Entre las Competencias Específicas presentes en el nuevo Currículo Básico de Matemáticas de Secundaria encontramos, relacionadas con los procesos Resolución de Problemas (RESPRO) y Razonamiento y Prueba (RESPRO), las siguientes:
CE1. Interpretar, modelizar y resolver problemas de la vida cotidiana y propios de las matemáticas, aplicando diferentes estrategias y formas de razonamiento, para explorar distintas maneras de proceder y obtener posibles soluciones. (RESPRO)
La resolución de problemas constituye un eje fundamental en el aprendizaje de las matemáticas, ya que es un proceso central en la construcción del conocimiento matemático. Tanto los problemas de la vida cotidiana en diferentes contextos como los problemas propuestos en el ámbito de las matemáticas permiten ser catalizadores de nuevo conocimiento, ya que las reflexiones que se realizan durante su resolución ayudan a la construcción de conceptos y al establecimiento de conexiones entre ellos.
CE2. Analizar las soluciones de un problema usando diferentes técnicas y herramientas, evaluando las respuestas obtenidas, para verificar su validez e idoneidad desde un punto de vista matemático y su repercusión global. (RESPRO)
El desarrollo de esta competencia conlleva procesos reflexivos propios de la metacognición como la autoevaluación y la coevaluación, la utilización de estrategias sencillas de aprendizaje autorregulado, uso eficaz de herramientas digitales como calculadoras u hojas de cálculo, la verbalización o explicación del proceso y la selección entre diferentes métodos de comprobación de soluciones o de estrategias para validar las soluciones y su alcance.
CE3. Formular y comprobar conjeturas sencillas o plantear problemas de forma autónoma, reconociendo el valor del razonamiento y la argumentación, para generar nuevo conocimiento. (RAZPRU)
El desarrollo de esta competencia conlleva formular y comprobar conjeturas, examinar su validez y reformularlas para obtener otras nuevas susceptibles de ser puestas a prueba promoviendo el uso del razonamiento y la demostración como aspectos fundamentales de las matemáticas. Cuando el alumnado plantea nuevos problemas, mejora el razonamiento y la reflexión al tiempo que construye su propio conocimiento, lo que se traduce en un alto nivel de compromiso y curiosidad, así como de entusiasmo hacia el proceso de aprendizaje de las matemáticas.
En 8 prácticas de enseñanza esenciales para una Educación Matemática eficaz. Nuevo currículo de Matemáticas LOMLOE podemos ver como una de las prácticas recomendadas es:
2. Implementar tareas que promuevan el razonamiento y la resolución de problemas.
La enseñanza efectiva de las matemáticas involucra a los estudiantes en actividades que implican resolver y discutir, aquellas que promueven el razonamiento matemático y la resolución de problemas, y que permiten que emerjan múltiples maneras de abordar los problemas y una variedad de estrategias de resolución.
En esta entrada os propongo precisamente esto; una tarea para trabajar principalmente las CE1, CE2 y CE3, así como otras relacionadas con las Destrezas Socioafectivas (SOCAFE), de las que hablaré más adelante.
Situación de aprendizaje: El ajedrez de Ray y Smull
Los acertijos matemáticos son tan antiguos como la propia historia de la humanidad y nos han ofrecido juegos de ingenio bellísimos y entretenidos a los que han dedicado su estudio celebres personajes, matemáticos y no matemáticos.
Los mismos ofrecen un contexto idóneo para trabajar la resolución de problemas y el razonamiento desde un acercamiento lúdico, sin miedo al error, y, aparentemente, nada formal y profundo… nada más lejos de la realidad, porque en muchos de ellos, hay altas dosis de fundamentos matemáticos.
Por otro lado, sabemos que pocos juegos alcanzan el potencial educativo y de razonamiento del ajedrez. Muestra de ello es que figure como asignatura propia en algunos países o bien en forma de programas educativos, como es el caso de AulaDJaque en Andalucía.
La siguiente situación tiene que ver con posiciones de fichas en el tablero de ajedrez, a partir de unas condiciones iniciales que se dan como dato. Está basada en el clásico acertijo del mismo nombre, planteado por el gran Martin Gardner, en homenaje al matemático Ray Smullian por sus dos excelentes colecciones de problemas de ajedrez: iMysteries of Sherlock Holmes y The Chess Mysteries of the Arabian Knights.
La situación la he estructurado en tres partes, y una cuarta parte (opcional) de ampliación.
- Particularmente trabajaría la misma en 2 sesiones de 1 hora, alcanzando 3 sesiones si profundizamos en las partes tercera y cuarta.
- En la primera sesión presentaría la tarea, recordaría de manera breve los movimientos de las piezas del ajedrez, con especial énfasis en las cinco participantes en la tarea y trabajaríamos las dos primeras partes.
- En la segunda sesión recapitularía sobre las dos primeras partes y trabajaría, si es posible más de una vez, la tercera parte. Desde mi punto de mi vista, la más creativa, enriquecedora… y
compleja atractiva :-).
- En la tercera sesión profundizar en la tercera y cuarta parte.
Comparto imagen, por si quiere imprimir y repartir, así como enlace a la versión interactiva que he elaborado en Mathigon, se puede pulsar sobre el icono de pantalla completa y usar las lupas +/- y desplazar en la pantalla, para aumentar, disminuir el tamaño y mover, respectivamente.
