Suelo Bajo y Techo Alto (SBTA)

Estrella numérica

Comparte MatemáTICas: 1,1,2,3,5,8,13,...

Espero que disfrutes con el siguiente reto numérico.

Piensa y prepara una estrategia para abordarlo antes de lanzarte a probar a ciegas…

Ya me contarás cómo te ha ido.

 
Luis Miguel Iglesias. Estrella numérica (CC BY-SA)

¡¡Salud, feliz Navidad y próspero 2024 cargadito de Matemáticas!!

Comparte MatemáTICas: 1,1,2,3,5,8,13,...

Una nueva era en la creación de contenidos digitales educativos de la mano de la Inteligencia Artificial de ChatGPT y eXeLearning

Comparte MatemáTICas: 1,1,2,3,5,8,13,...

Los lectores habituales de este blog son conocedores de mi pasión por la generación de contenidos educativos digitales. En este blog hay algunos de centenares de ellos. 

He tenido la suerte, además, de participar en algunos de los grandes proyectos institucionales de Recursos Educativos Abiertos de nuestro país. Concretamente, en los últimos años, como:

  • Elaborador del Proyecto EDIA. ABP de Matemáticas

  • Elaborador del Proyecto Situaciones de Aprendizaje MEFP INTEF. Creamos nuestro Círculo Matemático Computacional

 

 

 

 

 

 

 

 

https://www.juntadeandalucia.es/educacion/portals/web/transformacion-digital-educativa/rea/modelo-pedagogico-guia-tecnica

https://www.juntadeandalucia.es/educacion/portals/web/transformacion-digital-educativa/rea

Además de ello, en un campo, no ya emergente, sino de plena actualidad, como es el de la Inteligencia Artificial, he podido vivir de primera mano experiencias formativas de gran nivel, entre ellas mi participación en el

  • Proyecto Fostering Artificial Intelligence at Schools (FAIaS)

Una nueva era en la creación de contenidos digitales educativos de la mano de ChatGPT y eXeLearning

Pues bien, aprovechando el conocimiento en dichos ámbitos, se me ha ocurrido combinar ambos:

  • Recursos Educativos Abiertos, creación de contenido digital con la herramienta eXeLearning, 

+

  • Inteligencia Artificial Generativa de OpenAI, ChatGPT, y más concretamente uno de mis asistentes GPT.

El resultado de esta fusión se puede comprobar en el siguiente vídeo, en el que muestro el proceso de creación de contenidos en eXeLearning, previa sencilla supervisión del contenido devuelto por mi asistente GPT. Creo que serán únicamente las primeras fusiones entre ambas tecnologías, ya que creo que mis asistentes y yo nos llevaremos bien y formaremos un gran equipo.

Seguiremos informando de nuestros avances 🙂

 

Una nueva era en la creación de contenidos digitales educativos de la mano de ChatGPT y eXeLearning

Pulsa en el siguiente enlace para que puedas interactuar con mi asistente (a fecha 5/12/2023 se requiere disponer de cuenta ChatGPT Plus de pago).

Ya me contarás qué te ha parecido esta manera de generar contenidos digitales educativos interactivos en eXeLearning.

Seguimos…

Más contenido matemático en redes sociales

Comparte MatemáTICas: 1,1,2,3,5,8,13,...

Desarrollo del sentido numérico a través de ‘Una bonita relación numérica: a, b, MCD(a,b) y MCM(a,b)’

Comparte MatemáTICas: 1,1,2,3,5,8,13,...

Esta mañana me preguntó un compañero, docente de otra comunidad autónoma, a través de un mensaje privado en uno de mis perfiles en RRSS, que si le podía dar ideas para trabajar el sentido numérico en 1º-2º ESO. Se me vino a la cabeza unas cuantas pero, como sabéis… el tiempo es oro y, desafortunadamente, no dispongo de tiempo para escribir algo nuevo. Así que, tras la calma de esta tarde, he pensado en compartirle y, al mismo tiempo, dejar por aquí para todos una de las propuestas didácticas recogidas en la secuencia competencial de una Situación de Aprendizaje consistente en un plan de trabajo formativo para ayudar a los centros que quieran formar a sus alumnos a modo de preparación previa a la creación de su Círculo Matemático Computacional (CMC).

 

Propuesta didáctica: Una bonita relación numérica

De igual manera que las personas tenemos bonitas relaciones de amistad, en el mundo de los números también nos encontramos con ellas. 

Ya habéis visto cómo, usando un algoritmo clásico ‘famoso’, el Algoritmo de Euclides, podéis obtener el Máximo Común Divisor de dos números, siguiendo una secuencia ordenada de pasos, ya sea manualmente o con ayuda de un ordenador. 

En esta actividad vamos a seguir trabajando con el Máximo Común Divisor (MCD), también con el Mínimo Común Múltiplo (MCM), y vais a descubrir y profundizar en la comprensión de estos dos conceptos matemáticos con los que tan familiarizados estamos en las clases de matemáticas. 

