuestro nombre y el de vuestro amor
y el nombre de vuestros hijos,
y las fechas del nacimiento y de la muerte
de cada uno de vosotros
Es vertiginoso, ciertamente, pero he de decir
que al lado de vuestro nombre también está escrito
el nombre de cualquier hombre o mujer

que hayan existido o que nunca existirán:
es, pues, vertiginoso y fútil:
está toda vuestra historia
pero también todas las otras posibles historias
que habríais podido vivir,
todos los otros amores
que hubierais podido tener,
de manera que lo dice todo y nada,
como algunos oráculos antiguos,

o como pasa a menudo cuando se habla demasiado.
Si miráis el número π, después de haber leído
este poema, os parecerá, quizás, vertiginoso,

como un pozo sin fondo, como un infinito
que se despliega ilimitadamente delante vuestro,
pero moriréis antes de haber podido leer
una mínima parte de sus decimales.
En el número π, hay el reposo y el movimiento
(como en el círculo),
la eternidad y el tiempo

(como en Dios),
la finitud y la infinidad
(como en el universo),
la armonía y el caos
(como en el mundo):

una definición breve y precisa,

y una inacabable sucesión de decimales
que no repiten su orden en ningún período.
Pero hay casos aún más inquietantes:
números que no es posible definir,
ristras infinitas de decimales

colocados al azar, al puro azar,
números, pues, que nunca podréis reducir
a una definición breve y concisa,
como π, o raíz de dos,
sino números que son movimiento sin reposo,
caos sin armonía, tiempo sin eternidad,
números que ni tan sólo podemos pronunciar,
números que nos recuerdan que el mundo es inefable,

la longitud de la circunferencia
dividida por dos veces el radio

y por eso conviene que, de vez en cuando,
la poesía hable de esta clase de números
que comparten con ella los límites del lenguaje,
y quien sabe si del mundo,
tal como los números hablan en ella
mediante los acentos, las sílabas, las estrofas.
O quizás son números que no pueden existir
si es que el mundo, en el fondo, es palabra
–no nuestra, claro está, sino de un Dios

que hubiera querido hacerse palabra a la medida
de nuestra limitada capacidad de escucha–,
pero esto nos conduciría a otros derroteros
–los de Dios y de su presencia
en el mundo y en nosotros–
que convendría no esquivar como lo hacemos,
tan desdeñosamente, en estos tiempos.

Pero me detengo aquí
y doy por acabado este poema
–de hecho, inacabado y discursivo–,
sabiendo, empero, que el número π, sigue,

caudaloso como todos los ríos a un tiempo,
con más cifras que gotas el Nilo o el Ganges,
el Volga o el Amazonas,
con más cifras que granos de arena
hay en todas las playas de la Tierra,
con más cifras que átomos hay
en todos los planetas del sistema solar,
y rehusando siempre un orden claro y repetitivo,
como un río espumoso y turbulento, infinito,

pero también lento, sutil, discreto,
modesto en su apariencia
pero con más propiedades que oro hay
en las minas del mundo,

o hasta que Dios se canse de él y diga basta,
y haga terminar el universo por la fatiga
de tener que soportar números como éste,
el número π.

(GRACIAS)^∞

Más contenido matemático en redes sociales

Vídeo de la Conferencia de Clausura del II Congreso Iberoamericano de Docentes: Recursos Educativos Abiertos para la transformación digital educativa y los ODS #CongresoIB

Conferencia de Clausura II Congreso IB – Recursos Educativos Abiertos para la transformación digital educativa y los ODS

Comparto vídeo de la Conferencia: Recursos Educativos Abiertos para la transformación digital educativa y los ODS que tuve el gusto de impartir el pasado viernes, 16 de julio, en la Clausura del II Congreso Iberoamericano de Docentes #CongresoIB.

Aprovecho estas líneas para agradecer a Formación IB y a la Universidad Politécnica de Madrid, organizadores del Congreso, por haberme dado la oportunidad de clausurar tan importante y necesario espacio para la reflexión y el desarrollo profesional docente en el contexto iberoamericano. Felicidades y a por el tercer #CongresoIB.

En el mismo traté la conexión entre tres temáticas que me apasionan y que, en mi opinión, son nucleares y básicas, actores principales, de la Escuela que se nos viene, especialmente tras la crisis sanitaria provocada por la COVID-19.

Son:

  • Objetivos de Desarrollo Sostenible (ODS)
  • Transformación Digital Educativa (TDE)y,
  • Recursos Educativos Abiertos (REA).

¿Compartes mi opinión? Espero que te guste la conferencia y sea de utilidad. Quedo a la espera de tus comentarios.

