Conjeturas

Creamos nuestro Círculo Matemático Computacional (CMC) para trabajar el Pensamiento Computacional y la Resolución de Problemas. Proyecto Situaciones de Aprendizaje del MEFP

Comparte MatemáTICas: 1,1,2,3,5,8,13,...

Este curso 22/23 se ha implantado el nuevo currículo derivado de la implantación de la LOMLOE en los cursos impares (1º, 3º y 5º de Primaria, 1º y 3º de Secundaria y 1º de Bachillerato). A partir de septiembre se implantará en los pares, finalizando así dicha implantación. 

Uno de los nuevos paradigmas propuestos en el nuevo marco curricular son las Situaciones de Aprendizaje, que son situaciones y actividades que implican el despliegue por parte del alumnado de actuaciones asociadas a competencias clave y competencias específicas, y que contribuyen a la adquisición y desarrollo de las mismas.

Acompañando al desarrollo normativo se han realizado diferentes acciones. Entre ellas se ha establecido un itinerario formativo para el profesorado y se ha puesto en marcha el proyecto Situaciones de Aprendizaje, un proyecto que publicará en torno a 200 Situaciones de Aprendizaje de todas las etapas (desde Infantil a Bachillerato) y de todas las materias. 

He tenido la suerte de participar en este bonito proyecto de Recursos Educativos Abiertos (REA), concretamente en el grupo de trabajo de Matemáticas,  con la elaboración de una de las Situaciones de Aprendizaje la cual espero sea de utilidad, si no ya para el presente curso, que está tocando a su fin, para el curso que viene. 

Creamos nuestro Círculo Matemático Computacional (CMC)

Situación de Aprendizaje: Creamos nuestro Círculo Matemático Computacional (CMC)

 

 

Situaciones de Aprendizaje de Matemáticas

Con la excelente coordinación por parte de José Luis Muñoz Casado, hemos trabajado el siguiente equipo de Matemáticas:

  • Julio Rodríguez Taboada
  • Antonio Moreno
  • Ester Solves
  • María Ángeles Portilla
  • José Rafael Viana Sánchez
  • Luis Miguel Iglesias
  • Claudia Lázaro
  • José María Vázquez
  • Laureano Serrano Muñoz
  • Lluis Bonet
  • Pilar Sabariego
  • Berta Sánchez García
  • Carmen Lahiguera Serrano
  • Pablo Peñalver Alonso
  • Francisco Zapatero Sánchez

Todas las Situaciones de Aprendizaje de Matemáticas pueden ser localizadas accediendo a a la web del proyecto y filtrando (marcando la casilla Matemáticas). 

Aunque no soy objetivo por ser parte del proyecto, os recomiendo encarecidamente visitar y conocer las Situaciones de Aprendizaje de Matemáticas, y del resto de materias elaboradas, y os animo a adaptarlas y llevarlas a vuestras aulas. 

Acceder a la web del Proyecto y activa el filtro «Matemáticas» https://intef.es/recursos-educativos/situaciones-aprendizaje/

 

Proyecto Situaciones de Aprendizaje MEFP

Acceder a la web del Proyecto: https://intef.es/recursos-educativos/situaciones-aprendizaje/

 

¿Qué se ofrece?

Una colección de situaciones de aprendizaje y otros materiales didácticos de naturaleza competencial creados por docentes en activo, para Educación Infantil, Educación Primaria, Educación Secundaria Obligatoria y Bachillerato. Todos ellos se publican con una licencia abierta (Creative Commons Reconocimiento-CompartirIgual 4.0) e incluyen el archivo fuente para su descarga y posible edición posterior.

Información curricular

Estos materiales se han diseñado conforme a los objetivos, competencias, criterios de evaluación y saberes básicos fijados en el Real Decreto 95/2022, de 1 de febrero, por el que se establece la ordenación y las enseñanzas mínimas de la Educación Infantil, el Real Decreto 157/2022, de 1 de marzo, por el que se establecen la ordenación y las enseñanzas mínimas de la Educación Primaria, el Real Decreto 217/2022, de 29 de marzo, por el que se establece la ordenación y las enseñanzas mínimas de la Educación Secundaria Obligatoria y el Real Decreto 243/2022, de 5 de abril, por el que se establecen la ordenación y las enseñanzas mínimas del Bachillerato.