Primera parte
Elaborado con Polypad de Mathigon, bajo licencia CC BY SA, por Luis M. Iglesias https://luismiglesias.es a partir del problema original «Ajedrez de Ray y Smull» de Martin Gardner
Segunda parte
Elaborado con Polypad de Mathigon, bajo licencia CC BY SA, por Luis M. Iglesias https://luismiglesias.es a partir del problema original «Ajedrez de Ray y Smull» de Martin Gardner
Segunda parte (bis)
Para atender a la diversidad presente en nuestra aula, podemos ofrecer alguna pista para el abordaje de la segunda parte, indicando las posiciones concretas en las que se sitúan las fichas, además de la información inicial de «amenazas» que se ofrece en el enunciado original.
Elaborado con Polypad de Mathigon, bajo licencia CC BY SA, por Luis M. Iglesias https://luismiglesias.es a partir del problema original «Ajedrez de Ray y Smull» de Martin Gardner
Como se puede apreciar, esta tarea es especialmente idónea para el trabajo en equipo, lo cual facilitará su abordaje y permitirá al alumnado enriquecerse a través de los razonamientos de los demás compañeros y compañeras, aceptando, comentando para mejorar o refutando con argumentos y de manera razonada las propuestas de los demás, con lo cual estaremos trabajando las Competencias Específicas Socio Emocionales, potenciando así las Destrezas SocioAfectiva (SOCAFE):
CE9. Desarrollar destrezas personales, identificando y gestionando emociones, poniendo en práctica estrategias de aceptación del error como parte del proceso de aprendizaje y adaptándose ante situaciones de incertidumbre, para mejorar la perseverancia en la consecución de objetivos y el disfrute en el aprendizaje de las matemáticas. (SOCAFE)
Resolver problemas matemáticos –o retos más globales en los que intervienen las matemáticas– debería ser una tarea gratificante. Las destrezas emocionales dentro del aprendizaje de las matemáticas fomentan el bienestar del alumnado, la regulación emocional y el interés por su aprendizaje.
El desarrollo de esta competencia conlleva identificar y gestionar las emociones, reconocer fuentes de estrés, ser perseverante, pensar de forma crítica y creativa, mejorar la resiliencia y mantener una actitud proactiva ante nuevos retos matemáticos.
CE10. Desarrollar destrezas sociales reconociendo y respetando las emociones y experiencias de los demás, participando activa y reflexivamente en proyectos en equipos heterogéneos con roles asignados, para construir una identidad positiva como estudiante de matemáticas, fomentar el bienestar personal y grupal y crear relaciones saludables. (SOCAFE)
El desarrollo de esta competencia conlleva mostrar empatía por los demás, establecer y mantener relaciones positivas, ejercitar la escucha activa y la comunicación asertiva, trabajar en equipo y tomar decisiones responsables. Asimismo, se fomenta la ruptura de estereotipos e ideas preconcebidas sobre las matemáticas asociadas a cuestiones individuales, como, por ejemplo, las asociadas al género o a la creencia en la existencia de una aptitud innata para las matemáticas.
En esta última parte, propongo movilizar las CE9 y CE10, trabajando en parejas o en grupos de cuatro estudiantes.
Tercera parte
Dos jugadores (o dos parejas) se sientan de espaldas, cada uno con un tablero y cinco piezas.
Un jugador (o pareja) coloca las piezas, y el otro (o la otra pareja) hace preguntas, y se lleva un registro de la cantidad de preguntas que se necesitan para saber dónde están las cinco piezas. Una vez localizadas, los jugadores cambian sus roles; ahora el jugador (o pareja) que colocó las piezas hace las preguntas y viceversa.
Gana el jugador (o equipo) que haya necesitado hacer menos preguntas para localizar.
CE1, CE2, CE3, CE9, CE10
Cuarta parte
Si algún grupo de alumnos se anima, puede realizar una representación de alguna de las partidas jugadas en la Tercera Parte, presentando el reto de manera similar a como se ha presentado el reto en la primera y segunda parte de la tarea, y entregarlo en papel, o en digital.
En este caso estaríamos trabajando la Representación:
CE7. Representar, de forma individual y colectiva, conceptos, procedimientos, información y resultados matemáticos, usando diferentes tecnologías, para visualizar ideas y estructurar procesos matemáticos. (COMREP)
La forma de representar ideas, conceptos y procedimientos en matemáticas es fundamental. La representación incluye dos facetas: la representación propiamente dicha de un resultado o concepto y la representación de los procesos que se realizan durante la práctica de las matemáticas.
El desarrollo de esta competencia conlleva la adquisición de un conjunto de representaciones matemáticas que amplían significativamente la capacidad para interpretar y resolver problemas de la vida real.
Nota final
Como verás es una Tarea de Suelo Bajo y Techo Alto (SBTA) puesto que el punto de entrada es sencillo, y abordable por todos los estudiantes, aumentando de complejidad, enriqueciéndose, conforme vamos haciendo modificaciones a la misma.
Espero que la propuesta te haya parecido atractiva y te resulte de utilidad para el trabajo en el aula con este nuevo enfoque curricular. Si quieres compartirme algunas propuestas relacionadas con la Cuarta parte puedes hacerlo en luismiglesias@gmail.com o en @luismiglesias
De igual manera, si deseas que te haga llegar las soluciones de las propuestas realizadas en la Primera y Segunda parte, puedes escribirme a luismiglesias@gmail.com
Más contenido matemático en redes sociales
Me gusta esto:
Me gusta Cargando...