Vamos a ver qué relación existe entre el producto de dos números naturales, a·b, y el producto MCD(a,b)·MCM(a,b).

Antes de empezar, observa con atención el siguiente vídeo:

Luis Miguel Iglesias. Una bonita relación numérica: a, b, MCD(a,b) y MCM(a,b) (Licencia estándar de YouTube)

A continuación, trabajando en equipo, resuelve e introduce los valores correctos correspondientes a las casillas representadas con una interrogación (?).


Luis Miguel Iglesias. Una bonita relación (CC BY-SA)

Si te gustó esta tarea para trabajar con tus alumnos el desarrollo del sentido numérico te animo a consultar la SdA Creamos nuestro Círculo Matemático Computacional (CMC), a modificarla, adaptarla para tus alumnos y a compartirla con otros colegas de tu departamento didáctico o conocidos.

¡¡Buen fin de semana. Salud, felicidad y matemáticas!!

Comparte MatemáTICas: 1,1,2,3,5,8,13,...

Creamos nuestro Círculo Matemático Computacional (CMC) para trabajar el Pensamiento Computacional y la Resolución de Problemas. Proyecto Situaciones de Aprendizaje del MEFP

Comparte MatemáTICas: 1,1,2,3,5,8,13,...

Este curso 22/23 se ha implantado el nuevo currículo derivado de la implantación de la LOMLOE en los cursos impares (1º, 3º y 5º de Primaria, 1º y 3º de Secundaria y 1º de Bachillerato). A partir de septiembre se implantará en los pares, finalizando así dicha implantación. 

Uno de los nuevos paradigmas propuestos en el nuevo marco curricular son las Situaciones de Aprendizaje, que son situaciones y actividades que implican el despliegue por parte del alumnado de actuaciones asociadas a competencias clave y competencias específicas, y que contribuyen a la adquisición y desarrollo de las mismas.

Acompañando al desarrollo normativo se han realizado diferentes acciones. Entre ellas se ha establecido un itinerario formativo para el profesorado y se ha puesto en marcha el proyecto Situaciones de Aprendizaje, un proyecto que publicará en torno a 200 Situaciones de Aprendizaje de todas las etapas (desde Infantil a Bachillerato) y de todas las materias. 

He tenido la suerte de participar en este bonito proyecto de Recursos Educativos Abiertos (REA), concretamente en el grupo de trabajo de Matemáticas,  con la elaboración de una de las Situaciones de Aprendizaje la cual espero sea de utilidad, si no ya para el presente curso, que está tocando a su fin, para el curso que viene. 

Creamos nuestro Círculo Matemático Computacional (CMC)

Situación de Aprendizaje: Creamos nuestro Círculo Matemático Computacional (CMC)

 

 

Situaciones de Aprendizaje de Matemáticas

Con la excelente coordinación por parte de José Luis Muñoz Casado, hemos trabajado el siguiente equipo de Matemáticas:

  • Julio Rodríguez Taboada
  • Antonio Moreno
  • Ester Solves
  • María Ángeles Portilla
  • José Rafael Viana Sánchez
  • Luis Miguel Iglesias
  • Claudia Lázaro
  • José María Vázquez
  • Laureano Serrano Muñoz
  • Lluis Bonet
  • Pilar Sabariego
  • Berta Sánchez García
  • Carmen Lahiguera Serrano
  • Pablo Peñalver Alonso
  • Francisco Zapatero Sánchez

Todas las Situaciones de Aprendizaje de Matemáticas pueden ser localizadas accediendo a a la web del proyecto y filtrando (marcando la casilla Matemáticas). 

Aunque no soy objetivo por ser parte del proyecto, os recomiendo encarecidamente visitar y conocer las Situaciones de Aprendizaje de Matemáticas, y del resto de materias elaboradas, y os animo a adaptarlas y llevarlas a vuestras aulas. 

Acceder a la web del Proyecto y activa el filtro «Matemáticas» https://intef.es/recursos-educativos/situaciones-aprendizaje/

 

Proyecto Situaciones de Aprendizaje MEFP

Acceder a la web del Proyecto: https://intef.es/recursos-educativos/situaciones-aprendizaje/

 

¿Qué se ofrece?

Una colección de situaciones de aprendizaje y otros materiales didácticos de naturaleza competencial creados por docentes en activo, para Educación Infantil, Educación Primaria, Educación Secundaria Obligatoria y Bachillerato. Todos ellos se publican con una licencia abierta (Creative Commons Reconocimiento-CompartirIgual 4.0) e incluyen el archivo fuente para su descarga y posible edición posterior.

Información curricular

Estos materiales se han diseñado conforme a los objetivos, competencias, criterios de evaluación y saberes básicos fijados en el Real Decreto 95/2022, de 1 de febrero, por el que se establece la ordenación y las enseñanzas mínimas de la Educación Infantil, el Real Decreto 157/2022, de 1 de marzo, por el que se establecen la ordenación y las enseñanzas mínimas de la Educación Primaria, el Real Decreto 217/2022, de 29 de marzo, por el que se establece la ordenación y las enseñanzas mínimas de la Educación Secundaria Obligatoria y el Real Decreto 243/2022, de 5 de abril, por el que se establecen la ordenación y las enseñanzas mínimas del Bachillerato.