II CONGRESO IBEROAMERICANO DE DOCENTES 2021

DOCENTES FRENTE A LA PANDEMIA (Congreso Virtual). Del 5 al 16 de julio de 2021.

La imposición de la nueva normalidad ha sido un punto de inflexión en el proceso educativo. Algunos de los mejores expertos de Iberoamérica exponen sus ideas y experiencias para ayudar a todos los docentes a mejorar su eficiencia en los próximos años.

Tuve la fortuna de disfrutar del I Congreso celebrado de manera presencial en la bella ciudad de Algeciras. Escribí sobre ello en Emoción, aprendizaje, formación reglada y redes horizontales docentes. Mini-crónica de mi paso por el I Congreso Iberoamericano de Docentes. Sin duda alguna, una excelente experiencia que os animo a disfrutar, aunque en esta ocasión a causa de la COVID-19 deba celebrarse en la modalidad virtual. 

EVENTO DE PRESENTACIÓN DEL II CONGRESO IB

Vídeo del Taller: Herramientas para un nuevo tiempo en la enseñanza y el aprendizaje de la matemática – II Congreso Iberoamericano de Docentes #CongresoIB

Vídeo del Taller: Herramientas para un nuevo tiempo en la enseñanza y el aprendizaje de la matemática – II Congreso Iberoamericano de Docentes #CongresoIB

Taller: Herramientas para un nuevo tiempo en la enseñanza y el aprendizaje de la matemática

Comparto vídeo del Taller: Herramientas para un nuevo tiempo en la enseñanza y el aprendizaje de la matemática que impartí el pasado jueves, 15 de julio, en el marco del II Congreso Iberoamericano de Docentes #CongresoIB.

En el mismo traté, sin poder profundizar en exceso debido al tiempo disponible, 4 herramientas que en mi opinión, como docente a pie de aula, investigador de la didáctica matemática y creador de contenidos educativos digitales, considero que:

  • forman parte de una nueva generación de herramientas digitales,
  • aportan un gran valor añadido y,
  • enriquecen sobremanera las clases de matemáticas y los aprendizajes de los estudiantes.

Soy usuario de las 4 y forman parte de mi “caja de herramientas”.

Estoy hablando de Geogebra Notas, Desmos Activities, Graspable Math Activities y Mathigon.

Sin duda alguna, estas herramientas digitales innovadoras han abierto un nuevo tiempo en la enseñanza y el aprendizaje de las matemáticas.

¿Compartes mi opinión? Espero que te guste el taller. Quedo a la espera de tus comentarios.

II CONGRESO IBEROAMERICANO DE DOCENTES 2021

DOCENTES FRENTE A LA PANDEMIA (Congreso Virtual). Del 5 al 16 de julio de 2021.

La imposición de la nueva normalidad ha sido un punto de inflexión en el proceso educativo. Algunos de los mejores expertos de Iberoamérica exponen sus ideas y experiencias para ayudar a todos los docentes a mejorar su eficiencia en los próximos años.

Tuve la fortuna de disfrutar del I Congreso celebrado de manera presencial en la bella ciudad de Algeciras. Escribí sobre ello en Emoción, aprendizaje, formación reglada y redes horizontales docentes. Mini-crónica de mi paso por el I Congreso Iberoamericano de Docentes. Sin duda alguna, una excelente experiencia que os animo a disfrutar, aunque en esta ocasión a causa de la COVID-19 deba celebrarse en la modalidad virtual. 

EVENTO DE PRESENTACIÓN DEL II CONGRESO IB

Vídeo del evento de presentación de Docentes frente a la Pandemia – II Congreso Iberoamericano de Docentes #CongresoIB

II CONGRESO IBEROAMERICANO DE DOCENTES 2021

DOCENTES FRENTE A LA PANDEMIA (Congreso Virtual). Del 5 al 16 de julio de 2021.

La imposición de la nueva normalidad ha sido un punto de inflexión en el proceso educativo. Algunos de los mejores expertos de Iberoamérica exponen sus ideas y experiencias para ayudar a todos los docentes a mejorar su eficiencia en los próximos años.

Tuve la fortuna de disfrutar del I Congreso celebrado de manera presencial en la bella ciudad de Algeciras. Escribí sobre ello en Emoción, aprendizaje, formación reglada y redes horizontales docentes. Mini-crónica de mi paso por el I Congreso Iberoamericano de Docentes. Sin duda alguna, una excelente experiencia que os animo a disfrutar, aunque en esta ocasión a causa de la COVID-19 deba celebrarse en la modalidad virtual. 