Información técnica (eXeLearning)

Todos los materiales se han elaborado con la herramienta eXeLearning, un editor de recursos educativos interactivos, gratuito y de código abierto, lo que hace posible que cualquier usuario los pueda descargar y utilizar -con o sin conexión-, así como editar para adaptarlos a sus necesidades. Ofrece, asimismo, la ventaja de que permite exportar los contenidos a diferentes formatos estándar para su utilización en entornos web (html) o en plataformas de gestión de contenido educativo (SCORM) como Moodle y otros LMS.

 

Currículo básico Matemáticas Secundaria LOMLOE

Comparte MatemáTICas: 1,1,2,3,5,8,13,...

Cita: resolución de problemas y razonamiento

Comparte MatemáTICas: 1,1,2,3,5,8,13,...

La resolución de problemas es el sistema circulatorio de las matemáticas,

y el razonamiento es su corazón

Luis M. Iglesias (2022) · MatemáTICas: 1,1,2,3,5,8,13,…

Comparte MatemáTICas: 1,1,2,3,5,8,13,...

Diagrama de caja y bigotes con Desmos

Comparte MatemáTICas: 1,1,2,3,5,8,13,...

No hay duda de que una imagen vale más que mil palabras. Esta frase, archiconocida por todos, cobra aún más sentido en el caso de la Estadística, la ciencia de los datos.

En esta entrada comparto un tipo de diagrama realizado con la herramienta Desmos, concretamente, un diagrama de caja y bigotes (boxplots o box and whiskers).

Diagrama de caja y bigotes en Desmos

Teoría y proceso de construcción

Este tipo de diagrama es una una presentación visual que describe varias características importantes de una serie de datos al mismo tiempo, como su dispersión y su simetría. Para su realización se representan los tres cuartiles (Q1, Q2 o Me y Q3) sobre un rectángulo (caja) y los valores mínimo y máximo de los datos, se prolongan a izquierda y derecha (en forma de bigotes).

El portal Estadística para todos, en un completísimo artículo sobre este tipo de diagramas, describe su construcción de la siguiente manera.

Una gráfica de este tipo consiste en una caja rectangular, donde los lados más largos muestran el recorrido intercuartílico. Este rectángulo está dividido por un segmento vertical que indica donde se posiciona la mediana y por lo tanto su relación con los cuartiles primero y tercero (recordemos que el segundo cuartil coincide con la mediana). Esta caja se ubica a escala sobre un segmento que tiene como extremos los valores mínimo y máximo de la variable. Las líneas que sobresalen de la caja se llaman bigotes. Estos bigotes tienen tienen un límite de prolongación, de modo que cualquier dato o caso que no se encuentre dentro de este rango es marcado e identificado individualmente.

Diagrama de caja y bigotes con Desmos. Uso didáctico, algunas ideas para el aula.

En la aplicación que comparto se muestra un diagrama de caja y bigotes para una lista de datos compuesta por N=203 elementos.

Al mismo tiempo devuelve:  el valor mínimo (m=Q0) y máximo (M=Q4) del conjunto de datos, su media aritmética (vmedio) y sus cuartiles (Q1,Q2 y Q3).

Para usarla basta cambiar los valores de la lista, entre corchetes y separados por coma.

Ejemplo: L_{1}=[16,5,17,4,39,20,16,5,1,1]

Esta pequeña construcción permite cambiar datos, que se verán reflejados de manera instantánea en el diagrama, favoreciendo dinámicas activas en el aula con preguntas del tipo: ¿Qué tipo de diagrama se mostraría si la mayoría de los datos fuesen iguales, y distante del valor máximo? L_{1}=[1,2,2,3,3,3,3,3,3,3,9] favoreciendo las preguntas y el planteamiento de conjeturas por parte del alumnado.

De igual manera serviría para que el alumnado practicase y comprobase de manera autónoma la corrección de actividades más tradicionales y rutinarias necesarias para consolidar el cálculo de los parámetros de dispersión y su representación, y otras actividades de mayor nivel de complejidad, como por ejemplo: asociación de diagramas con sus series de datos correspondientes.

Abrir y usar diagrama de caja y bigotes en Desmos

Más contenido matemático en redes sociales

 

Comparte MatemáTICas: 1,1,2,3,5,8,13,...
WP2Social Auto Publish Powered By : XYZScripts.com