Información técnica (eXeLearning)

Todos los materiales se han elaborado con la herramienta eXeLearning, un editor de recursos educativos interactivos, gratuito y de código abierto, lo que hace posible que cualquier usuario los pueda descargar y utilizar -con o sin conexión-, así como editar para adaptarlos a sus necesidades. Ofrece, asimismo, la ventaja de que permite exportar los contenidos a diferentes formatos estándar para su utilización en entornos web (html) o en plataformas de gestión de contenido educativo (SCORM) como Moodle y otros LMS.

 

Currículo básico Matemáticas Secundaria LOMLOE

Comparte MatemáTICas: 1,1,2,3,5,8,13,...

Soy divisible por 9. Conóceme… Situación de aprendizaje para trabajar las competencias específicas, a través de la comprensión conceptual de un criterio de divisibilidad

Comparte MatemáTICas: 1,1,2,3,5,8,13,...

Seguro que habrás leído en alguna ocasión que:

«el currículo de matemáticas estadounidense era de una milla de largo y de una pulgada de profundo».

En los currículos españoles no andábamos muy lejos de esta afirmación. Currículos excesivamente largos, con poca profundización y aprendizaje significativo, sin apenas ahondar en la comprensión conceptual (la estructura de los objetos matemáticos), ni en las conexiones entre los distintos conceptos matemáticos (numérico-algebraicas, algebraico-geométricas,…)

La amplia extensión «del temario» o «del libro» nos lleva a pasar de puntillas, dejando atrás cada tema o unidad didáctica lo antes posible, sin pararnos a pensar ni a reflexionar, repitiendo actividades de aplicación rutinarias día a día (en clase y para casa), sin apenas significado para el estudiante, dejando de lado la resolución de problemas y la realización de tareas que profundicen en el significado de los conceptos trabajados.

En esta entrada comparto una situación de aprendizaje que pretende ahondar en la comprensión de un sistema de numeración (en este caso el decimal) y de dónde surge las reglas de divisibilidad que recitamos de memoria.  Esta tarea, resuelta íntegramente con la herramienta digital Graspable Math, permite trabajar:

  • Los Sentidos: numérico, algebraico y socioafectivo
  • Las Competencias Específicas relacionadas con los procesos de Resolución de Problemas (RESPRO), Razonamiento y Prueba (RAZPRU), Conexiones (CONEX) y las Destrezas Socioafectivas (SOCAFE): CE1, CE2, CE3 , CE4, CE5CE9 y CE10

Situación de aprendizaje: Soy divisible por 9. Conóceme… · Introducción

Se trata de una tarea de corte algebraico que busca profundizar en la estructura del sistema numeración decimal y la comprensión profunda del criterio de divisibilidad por 9.

Se presenta además un enunciado, para probar o refutar, propiciando la posibilidad de que se genere un ambiente de razonamiento y trabajo en equipo en el aula, donde tendrán que conjeturar, argumentar, aceptar errores en los diferentes planteamientos, colaborar con el resto de compañeros y compañeras,…


Situación de aprendizaje: Soy divisible por 9. Conóceme… · Enunciado

Se trata de una tarea de corte algebraico que busca profundizar en la estructura del sistema numeración decimal y la comprensión profunda del criterio de divisibilidad por 9.


Soy divisible por 9. Conóceme… · Solución

A continuación se presenta la tarea resuelta, paso a paso, en Graspable Math, herramienta dgital que facilita sobremanera el tratamiento de la notación matemática tanto para enseñar como para aprender.

Enlace a la solución en GM Canvas


Situación de aprendizaje: Soy divisible por 9. Ideas para trabajar en el aula

Mediante esta tarea pretendo profundizar en esta regla para que, los alumnos, al finalizar el trabajo con esta situación de aprendizaje, sean conscientes del por qué de este enunciado, que recitan de memoria, y sean capaces de transferirlo a otros… e incluso a conjeturar e intentar probar alguno de ellos, por analogía con el abordaje que vamos a realizar en este problema.

Criterio de divisibilidad del 9

Un número es divisible entre 9 cuando la suma de sus dígitos es 9 o múltiplo de 9. 

Algunas preguntas preguntas para romper el hielo:

  • ¿Qué significado tiene el 5 en el número 531? ¿Y en el 657?
  • ¿Qué significa ser divisible por 9?
  • ¿Qué relación tiene ser divisible por 9 con las cifras, o mejor dicho con la suma de las cifras del número? ¿Podrías afirmar algo al respecto?

Lo importante es que se animen a tomar la palabra, a comunicar sus pensamientos, oralmente y por escrito. Dales tiempo para pensar y facilita que opinen y debatan, desde el respeto a lo expuesto por otros compañeros. Es esta una tarea propicia para el trabajo en grupo por lo que, tras las tormenta de ideas inicial, se podrían formar grupos heterogéneos de tres o cuatro miembros para abordar la misma.

El trabajo en equipo facilitará su abordaje y permitirá al alumnado enriquecerse a través de los razonamientos de los demás compañeros y compañeras, aceptando, comentando para mejorar o refutando con argumentos y de manera razonada las propuestas de los demás, con lo cual estaremos trabajando las Competencias Específicas Socio Emocionales, potenciando así las Destrezas SocioAfectiva (SOCAFE):

Para atender a la diversidad presente en nuestra aula y facilitar el acercamiento a la tarea podemos proponer a los alumnos que prueben con algunos números concretos de tres cifras, e incluso se le puede ofrecer como entrada la descomposición polinómica de uno o dos números de tres cifras.

Como verás es una Tarea de Suelo Bajo y Techo Alto (SBTA) puesto que el punto de entrada es sencillo, y podemos quedarnos en las comprobaciones numéricas de la regla, y abordable por todos los estudiantes, aumentando de complejidad, enriqueciéndose, conforme vamos haciendo modificaciones a la misma o transitamos hacia el enfoque puramente algebraico.

Espero que la propuesta te haya parecido atractiva y te resulte de utilidad para el trabajo en el aula con este nuevo enfoque curricular. Si quieres compartirme algunas propuestas o trabajo con tus alumnos en el aula puedes hacerlo en luismiglesias@gmail.com o en @luismiglesias.



Más contenido matemático en redes sociales
Comparte MatemáTICas: 1,1,2,3,5,8,13,...

Matemáticas y ajedrez. Situación de aprendizaje para trabajar las competencias específicas resolución de problemas, razonamiento y socioafectivas, a través de acertijos matemáticos

Comparte MatemáTICas: 1,1,2,3,5,8,13,...

Entre las Competencias Específicas presentes en el nuevo Currículo Básico de Matemáticas de Secundaria encontramos, relacionadas con los procesos Resolución de Problemas (RESPRO) y Razonamiento y Prueba (RESPRO), las siguientes:


CE1. Interpretar, modelizar y resolver problemas de la vida cotidiana y propios de las matemáticas, aplicando diferentes estrategias y formas de razonamiento, para explorar distintas maneras de proceder y obtener posibles soluciones. (RESPRO)

La resolución de problemas constituye un eje fundamental en el aprendizaje de las matemáticas, ya que es un proceso central en la construcción del conocimiento matemático. Tanto los problemas de la vida cotidiana en diferentes contextos como los problemas propuestos en el ámbito de las matemáticas permiten ser catalizadores de nuevo conocimiento, ya que las reflexiones que se realizan durante su resolución ayudan a la construcción de conceptos y al establecimiento de conexiones entre ellos.


CE2. Analizar las soluciones de un problema usando diferentes técnicas y herramientas, evaluando las respuestas obtenidas, para verificar su validez e idoneidad desde un punto de vista matemático y su repercusión global. (RESPRO)

El desarrollo de esta competencia conlleva procesos reflexivos propios de la metacognición como la autoevaluación y la coevaluación, la utilización de estrategias sencillas de aprendizaje autorregulado, uso eficaz de herramientas digitales como calculadoras u hojas de cálculo, la verbalización o explicación del proceso y la selección entre diferentes métodos de comprobación de soluciones o de estrategias para validar las soluciones y su alcance.


CE3. Formular y comprobar conjeturas sencillas o plantear problemas de forma autónoma, reconociendo el valor del razonamiento y la argumentación, para generar nuevo conocimiento. (RAZPRU)

El desarrollo de esta competencia conlleva formular y comprobar conjeturas, examinar su validez y reformularlas para obtener otras nuevas susceptibles de ser puestas a prueba promoviendo el uso del razonamiento y la demostración como aspectos fundamentales de las matemáticas. Cuando el alumnado plantea nuevos problemas, mejora el razonamiento y la reflexión al tiempo que construye su propio conocimiento, lo que se traduce en un alto nivel de compromiso y curiosidad, así como de entusiasmo hacia el proceso de aprendizaje de las matemáticas.

En 8 prácticas de enseñanza esenciales para una Educación Matemática eficaz. Nuevo currículo de Matemáticas LOMLOE podemos ver como una de las prácticas recomendadas es:

2. Implementar tareas que promuevan el razonamiento y la resolución de problemas.

La enseñanza efectiva de las matemáticas involucra a los estudiantes en actividades que implican resolver y discutir, aquellas que promueven el razonamiento matemático y la resolución de problemas, y que permiten que emerjan múltiples maneras de abordar los problemas y una variedad de estrategias de resolución.

En esta entrada os propongo precisamente esto; una tarea para trabajar principalmente las CE1, CE2 y CE3, así como otras relacionadas con las Destrezas Socioafectivas (SOCAFE), de las que hablaré más adelante.


Situación de aprendizaje: El ajedrez de Ray y Smull

Los acertijos matemáticos son tan antiguos como la propia historia de la humanidad y nos han ofrecido juegos de ingenio bellísimos y entretenidos a los que han dedicado su estudio celebres personajes, matemáticos y no matemáticos.

Los mismos ofrecen un contexto idóneo para trabajar la resolución de problemas y el razonamiento desde un acercamiento lúdico, sin miedo al error, y, aparentemente, nada formal y profundo… nada más lejos de la realidad, porque en muchos de ellos, hay altas dosis de fundamentos matemáticos.

Por otro lado, sabemos que pocos juegos alcanzan el potencial educativo y de razonamiento del ajedrez. Muestra de ello es que figure como asignatura propia en algunos países o bien en forma de programas educativos, como es el caso de AulaDJaque en Andalucía.

La siguiente situación tiene que ver con posiciones de fichas en el tablero de ajedrez, a partir de unas condiciones iniciales que se dan como dato. Está basada en el clásico acertijo del mismo nombre, planteado por el gran Martin Gardner, en homenaje al matemático Ray Smullian por sus dos excelentes colecciones de problemas de ajedrez: iMysteries of Sherlock Holmes y The Chess Mysteries of the Arabian Knights.

La situación la he estructurado en tres partes, y una cuarta parte (opcional) de ampliación.

  • Particularmente trabajaría la misma en 2 sesiones de 1 hora, alcanzando 3 sesiones si profundizamos en las partes tercera y cuarta.
  • En la primera sesión presentaría la tarea, recordaría de manera breve los movimientos de las piezas del ajedrez, con especial énfasis en las cinco participantes en la tarea y trabajaríamos las dos primeras partes.
  • En la segunda sesión recapitularía sobre las dos primeras partes y trabajaría, si es posible más de una vez, la tercera parte. Desde mi punto de mi vista, la más creativa, enriquecedora… y compleja atractiva :-).
  • En la tercera sesión profundizar en la tercera y cuarta parte.

Comparto imagen, por si quiere imprimir y repartir, así como enlace a la versión interactiva que he elaborado en Mathigon, se puede pulsar sobre el icono de pantalla completa y usar las lupas +/- y desplazar en la pantalla, para aumentar, disminuir el tamaño y mover, respectivamente.


Primera parte

Elaborado con Polypad de Mathigon, bajo licencia CC BY SA, por Luis M. Iglesias https://luismiglesias.es a partir del problema original «Ajedrez de Ray y Smull» de Martin Gardner



Segunda parte


Elaborado con Polypad de Mathigon, bajo licencia CC BY SA, por Luis M. Iglesias https://luismiglesias.es a partir del problema original «Ajedrez de Ray y Smull» de Martin Gardner


Segunda parte (bis)

Para atender a la diversidad presente en nuestra aula, podemos ofrecer alguna pista para el abordaje de la segunda parte, indicando las posiciones concretas en las que se sitúan las fichas, además de la información inicial de «amenazas» que se ofrece en el enunciado original.

Elaborado con Polypad de Mathigon, bajo licencia CC BY SA, por Luis M. Iglesias https://luismiglesias.es a partir del problema original «Ajedrez de Ray y Smull» de Martin Gardner


Como se puede apreciar, esta tarea es especialmente idónea para el trabajo en equipo, lo cual facilitará su abordaje y permitirá al alumnado enriquecerse a través de los razonamientos de los demás compañeros y compañeras, aceptando, comentando para mejorar o refutando con argumentos y de manera razonada las propuestas de los demás, con lo cual estaremos trabajando las Competencias Específicas Socio Emocionales, potenciando así las Destrezas SocioAfectiva (SOCAFE):

CE9. Desarrollar destrezas personales, identificando y gestionando emociones, poniendo en práctica estrategias de aceptación del error como parte del proceso de aprendizaje y adaptándose ante situaciones de incertidumbre, para mejorar la perseverancia en la consecución de objetivos y el disfrute en el aprendizaje de las matemáticas. (SOCAFE)

Resolver problemas matemáticos –o retos más globales en los que intervienen las matemáticas– debería ser una tarea gratificante. Las destrezas emocionales dentro del aprendizaje de las matemáticas fomentan el bienestar del alumnado, la regulación emocional y el interés por su aprendizaje.

El desarrollo de esta competencia conlleva identificar y gestionar las emociones, reconocer fuentes de estrés, ser perseverante, pensar de forma crítica y creativa, mejorar la resiliencia y mantener una actitud proactiva ante nuevos retos matemáticos.


CE10. Desarrollar destrezas sociales reconociendo y respetando las emociones y experiencias de los demás, participando activa y reflexivamente en proyectos en equipos heterogéneos con roles asignados, para construir una identidad positiva como estudiante de matemáticas, fomentar el bienestar personal y grupal y crear relaciones saludables. (SOCAFE)

El desarrollo de esta competencia conlleva mostrar empatía por los demás, establecer y mantener relaciones positivas, ejercitar la escucha activa y la comunicación asertiva, trabajar en equipo y tomar decisiones responsables. Asimismo, se fomenta la ruptura de estereotipos e ideas preconcebidas sobre las matemáticas asociadas a cuestiones individuales, como, por ejemplo, las asociadas al género o a la creencia en la existencia de una aptitud innata para las matemáticas.

En esta última parte, propongo movilizar las CE9 y CE10, trabajando en parejas o en grupos de cuatro estudiantes.


Tercera parte

Dos jugadores (o dos parejas) se sientan de espaldas, cada uno con un tablero y cinco piezas.

Un jugador (o pareja) coloca las piezas, y el otro (o la otra pareja) hace preguntas, y se lleva un registro de la cantidad de preguntas que se necesitan para saber dónde están las cinco piezas. Una vez localizadas, los jugadores cambian sus roles; ahora el jugador (o pareja) que colocó las piezas hace las preguntas y viceversa.

Gana el jugador (o equipo) que haya necesitado hacer menos preguntas para localizar.

CE1, CE2, CE3, CE9, CE10


Cuarta parte

Si algún grupo de alumnos se anima, puede realizar una representación de alguna de las partidas jugadas en la Tercera Parte, presentando el reto de manera similar a como se ha presentado el reto en la primera y segunda parte de la tarea, y entregarlo en papel, o en digital.

En este caso estaríamos trabajando la Representación:

CE7. Representar, de forma individual y colectiva, conceptos, procedimientos, información y resultados matemáticos, usando diferentes tecnologías, para visualizar ideas y estructurar procesos matemáticos. (COMREP)

La forma de representar ideas, conceptos y procedimientos en matemáticas es fundamental. La representación incluye dos facetas: la representación propiamente dicha de un resultado o concepto y la representación de los procesos que se realizan durante la práctica de las matemáticas.

El desarrollo de esta competencia conlleva la adquisición de un conjunto de representaciones matemáticas que amplían significativamente la capacidad para interpretar y resolver problemas de la vida real.


Nota final

Como verás es una Tarea de Suelo Bajo y Techo Alto (SBTA) puesto que el punto de entrada es sencillo, y abordable por todos los estudiantes, aumentando de complejidad, enriqueciéndose, conforme vamos haciendo modificaciones a la misma.

Espero que la propuesta te haya parecido atractiva y te resulte de utilidad para el trabajo en el aula con este nuevo enfoque curricular. Si quieres compartirme algunas propuestas relacionadas con la Cuarta parte puedes hacerlo en luismiglesias@gmail.com o en @luismiglesias

De igual manera, si deseas que te haga llegar las soluciones de las propuestas realizadas en la Primera y Segunda parte, puedes escribirme a luismiglesias@gmail.com



Más contenido matemático en redes sociales
Comparte MatemáTICas: 1,1,2,3,5,8,13,...

Analfabetos, cirujanos y maestros en el siglo XXI. Reflexión tras lectura matemática veraniega

Comparte MatemáTICas: 1,1,2,3,5,8,13,...

Suelo aprovechar el descanso estival para hacer cosas que adoro y que el resto del año no puedo realizar con la frecuencia que me gustaría; la lectura sosegada y reflexiva es una de de ellas.

Disfrutando del atardecer de una maravillosa tarde de agosto en la costa de Huelva en la orilla de la playa, andaba releyendo uno de los libros del maestro Adrián Paenza que adquirí allá por 2006: Matemática… estas ahí.

Llegado al último cuarto del libro, llamaron mi atención unos párrafos que tenía marcados de mi primera lectura, hace ya más de una década, en los que el maestro argentino reflexionaba sobre: la definición de alfabetización en el siglo XXI y sobre el rol de algunas profesiones, concretamente cirujanos y maestros, en nuestros días.

A menos de un mes del inicio del nuevo año escolar, andamos reflexionando sobre el papel de la tecnología en las escuelas, sobre la certificación de la Competencia Digital Docente del profesorado, el desarrollo de las competencias clave del alumnado, prácticas de enseñanza esenciales para una Educación Matemática eficaz alineadas el nuevo currículo de Matemáticas LOMLOE, diseño de situaciones de aprendizaje de suelo bajo y techo alto para atender a la diversidad presente en nuestras aulas,…

Os dejo a continuación un par de fragmentos, de los que hice alusión anteriormente y provocaron la escritura de esta entrada, con la convicción de que nos ayudarán a pensar, aún más si cabe, en:

  • la importancia del concepto de alfabetización global, en general, y matemática, en particular, así como en,
  • la necesidad de ser proactivos en todo lo relativo a nuestro desarrollo profesional docente (aspectos normativos, renovación metodológica y uso de la tecnología para enseñar y aprender) para poder dar respuesta a la demanda que se nos plantea como docentes, consumido ya prácticamente un cuarto del siglo XXI,

para no tener la sensación de haber llegado al aula procedente de un tiempo (o siglo) anterior, sintiéndonos desbordados, desactualizados y sin poder atender las necesidades de nuestros estudiantes.

Ya me contarás tu opinión al respecto.

Salud y a seguir disfrutando del verano 🙂

Alfabetos del siglo XXI

A mediados del siglo XX , se definía a una persona como alfabeta si podía leer y escribir. Hoy, en los primeros años del siglo XXI , creo que esa definición es claramente incompleta. Por supuesto, no ignoro que son condiciones elementales saber leer y escribir, pero hoy, un niño que no tiene cultura digital y no habla otro idioma (digamos inglés o chino, si es que lo prefiere) presenta claras deficiencias.
Hace poco tiempo, me comentaba Eric Perle, uno de los capitanes de la compañía aérea United, que pilotea los aviones más modernos del mundo, los Boeing 777, que cuando uno está por aterrizar en el aeropuerto Charles de Gaulle, en París, las conversaciones entre las cabinas de los distintos aviones que circulan por el espacio aéreo en París y la torre de control son en inglés, aunque el avión sea de Air France o de cualquier otra compañía. Y la idea no es minimizar ninguna otra lengua. La idea es aceptar un idioma como “normalizador”, de manera tal que todos los que están en el área entiendan lo que se está diciendo, porque las comunicaciones ponen en contacto a todos.
Escribo esto porque muchas veces escucho que hay fuerte resistencia a aceptar el inglés como idioma universal, como si fuera en detrimento de otros (el español, el francés o el chino: para el caso es lo mismo). No trato de defender eso, sino de aceptar una realidad: mientras el mundo no se ponga de acuerdo en hablar un idioma único que permita que todos entiendan a todos, el único idioma que hoy garantiza eso en el espacio aéreo es el inglés.
Claro, el objetivo es lograr que la educación sea para todos y no para unos pocos privilegiados. El objetivo es también que la educación sea gratuita y pública.

Cirujanos y maestros en el siglo XXI

Una historia interesante para pensar es la siguiente: supongamos que un cirujano de principios del siglo XX , fallecido alrededor de 1920, se despertara hoy y fuera trasladado al quirófano de un hospital moderno (aquellos a los que tienen acceso para cuidar de su salud las personas con alto poder adquisitivo, generando una desigualdad que escapa al motivo de este libro, pero que no por eso ignoro).
Vuelvo al quirófano. Supongamos que en la cama de operaciones hay un cuerpo anestesiado al que están operando con la tecnología actual más moderna.
¿Qué haría el tal cirujano? ¿Qué sensaciones tendría? Claramente, el cuerpo de un humano no cambió. En ese lugar no habría problemas. El problema lo encontraría en las “técnicas quirúrgicas”, el “aparataje” que las circundan, “el instrumental” y la “batería de tests” que estarían a disposición del cuerpo de médicos que están en esa sala. Eso sí sería una diferencia. Posiblemente, el viejo cirujano se quedaría “admirado” de lo que ve y completamente “fuera del circuito”. Le explicarían el problema del paciente, y seguro que lo entendería. No tendría problemas en comprender el diagnóstico (al menos, en la mayoría de los casos). Pero la operación en sí misma le resultaría totalmente inaccesible, inalcanzable.
Ahora cambiemos la profesión. Supongamos que en lugar de un cirujano que vivió y murió en el primer cuarto del siglo XX , resucitamos a un maestro de esos tiempos. Y lo llevamos, no a una sala de operaciones, sino al teatro de operaciones de un maestro: una sala en donde se dictan (*) clases. A una escuela.
¿Tendría problemas de comprensión? ¿Entendería de lo que están hablando? ¿Comprendería las dificultades que presentan los alumnos? (No me refiero a los trastornos de conducta, sino a los problemas inherentes a la comprensión propiamente dicha.)
Posiblemente, la respuesta es que sí, que el maestro de otros tiempos no tendría problemas en comprender y hasta podría, si el tema era de su especialidad hace un siglo, acercarse al pizarrón, tomar la tiza y seguir él con la clase casi sin dificultades.
MORALEJA : la tecnología cambió mucho el abordaje de ciertas disciplinas, pero no tengo claro que lo mismo se haya producido con los métodos y programas de enseñanza. Mi duda es: si elegimos no cambiar nada no hay problemas. Si evaluamos que lo que se hace desde hace un siglo es lo que queremos hacer hoy, no hay críticas. Pero si lo que hacemos hoy es lo mismo que hace un siglo, porque lo revisamos poco o lo consensuamos menos, hay algo que funciona mal. Y vale la pena cuestionarlo.

(*) Al respecto, comenta Gerry Garbulsky: “Me parece triste que se siga diciendo ‘dictar’ clase. Mientras otros anacronismos son más inocuos, como ‘discar’ el teléfono o ‘tirar’ la cadena del baño, el de ‘dictar clase’ me hace pensar que en realidad muchos maestros siguen ‘dictando’ (que implícitamente indica que los alumnos ‘toman nota’) y no piensan mucho”.

Más contenido matemático en redes sociales

 

Comparte MatemáTICas: 1,1,2,3,5,8,13,...

El quinto es el 100. Tarea de suelo bajo y techo alto para desarrollar el sentido numérico… y algebraico

Comparte MatemáTICas: 1,1,2,3,5,8,13,...

Aprovechando el descanso estival, con la mirada puesta en el próximo curso escolar en el que entrará en vigor el nuevo currículo de matemáticas LOMLOE, os comparto en esta entrada una tarea de suelo bajo y techo alto (SBTA) para desarrollar el sentido numérico (*) en el aula de matemáticas.

Este tipo de tareas son especialmente idóneas para atender a la diversidad presente en nuestra aula. Tarea de enunciado sencillo y simple, al alcance de todos los alumnos (el «suelo», inicio o comienzo de la tarea es bajo favoreciendo la participación de todo el alumnado) y, al mismo tiempo, permite que los alumnos desarrollen las habilidades matemáticas, analizando a fondo su estructura, estableciendo conexiones, en este caso intra-matemáticas, y alcanzando aprendizajes significativos, más allá de la respuesta a la pregunta del enunciado («techo» alto y multinivel en función de las características de cada alumno).

Además, son tareas propicias para trabajar en equipo, fomentar el razonamiento y el debate matemático en el aula y promover el uso de las representaciones para comunicar los resultados.

Tarea. El quinto es el 100

Toma dos números naturales (por ejemplo, 2 y 7). Estos serán los dos primeros números.

El tercer número será la suma de los dos primeros (9).

El cuarto, la suma de los dos anteriores (16), y así sucesivamente (2, 7, 9, 16, 25, 41, …).

¿Cuáles deben ser los dos primeros números para que el quinto sea el 100?

 

Sebleouf, CC BY-SA 4.0 <https://creativecommons.org/licenses/by-sa/4.0>, via Wikimedia Commons

Algunas ideas para su tratamiento en el aula
  1. Divide la clase en grupos. Deja unos minutos para que lean y analicen el enunciado y, pasado este tiempo, abre turno para que un miembro de cada grupo traslade posibles dudas/preguntas. Las dudas de algún grupo pueden ser las mismas que las de otro. Una vez concluida la ronda pública inicial de consultas, anima a los alumnos a que participen y respondan a las dudas planteadas por los compañeros de otros grupos.
  2. Finalizado esta puesta en común y debate inicial, abordarán en equipo la resolución de la tarea. Una vez concluida, comunicarán al resto de clase la solución obtenida, apoyando sus razonamientos en las representaciones gráficas que consideren.
  3. ¿Hay más de una solución? ¿Sí/No? ¿Por qué?
  4. ¿Son correctas? ¿Hay alguna solución propuesta por alguno de los grupos que sea errónea? Anima a los alumnos a intervenir para ayudar a localizar el error o los errores cometidos por otros grupos y reflexionad sobre ellos.
  5. El profesor interviene, poniendo el foco en los saberes trabajados, sintetizando y dando por concluida esta fase.
  6. Anima a los alumnos a que realicen una variación del enunciado y que cada grupo proponga una nueva tarea. Planteo dos opciones:
    • Variando el término, para que en lugar del quinto sea el décimo u otro que consideren
    • Variando el número al que deben llegar, para que en lugar de 100 sea 200, 1000 u otro que consideren
  7. Si han trabajado con anterioridad números negativos, se puede bajar el valor del quinto número para se tenga que recurrir a iniciar y operar con números negativos. Planteo dos opciones:
    • Números enteros
    • Números racionales
  8. En función del curso donde trabajes la tarea puedes ir más allá y trabajar también el sentido algebraico, observando su estructura, trabajando el concepto de sucesión recurrente, término general… 
  9. Y así podríamos seguir ampliando el «techo»…

Espero que te resulte de utilidad para el trabajo en el aula. Si analizamos la tarea propuesta, conjuntamente con las ideas que os he compartido para su abordaje en el aula, veremos que estamos bastante alineados con lo recogido en el nuevo currículo en lo relativo a las competencias específicas establecidas para Matemáticas:

Las competencias específicas entroncan y suponen una profundización con respecto a las adquiridas por el alumnado a partir del área de Matemáticas durante la Educación Primaria, proporcionando una continuidad en el aprendizaje de las matemáticas que respeta el desarrollo psicológico y el progreso cognitivo del alumnado. Se relacionan entre sí y han sido agrupadas en torno a cinco bloques competenciales según su naturaleza: resolución de problemas (1 y 2), razonamiento y prueba (3 y 4), conexiones (5 y 6), comunicación y representación (7 y 8) y destrezas socioafectivas (9 y 10)

En la medida que el tiempo me lo permita iré compartiendo por aquí más ideas y propuestas didácticas para trabajar en el aula con este nuevo enfoque curricular. Salud y a seguir disfrutando del verano 😉

Más contenido matemático en redes sociales
Comparte MatemáTICas: 1,1,2,3,5,8,13,...
WP2Social Auto Publish Powered By : XYZScripts.com