EVENTO DE PRESENTACIÓN DEL II CONGRESO IB

Ayer sábado, 19 de diciembre, tuvo lugar el primero de los Webinar del II Congreso Iberoamericano de Docentes #CongresoIB que llevará por título Docentes Frente a la Pandemia.

Agradezco a la organización del Congreso: INEF, Universidad Politécnica de Madrid, Formación IB y Red Iberoamericana de Docentes la invitación a participar en este evento de lanzamiento oficial del Congreso junto a estos grandes profesionales de la Educación en el contexto iberoamericano. Los participantes del Webinar fueron:

Os invito a verlo en Youtube:

así como a leer el hashtag: #CongresoIB

Transformación Digital Educativa (TDE) con Recursos Educativos Abiertos (REA). Bancos de REA institucionales de calidad

En un curso escolar tan complejo y digital como el que estamos viviendo con motivo de la COVID-19, los Recursos Educativos Abiertos (REA) se antojan cruciales.

En esta entrada rescato sendos artículos que escribí hace meses para el Blog #TDE, editado por el Servicio de Innovación Educativa de la Dirección General de Formación del Profesorado e Innovación Educativa de la Consejería de Educación y Deporte de la Junta de Andalucía, en los que:

  • Se introduce el concepto de REA y su importancia para el proceso de Transformación Digital Educativa (TDE)
  • Se recopilan algunos bancos de recursos institucionales de calidad para la Transformación Digital Educativa (TDE) con Recursos Educativos Abiertos (REA).

¿REA? ¿Qué es eso?

Recursos Educacionais Abiertos (REA) de Jonathasmello  – CC BY 3.0

El término REA (OER en inglés), Recurso Educativo Abierto (Open Educational Resource en inglés), no es una nueva moda educativa. Se trata de un concepto que promueve la democratización del conocimiento y el acceso al mismo, que cuenta con casi dos décadas de existencia.

Pixel de manfredsteger – CC0

La Declaración de París de 2012 sobre Recursos Educativos Abiertos (REA) de la UNESCO resalta que el término Recursos Educativos Abiertos (REA) fue acuñado en el Foro de 2002 de la UNESCO sobre las Incidencias de los Programas Educativos Informáticos Abiertos (Open Courseware), y que designa a materiales de enseñanza, aprendizaje e investigación en cualquier soporte, digital o de otro tipo, que sean de dominio público o que hayan sido publicados con una licencia abierta que permita el acceso gratuito a esos materiales, así como su uso, adaptación y redistribución por otros sin ninguna restricción o con restricciones limitadas. Las licencias abiertas se fundan en el marco existente de los derechos de propiedad intelectual, tal como vienen definidos en los correspondientes acuerdos internacionales, y respetan la autoría de la obra, y recomienda a los Estados a, en la medida de sus posibilidades y competencias:

  1. Fomentar el conocimiento y el uso de los recursos educativos abiertos.
  2. Crear entornos propicios para el uso de las tecnologías de la información y la comunicación (TIC).
  3. Reforzar la formulación de estrategias y políticas sobre recursos educativos abiertos.
  4. Promover el conocimiento y la utilización de licencias abiertas.
  5. Apoyar el aumento de capacidades para el desarrollo sostenible de materiales de aprendizaje de calidad.
  6. Impulsar alianzas estratégicas en favor de los recursos educativos abiertos.
  7. Promover la elaboración y adaptación de recursos educativos abiertos en una variedad de idiomas y de contextos culturales.
  8. Alentar la investigación sobre los recursos educativos abiertos
  9. Facilitar la búsqueda, la recuperación y el intercambio de recursos educativos abiertos.
  10. Promover el uso de licencias abiertas para los materiales educativos financiados con fondos públicos.

Como podemos comprobar, además, los Recursos Educativos Abiertos están totalmente alineados con el Objetivo 4 para la Educación de Calidad de la Agenda 2030 de la ONU, lo que conocemos más popularmente como los Objetivos de Desarrollo Sostenible (ODS), otro de los ejes prioritarios del Programa PRODIG para el curso actual.

De Organización de las Naciones Unidas – http://www.un.org/sustainabledevelopment/es/summit/, Dominio público, Enlace

 

Acceso a los artículos en el blog #TDE

¿REA? ¿qué es eso? Transformación Digital Educativa (TDE) con Recursos Educativos Abiertos (REA)

 

Bancos de recursos institucionales de calidad para la Transformación Digital Educativa (TDE) con Recursos Educativos Abiertos (REA)

 

MÁS CONTENIDO MATEMÁTICO EN REDES SOCIALES

WP2Social Auto Publish Powered By : XYZScripts.com
A %d blogueros les gusta esto: