STEM

Una nueva era en la creación de contenidos digitales educativos de la mano de la Inteligencia Artificial de ChatGPT y eXeLearning

Los lectores habituales de este blog son conocedores de mi pasión por la generación de contenidos educativos digitales. En este blog hay algunos de centenares de ellos. 

He tenido la suerte, además, de participar en algunos de los grandes proyectos institucionales de Recursos Educativos Abiertos de nuestro país. Concretamente, en los últimos años, como:

  • Elaborador del Proyecto EDIA. ABP de Matemáticas

  • Elaborador del Proyecto Situaciones de Aprendizaje MEFP INTEF. Creamos nuestro Círculo Matemático Computacional

 

 

 

 

 

 

 

 

https://www.juntadeandalucia.es/educacion/portals/web/transformacion-digital-educativa/rea/modelo-pedagogico-guia-tecnica

https://www.juntadeandalucia.es/educacion/portals/web/transformacion-digital-educativa/rea

Además de ello, en un campo, no ya emergente, sino de plena actualidad, como es el de la Inteligencia Artificial, he podido vivir de primera mano experiencias formativas de gran nivel, entre ellas mi participación en el

  • Proyecto Fostering Artificial Intelligence at Schools (FAIaS)

Una nueva era en la creación de contenidos digitales educativos de la mano de ChatGPT y eXeLearning

Pues bien, aprovechando el conocimiento en dichos ámbitos, se me ha ocurrido combinar ambos:

  • Recursos Educativos Abiertos, creación de contenido digital con la herramienta eXeLearning, 

+

  • Inteligencia Artificial Generativa de OpenAI, ChatGPT, y más concretamente uno de mis asistentes GPT.

El resultado de esta fusión se puede comprobar en el siguiente vídeo, en el que muestro el proceso de creación de contenidos en eXeLearning, previa sencilla supervisión del contenido devuelto por mi asistente GPT. Creo que serán únicamente las primeras fusiones entre ambas tecnologías, ya que creo que mis asistentes y yo nos llevaremos bien y formaremos un gran equipo.

Seguiremos informando de nuestros avances 🙂

 

Una nueva era en la creación de contenidos digitales educativos de la mano de ChatGPT y eXeLearning

Pulsa en el siguiente enlace para que puedas interactuar con mi asistente (a fecha 5/12/2023 se requiere disponer de cuenta ChatGPT Plus de pago).

Ya me contarás qué te ha parecido esta manera de generar contenidos digitales educativos interactivos en eXeLearning.

Seguimos…

Más contenido matemático en redes sociales

Conferencia Magistral «Enseñar y aprender matemáticas en modalidad híbrida» en el XVI Congreso Internacional de Metodología de la Ciencia y de la Investigación para la Educación de México

La Asociación Mexicana de Metodología de la Ciencia y de la Investigación, A. C. y la Universidad Guadalupe Victoria ha convocado a especialistas en metodología de la ciencia, en metodología de la investigación, en investigación científica y tecnológica, en investigación educativa, educadores, pedagogos, autoridades educativas, líderes y responsables de proyectos de investigación en centros educativos, científicos de la educación, tomadores de decisiones en el ámbito científico-educativo, padres de familia, estudiantes y a todo los interesados en la generación, uso y aplicación de las nuevas tendencias de la metodología de la ciencia, de la metodología de la investigación, de los lineamientos y políticas actuales de la educación a interactuar y dialogar en el espacio del 16º Congreso Internacional de Metodología de la Ciencia y de la Investigación para la Educación, que se ha realizado en Modalidad Híbrida (Presencial y en línea) en las instalaciones de la Universidad Guadalupe Victoria, en Multunchac, Campeche, Cam., México, del 26 al 28 de octubre de 2023, con el tema “Metodologías para el aprendizaje y el conocimiento en la Modalidad Híbrida” («Methodologies for learning and knowledge in the Hybrid Modality»).

 
Desde estas líneas agradezco la invitación recibida desde México, en la persona de D. Noel Ángulo primeramente y, por parte de, D. Ángel Eduardo Vargas Garza, como Coordinador General del Comité Organizador del citado Congreso, para impartir la Conferencia Magistral «Enseñar y aprender matemáticas en modalidad híbrida”.
 
 
‘La Asociación Mexicana de Metodología de la Ciencia y de la Investigación A. C., reconociendo su amplia trayectoria académica e interés en participar en la proyección de los profesionales de la Metodología de la Ciencia y de la Investigación Educativa, tiene el agrado de invitarle a participar en el “Décimo Sexto Congreso Internacional de Metodología de la Ciencia y de la Investigación para la Educación”, con la Video Conferencia Magistral: «Enseñar y aprender matemáticas en modalidad híbrida”.’

 

Ha sido un honor, un verdadero placer, compartir y aprender en este Congreso con centenares de colegas del contexto mexicano en particular, e iberoamericano en general. Por último quisiera destacar la excelente organización por parte de la AMCCI, de la Universidad Guadalupe Victoria, y el resto de entidades colaboradoras.

 
 

El pase de diapositivas requiere JavaScript.

Más contenido matemático en redes sociales

(Vídeo) Ponencia en el I Congreso Nacional de Inteligencia Artificial de Bolivia. Inteligencia Artificial en el aula. Aprendizaje automático (Machine Learning) supervisado

Los días 13 y 14 de octubre se ha celebrado en formato virtual el I CONGRESO NACIONAL DE INTELIGENCIA ARTIFICIAL – «Innovación Educativa y Profesional en la Era de la Inteligencia Artificial Generativa».

Ha sido un placer tener un papel activo en este importante evento, de gran valor para Bolivia y siendo de los pioneros para la región América Latina y el Caribe, sobre esta temática tan importante, no para el futuro, sino para el presente de la Educación y de nuestra Sociedad.
Desde estas líneas agradezco la invitación a participar como ponente en el mismo, a la Confederación Nacional de Profesionales de Bolivia, organizadora del evento, así como a la Confederación Universitaria de Docentes de Bolivia, a la Universidad Autónoma Gabriel René Moreno y al resto de entidades que lo han hecho posible y, de manera muy especial, al profesor Ramiro Aduviri Velasco, que ha tenido un papel muy relevante tanto en la organización como en el propio Congreso.

El panel de expertos (bolivianos, argentinos, chilenos y españoles) participantes en las diferentes ponencias y paneles han abordado el papel de la Inteligencia Artificial en distintos ámbitos; desde la ética, el tributario, sector público, salud hasta la educación.
Mi ponencia ha estado centrada en:
  • la relevancia, tanto presente como futura, de la Inteligencia Artificial en el ámbito educativo,
  • la necesidad imperiosa y urgente de abordar el debate y su implementación en el aula, y la correspondiente formación docente,
  • propuestas para un abordaje sostenible de su introducción en las aulas de educación secundaria, y en las de la enseñanza básica en general, presentando Situaciones de Aprendizaje para la comprensión y creación de modelos numéricos de aprendizaje automático (Machine Learning) supervisado para resolver diferentes problemas del ámbito científico matemático y tecnológico (STEM).

Vídeo

Comienzo 00:12:23

Propuestas didácticas. Modelos numéricos Machine Learning para el aula

Más contenido matemático en redes sociales

Propuesta didáctica LingMáTICas. Fortaleciendo la competencia linguística: comunicación, representación y resolución de problemas matemáticos de decimales y fracciones elaborando cómics digitales

Los lectores de este blog conocen bien mi predilección por vincular lengua y matemáticas. Ello me llevó hace más de una década a bautizarla. Es decir, a buscar un término, un palabro, con el que poder categorizarlas. Le llamé LingMáTICas.

Así, definí LingMáTICas como el conjunto de propuestas didácticas, contextos de aprendizaje, encaminados a fortalecer la competencia lingüística, en todos sus ámbitos, desde el aula de matemáticas, con ayuda de la tecnología (TIC).

Definición de LingMáTICas. Luis M. Iglesias

Son muchos los compañeros docentes que en estos momentos están inmersos en la elaboración del plan de trabajo para el tratamiento de la lectura en el aula de matemáticas en sus respectivos centros educativos, de manera especial en Andalucía, atendiendo a las INSTRUCCIONES DE 21 DE JUNIO DE 2023, DE LA VICECONSEJERÍA DE DESARROLLO EDUCATIVO Y FORMACIÓN PROFESIONAL, SOBRE EL TRATAMIENTO DE LA LECTURA PARA EL DESPLIEGUE DE LA COMPETENCIA EN COMUNICACIÓN LINGÜÍSTICA EN EDUCACIÓN PRIMARIA Y EDUCACIÓN SECUNDARIA OBLIGATORIA.

Con la idea de aportar mi granito de arena, para ayudar en la medida de lo posible, quiero compartir en esta entrada un trabajo de investigación-acción que llevé a cabo hace unos años por si fuera de utilidad. 

El mismo fue presentado en el Congreso Iberoamericano «La educación ante el nuevo entorno digital», a finales del 2019. Este Congreso fue un espacio donde se pretendía dar a conocer proyectos o experiencias relacionadas con cualquier área temática, pero con el denominador común del entorno digital en el que ya estamos inmersos.

Título 
Decimales y fracciones entre textos e imágenes: una experiencia de aprendizaje basada en la elaboración de cómics digitales. 

Autoría 

Resumen 
Esta investigación-acción tiene como objetivo la construcción de cómics matemáticos para facilitar el aprendizaje de fracciones y decimales. La justificación del uso del cómic radica en la motivación de los estudiantes por el uso de información visual, que al combinarla con el texto puede dar lugar a elementos de desarrollo de habilidades, creatividad y la lectura de contenido (Urbani, 1978, citado en Toh, 2009).  El soporte tecnológico se sostiene en una de las dimensiones de la competencia digital (Marqués, 2009), la dimensión del aprendizaje, expresada como transformación del contenido en adquisición del conocimiento. Además, el cómic se considera una herramienta con potencial para el aprendizaje de las matemáticas, por sus capacidades creativas y visuales (Cleaver, 2008) así como una posibilidad de mejora en la alfabetización de los estudiantes (Tilley, 2008).  

La investigación describe el proceso y resultados de una experiencia en el tercero de Enseñanza Secundaria Obligatoria, en Matemáticas orientadas a las enseñanzas académicas. El contenido a trabajar venía delimitado por el criterio de evaluación “utilizar las propiedades de los números racionales para operarlos, utilizando la forma de cálculo y notación adecuada, para resolver problemas de la vida cotidiana, y presentando los resultados con la precisión requerida” (RD. 1105/2014, p. 391). 

Nota:

En esa fecha estaba en vigor el currículo LOMCE por lo que es evidente que habría que hacer la traslación al currículo actual LOMLOE, RD 217/2022 – Decreto 102/203 de 9 de mayo – Orden 30 de mayo 2023 Currículo Secundaria Andalucía, aunque no es excesivamente complicado. De manera clara tiene vinculación con el Sentido numérico (en lo relativo a saberes básicos) y con los Criterios de Evaluación correspondientes de las Competencias Específicas relativas a la resolución de problemas [RESPRO] y a la comunicación y representación [COMREP] Y socioemocionales [SOCAFE].

Los estudiantes construyen un cómic, utilizando una herramienta digital. Para el análisis de los resultados del conocimiento matemático expuesto se definen categorías que facilitan la identificación de cumplimiento de los estándares de aprendizaje. Estas categorías se construyen sustentadas en la investigación previa para el conocimiento matemático, desde la enseñanza y del aprendizaje de los números racionales. Las categorías que se utilizan son: el sentido dado a los algoritmos según su significado (que incluye la forma de utilizar los algoritmos y la resolución), la tipología del contexto que se utiliza para situar el objeto matemático, el rigor del lenguaje matemático, cómo se presentan los números (en forma decimal o fracción), y la reflexión final con los datos y resultados expuestos. 

Los resultados muestran distintos contextos que agrupamos como realistas y ficticios, donde estos últimos dan lugar a aquellos que dan sentido al objeto matemático y los que resultan forzados para introducir tanto el número como el algoritmo utilizado. Se utilizan distintos algoritmos, basados en suma y multiplicación; los cálculos implican usos como porcentaje, cálculo de las partes de un todo y equivalencia. En aquellas tareas que implican uso de algoritmos, los números base son fracciones en lugar de decimales. Encontramos tareas que finalizan de una manera reflexiva agrupando todos los datos utilizados a modo de recopilatorio para dar lugar a un ejercicio, y su solución. No aparecen demasiadas conversiones entre fracciones, y cuando lo hacen son para dar lugar a números que faciliten la interpretación de las partes de un todo. Los errores que aparecen surgen de cálculos encadenados entre fracciones, no siendo explícito si el cálculo es desde el paso anterior o desde el inicio, o cuando resultados dan lugar a números decimales y el contexto hubiese necesitado un número natural para su interpretación. 

Descarga del material

 

DESCARGAR: LingMáTICas. Comunicación, representación y resolución de problemas matemáticos mediante cómics digitales

Más contenido matemático en redes sociales

Creamos nuestro Círculo Matemático Computacional (CMC) para trabajar el Pensamiento Computacional y la Resolución de Problemas. Proyecto Situaciones de Aprendizaje del MEFP

Este curso 22/23 se ha implantado el nuevo currículo derivado de la implantación de la LOMLOE en los cursos impares (1º, 3º y 5º de Primaria, 1º y 3º de Secundaria y 1º de Bachillerato). A partir de septiembre se implantará en los pares, finalizando así dicha implantación. 

Uno de los nuevos paradigmas propuestos en el nuevo marco curricular son las Situaciones de Aprendizaje, que son situaciones y actividades que implican el despliegue por parte del alumnado de actuaciones asociadas a competencias clave y competencias específicas, y que contribuyen a la adquisición y desarrollo de las mismas.

Acompañando al desarrollo normativo se han realizado diferentes acciones. Entre ellas se ha establecido un itinerario formativo para el profesorado y se ha puesto en marcha el proyecto Situaciones de Aprendizaje, un proyecto que publicará en torno a 200 Situaciones de Aprendizaje de todas las etapas (desde Infantil a Bachillerato) y de todas las materias. 

He tenido la suerte de participar en este bonito proyecto de Recursos Educativos Abiertos (REA), concretamente en el grupo de trabajo de Matemáticas,  con la elaboración de una de las Situaciones de Aprendizaje la cual espero sea de utilidad, si no ya para el presente curso, que está tocando a su fin, para el curso que viene. 

Creamos nuestro Círculo Matemático Computacional (CMC)

Situación de Aprendizaje: Creamos nuestro Círculo Matemático Computacional (CMC)

 

 

Situaciones de Aprendizaje de Matemáticas

Con la excelente coordinación por parte de José Luis Muñoz Casado, hemos trabajado el siguiente equipo de Matemáticas:

  • Julio Rodríguez Taboada
  • Antonio Moreno
  • Ester Solves
  • María Ángeles Portilla
  • José Rafael Viana Sánchez
  • Luis Miguel Iglesias
  • Claudia Lázaro
  • José María Vázquez
  • Laureano Serrano Muñoz
  • Lluis Bonet
  • Pilar Sabariego
  • Berta Sánchez García
  • Carmen Lahiguera Serrano
  • Pablo Peñalver Alonso
  • Francisco Zapatero Sánchez

Todas las Situaciones de Aprendizaje de Matemáticas pueden ser localizadas accediendo a a la web del proyecto y filtrando (marcando la casilla Matemáticas). 

Aunque no soy objetivo por ser parte del proyecto, os recomiendo encarecidamente visitar y conocer las Situaciones de Aprendizaje de Matemáticas, y del resto de materias elaboradas, y os animo a adaptarlas y llevarlas a vuestras aulas. 

Acceder a la web del Proyecto y activa el filtro «Matemáticas» https://intef.es/recursos-educativos/situaciones-aprendizaje/

 

Proyecto Situaciones de Aprendizaje MEFP

Acceder a la web del Proyecto: https://intef.es/recursos-educativos/situaciones-aprendizaje/

 

¿Qué se ofrece?

Una colección de situaciones de aprendizaje y otros materiales didácticos de naturaleza competencial creados por docentes en activo, para Educación Infantil, Educación Primaria, Educación Secundaria Obligatoria y Bachillerato. Todos ellos se publican con una licencia abierta (Creative Commons Reconocimiento-CompartirIgual 4.0) e incluyen el archivo fuente para su descarga y posible edición posterior.

Información curricular

Estos materiales se han diseñado conforme a los objetivos, competencias, criterios de evaluación y saberes básicos fijados en el Real Decreto 95/2022, de 1 de febrero, por el que se establece la ordenación y las enseñanzas mínimas de la Educación Infantil, el Real Decreto 157/2022, de 1 de marzo, por el que se establecen la ordenación y las enseñanzas mínimas de la Educación Primaria, el Real Decreto 217/2022, de 29 de marzo, por el que se establece la ordenación y las enseñanzas mínimas de la Educación Secundaria Obligatoria y el Real Decreto 243/2022, de 5 de abril, por el que se establecen la ordenación y las enseñanzas mínimas del Bachillerato.

Información técnica (eXeLearning)

Todos los materiales se han elaborado con la herramienta eXeLearning, un editor de recursos educativos interactivos, gratuito y de código abierto, lo que hace posible que cualquier usuario los pueda descargar y utilizar -con o sin conexión-, así como editar para adaptarlos a sus necesidades. Ofrece, asimismo, la ventaja de que permite exportar los contenidos a diferentes formatos estándar para su utilización en entornos web (html) o en plataformas de gestión de contenido educativo (SCORM) como Moodle y otros LMS.

 

Currículo básico Matemáticas Secundaria LOMLOE

Ejercicio interactivo. Tarjetas de memoria de funciones racionales y sus gráficas

Instrumento para la evaluación competencial. Diana de evaluación y metacognición con Geogebra

A estas alturas, como docentes de matemáticas, es de sobra conocido el potencial didáctico de la herramienta Geogebra. El límite a lo que podamos hacer con ella depende, no de la herramienta en sí, sino más bien de nuestra creatividad y de nuestra capacidad técnica.

En esta entrada os presento un uso de Geogebra un tanto diferente al habitual. En este caso la he usado para elaborar un instrumento de evaluación, concretamente una diana de aprendizaje o diana de evaluación y metacognición. La misma la elaboré en el marco del Proyecto REA/DUA Andalucía, proyecto bellísimo y superpotente de creación de Recursos Educativos Abiertos (REA) según los principios del Diseño Universal de Aprendizaje (DUA), en el que tengo la fortuna de participar desde el rol de Coordinador Técnico, junto a más de 200 compañeros y compañeras docentes de Andalucía. Si aún no lo conoces te animo a visitarlo, explorar y compartir las más de 250 situaciones de aprendizaje disponibles, adaptadas al nuevo marco curricular derivado de la implantación de la LOMLOE, con licencia Creative Commons.

Vídeo: Diana de evaluación y metacognición con Geogebra

Diana de aprendizaje de evaluación y metacognición

A continuación os dejo un fragmento de un excelente post publicado por Ingrid Mosquera en el sitio web del Máster Universitario en Formación del Profesorado de Secundaria de la UNIR (https://www.unir.net/educacion/revista/dianas-de-aprendizaje-que-son-y-para-que-sirven/). Recomiendo su lectura completa, además de otros posts de la serie relacionados con las dianas digitales.

¿Qué es una diana de evaluación?

Se puede decir que es un sistema visual, rápido y sencillo de llevar a cabo un aprendizaje participativo. Una participación que puede darse en todos los estadios de su empleo, desde la propia elaboración de la misma hasta el debate sobre los resultados obtenidos. Suele definirse como una posible representación gráfica de una evaluación que nos conducirá a la reflexión a partir de una única imagen que aglutina diferentes informaciones. Es el visual thinking de las evaluaciones, por usar terminología actual.

El dibujo o la plantilla de una diana consiste en círculos concéntricos que, de dentro hacia fuera, indican el nivel de cumplimiento o de adaptación a cada uno de los ítems incluidos. Alrededor del círculo más amplio tendremos los nombres de los ítems y para cubrir la diana iremos indicando el número que corresponde en cada uno de ellos. Así, al final, uniendo los puntos, obtendremos lo que se viene denominando como mapa de evaluación.

Aquí podemos ver un ejemplo sencillo en el que únicamente una persona participa, reflexionando sobre sus propias capacidades lingüísticas:

autoevaluacion

Dianas de evaluación y metacognición

La diana puede servir para autoevaluarse, para coevaluar a otros compañeros, para valorar el trabajo en grupo o para que los estudiantes puedan calificarnos como docentes. A menudo suelen emplearse para evaluar las actitudes y la participación del alumnado. Dependiendo del objetivo último para la que se elabore, muchos de los puntos presentados en la enumeración anterior vendrán determinados de antemano.

 

Como elemento de autoevaluación, las dianas contribuirán al desarrollo de la metacognición de nuestros alumnos. Igualmente, una autoevaluación, como la presentada en la imagen previa, puede ser comparada con la coevaluación y autoevaluación de otros compañeros, o con la propia evaluación del docente. De esta manera, de un solo vistazo, se podrá abrir un interesante debate en el que los alumnos podrán reflexionar acerca de las percepciones que tienen sobre su propio aprendizaje.

 Diana de evaluación y metacognición en Geogebra.org


Acceso a la diana de evaluación en Geogebra.org

 

Espero que sea de utilidad para ti y para tus estudiantes y le saquéis mucho partido en el aula.

Más contenido matemático en redes sociales

Countle. Desarrollo del sentido de las operaciones (sentido numérico) a través del juego

Hay múltiples opciones para desarrollar el Sentido numérico del alumnado en el aula de matemáticas.

En esta entrada os traigo una propuesta para trabajar los Saberes Básicos relacionados con el Sentido de las operaciones:

3. Sentido de las operaciones.

− Estrategias de cálculo mental con números naturales, fracciones y decimales.

− Efecto de las operaciones aritméticas con números enteros, fracciones y expresiones decimales.

− Propiedades de las operaciones (suma, resta, multiplicación, división y potenciación): cálculos de manera eficiente con números naturales, enteros, fraccionarios y decimales tanto mentalmente como de forma manual, con calculadora u hoja de cálculo.

Countle. ¿Qué es?

Es un juego donde nos dan el resultado y seis números adicionales.

Combinando los números dados, usando únicamente sumas, restas, multiplicaciones y divisiones, tenemos que obtener el mismo.

No se permiten números negativos ni fracciones.

Captura de pantalla. Ejercicio diario de Countle

Captura de pantalla. Ejercicio resuelto en Countle

Countle. Ideas para el trabajo en el aula

En el sitio web de Countle nos proponen un ejercicio cada día lo que nos posibilita un entrenamiento divertido diario, en un escenario sano y divertido de competición.

Lo ideal es que los alumnos registren sus intentos, razonando y describiendo las estrategias seguidas; sus errores y aciertos. Ya sabemos que en matemáticas los errores y caminos seguidos hasta encontrar la solución son muy válidos e importantes.

Se puede llevar un registro diario, individual o grupal, convirtiendo esta rutina diaria en una excelente oportunidad para desarrollar el sentido de las operaciones a través de este escenario gamificado.

Se puede trabajar a diario durante un periodo de tiempo determinado, semana, mes, trimestre o incluso durante todo el curso.

Countle. Sitio web

 

Sitio web de Countle: https://www.countle.org/

Si te resultó atractivo Countle, te animo a leer el post relativo a Primel y Ooodle, juegos de gran utilidad para desarrollar el sentido numérico.

Espero que te gusten, practiques el razonamiento con los mismos y disfrutes con tus alumnos con estos rompecabezas matemáticos.

Ya me contarás cómo te ha ido…

Más contenido matemático en redes sociales

Soy divisible por 9. Conóceme… Situación de aprendizaje para trabajar las competencias específicas, a través de la comprensión conceptual de un criterio de divisibilidad

Seguro que habrás leído en alguna ocasión que:

«el currículo de matemáticas estadounidense era de una milla de largo y de una pulgada de profundo».

En los currículos españoles no andábamos muy lejos de esta afirmación. Currículos excesivamente largos, con poca profundización y aprendizaje significativo, sin apenas ahondar en la comprensión conceptual (la estructura de los objetos matemáticos), ni en las conexiones entre los distintos conceptos matemáticos (numérico-algebraicas, algebraico-geométricas,…)

La amplia extensión «del temario» o «del libro» nos lleva a pasar de puntillas, dejando atrás cada tema o unidad didáctica lo antes posible, sin pararnos a pensar ni a reflexionar, repitiendo actividades de aplicación rutinarias día a día (en clase y para casa), sin apenas significado para el estudiante, dejando de lado la resolución de problemas y la realización de tareas que profundicen en el significado de los conceptos trabajados.

En esta entrada comparto una situación de aprendizaje que pretende ahondar en la comprensión de un sistema de numeración (en este caso el decimal) y de dónde surge las reglas de divisibilidad que recitamos de memoria.  Esta tarea, resuelta íntegramente con la herramienta digital Graspable Math, permite trabajar:

  • Los Sentidos: numérico, algebraico y socioafectivo
  • Las Competencias Específicas relacionadas con los procesos de Resolución de Problemas (RESPRO), Razonamiento y Prueba (RAZPRU), Conexiones (CONEX) y las Destrezas Socioafectivas (SOCAFE): CE1, CE2, CE3 , CE4, CE5CE9 y CE10

Situación de aprendizaje: Soy divisible por 9. Conóceme… · Introducción

Se trata de una tarea de corte algebraico que busca profundizar en la estructura del sistema numeración decimal y la comprensión profunda del criterio de divisibilidad por 9.

Se presenta además un enunciado, para probar o refutar, propiciando la posibilidad de que se genere un ambiente de razonamiento y trabajo en equipo en el aula, donde tendrán que conjeturar, argumentar, aceptar errores en los diferentes planteamientos, colaborar con el resto de compañeros y compañeras,…


Situación de aprendizaje: Soy divisible por 9. Conóceme… · Enunciado

Se trata de una tarea de corte algebraico que busca profundizar en la estructura del sistema numeración decimal y la comprensión profunda del criterio de divisibilidad por 9.


Soy divisible por 9. Conóceme… · Solución

A continuación se presenta la tarea resuelta, paso a paso, en Graspable Math, herramienta dgital que facilita sobremanera el tratamiento de la notación matemática tanto para enseñar como para aprender.

Enlace a la solución en GM Canvas


Situación de aprendizaje: Soy divisible por 9. Ideas para trabajar en el aula

Mediante esta tarea pretendo profundizar en esta regla para que, los alumnos, al finalizar el trabajo con esta situación de aprendizaje, sean conscientes del por qué de este enunciado, que recitan de memoria, y sean capaces de transferirlo a otros… e incluso a conjeturar e intentar probar alguno de ellos, por analogía con el abordaje que vamos a realizar en este problema.

Criterio de divisibilidad del 9

Un número es divisible entre 9 cuando la suma de sus dígitos es 9 o múltiplo de 9. 

Algunas preguntas preguntas para romper el hielo:

  • ¿Qué significado tiene el 5 en el número 531? ¿Y en el 657?
  • ¿Qué significa ser divisible por 9?
  • ¿Qué relación tiene ser divisible por 9 con las cifras, o mejor dicho con la suma de las cifras del número? ¿Podrías afirmar algo al respecto?

Lo importante es que se animen a tomar la palabra, a comunicar sus pensamientos, oralmente y por escrito. Dales tiempo para pensar y facilita que opinen y debatan, desde el respeto a lo expuesto por otros compañeros. Es esta una tarea propicia para el trabajo en grupo por lo que, tras las tormenta de ideas inicial, se podrían formar grupos heterogéneos de tres o cuatro miembros para abordar la misma.

El trabajo en equipo facilitará su abordaje y permitirá al alumnado enriquecerse a través de los razonamientos de los demás compañeros y compañeras, aceptando, comentando para mejorar o refutando con argumentos y de manera razonada las propuestas de los demás, con lo cual estaremos trabajando las Competencias Específicas Socio Emocionales, potenciando así las Destrezas SocioAfectiva (SOCAFE):

Para atender a la diversidad presente en nuestra aula y facilitar el acercamiento a la tarea podemos proponer a los alumnos que prueben con algunos números concretos de tres cifras, e incluso se le puede ofrecer como entrada la descomposición polinómica de uno o dos números de tres cifras.

Como verás es una Tarea de Suelo Bajo y Techo Alto (SBTA) puesto que el punto de entrada es sencillo, y podemos quedarnos en las comprobaciones numéricas de la regla, y abordable por todos los estudiantes, aumentando de complejidad, enriqueciéndose, conforme vamos haciendo modificaciones a la misma o transitamos hacia el enfoque puramente algebraico.

Espero que la propuesta te haya parecido atractiva y te resulte de utilidad para el trabajo en el aula con este nuevo enfoque curricular. Si quieres compartirme algunas propuestas o trabajo con tus alumnos en el aula puedes hacerlo en luismiglesias@gmail.com o en @luismiglesias.



Más contenido matemático en redes sociales

Matemáticas y ajedrez. Situación de aprendizaje para trabajar las competencias específicas resolución de problemas, razonamiento y socioafectivas, a través de acertijos matemáticos

Entre las Competencias Específicas presentes en el nuevo Currículo Básico de Matemáticas de Secundaria encontramos, relacionadas con los procesos Resolución de Problemas (RESPRO) y Razonamiento y Prueba (RESPRO), las siguientes:


CE1. Interpretar, modelizar y resolver problemas de la vida cotidiana y propios de las matemáticas, aplicando diferentes estrategias y formas de razonamiento, para explorar distintas maneras de proceder y obtener posibles soluciones. (RESPRO)

La resolución de problemas constituye un eje fundamental en el aprendizaje de las matemáticas, ya que es un proceso central en la construcción del conocimiento matemático. Tanto los problemas de la vida cotidiana en diferentes contextos como los problemas propuestos en el ámbito de las matemáticas permiten ser catalizadores de nuevo conocimiento, ya que las reflexiones que se realizan durante su resolución ayudan a la construcción de conceptos y al establecimiento de conexiones entre ellos.


CE2. Analizar las soluciones de un problema usando diferentes técnicas y herramientas, evaluando las respuestas obtenidas, para verificar su validez e idoneidad desde un punto de vista matemático y su repercusión global. (RESPRO)

El desarrollo de esta competencia conlleva procesos reflexivos propios de la metacognición como la autoevaluación y la coevaluación, la utilización de estrategias sencillas de aprendizaje autorregulado, uso eficaz de herramientas digitales como calculadoras u hojas de cálculo, la verbalización o explicación del proceso y la selección entre diferentes métodos de comprobación de soluciones o de estrategias para validar las soluciones y su alcance.


CE3. Formular y comprobar conjeturas sencillas o plantear problemas de forma autónoma, reconociendo el valor del razonamiento y la argumentación, para generar nuevo conocimiento. (RAZPRU)

El desarrollo de esta competencia conlleva formular y comprobar conjeturas, examinar su validez y reformularlas para obtener otras nuevas susceptibles de ser puestas a prueba promoviendo el uso del razonamiento y la demostración como aspectos fundamentales de las matemáticas. Cuando el alumnado plantea nuevos problemas, mejora el razonamiento y la reflexión al tiempo que construye su propio conocimiento, lo que se traduce en un alto nivel de compromiso y curiosidad, así como de entusiasmo hacia el proceso de aprendizaje de las matemáticas.

En 8 prácticas de enseñanza esenciales para una Educación Matemática eficaz. Nuevo currículo de Matemáticas LOMLOE podemos ver como una de las prácticas recomendadas es:

2. Implementar tareas que promuevan el razonamiento y la resolución de problemas.

La enseñanza efectiva de las matemáticas involucra a los estudiantes en actividades que implican resolver y discutir, aquellas que promueven el razonamiento matemático y la resolución de problemas, y que permiten que emerjan múltiples maneras de abordar los problemas y una variedad de estrategias de resolución.

En esta entrada os propongo precisamente esto; una tarea para trabajar principalmente las CE1, CE2 y CE3, así como otras relacionadas con las Destrezas Socioafectivas (SOCAFE), de las que hablaré más adelante.


Situación de aprendizaje: El ajedrez de Ray y Smull

Los acertijos matemáticos son tan antiguos como la propia historia de la humanidad y nos han ofrecido juegos de ingenio bellísimos y entretenidos a los que han dedicado su estudio celebres personajes, matemáticos y no matemáticos.

Los mismos ofrecen un contexto idóneo para trabajar la resolución de problemas y el razonamiento desde un acercamiento lúdico, sin miedo al error, y, aparentemente, nada formal y profundo… nada más lejos de la realidad, porque en muchos de ellos, hay altas dosis de fundamentos matemáticos.

Por otro lado, sabemos que pocos juegos alcanzan el potencial educativo y de razonamiento del ajedrez. Muestra de ello es que figure como asignatura propia en algunos países o bien en forma de programas educativos, como es el caso de AulaDJaque en Andalucía.

La siguiente situación tiene que ver con posiciones de fichas en el tablero de ajedrez, a partir de unas condiciones iniciales que se dan como dato. Está basada en el clásico acertijo del mismo nombre, planteado por el gran Martin Gardner, en homenaje al matemático Ray Smullian por sus dos excelentes colecciones de problemas de ajedrez: iMysteries of Sherlock Holmes y The Chess Mysteries of the Arabian Knights.

La situación la he estructurado en tres partes, y una cuarta parte (opcional) de ampliación.

  • Particularmente trabajaría la misma en 2 sesiones de 1 hora, alcanzando 3 sesiones si profundizamos en las partes tercera y cuarta.
  • En la primera sesión presentaría la tarea, recordaría de manera breve los movimientos de las piezas del ajedrez, con especial énfasis en las cinco participantes en la tarea y trabajaríamos las dos primeras partes.
  • En la segunda sesión recapitularía sobre las dos primeras partes y trabajaría, si es posible más de una vez, la tercera parte. Desde mi punto de mi vista, la más creativa, enriquecedora… y compleja atractiva :-).
  • En la tercera sesión profundizar en la tercera y cuarta parte.

Comparto imagen, por si quiere imprimir y repartir, así como enlace a la versión interactiva que he elaborado en Mathigon, se puede pulsar sobre el icono de pantalla completa y usar las lupas +/- y desplazar en la pantalla, para aumentar, disminuir el tamaño y mover, respectivamente.


Primera parte

Elaborado con Polypad de Mathigon, bajo licencia CC BY SA, por Luis M. Iglesias https://luismiglesias.es a partir del problema original «Ajedrez de Ray y Smull» de Martin Gardner



Segunda parte


Elaborado con Polypad de Mathigon, bajo licencia CC BY SA, por Luis M. Iglesias https://luismiglesias.es a partir del problema original «Ajedrez de Ray y Smull» de Martin Gardner


Segunda parte (bis)

Para atender a la diversidad presente en nuestra aula, podemos ofrecer alguna pista para el abordaje de la segunda parte, indicando las posiciones concretas en las que se sitúan las fichas, además de la información inicial de «amenazas» que se ofrece en el enunciado original.

Elaborado con Polypad de Mathigon, bajo licencia CC BY SA, por Luis M. Iglesias https://luismiglesias.es a partir del problema original «Ajedrez de Ray y Smull» de Martin Gardner


Como se puede apreciar, esta tarea es especialmente idónea para el trabajo en equipo, lo cual facilitará su abordaje y permitirá al alumnado enriquecerse a través de los razonamientos de los demás compañeros y compañeras, aceptando, comentando para mejorar o refutando con argumentos y de manera razonada las propuestas de los demás, con lo cual estaremos trabajando las Competencias Específicas Socio Emocionales, potenciando así las Destrezas SocioAfectiva (SOCAFE):

CE9. Desarrollar destrezas personales, identificando y gestionando emociones, poniendo en práctica estrategias de aceptación del error como parte del proceso de aprendizaje y adaptándose ante situaciones de incertidumbre, para mejorar la perseverancia en la consecución de objetivos y el disfrute en el aprendizaje de las matemáticas. (SOCAFE)

Resolver problemas matemáticos –o retos más globales en los que intervienen las matemáticas– debería ser una tarea gratificante. Las destrezas emocionales dentro del aprendizaje de las matemáticas fomentan el bienestar del alumnado, la regulación emocional y el interés por su aprendizaje.

El desarrollo de esta competencia conlleva identificar y gestionar las emociones, reconocer fuentes de estrés, ser perseverante, pensar de forma crítica y creativa, mejorar la resiliencia y mantener una actitud proactiva ante nuevos retos matemáticos.


CE10. Desarrollar destrezas sociales reconociendo y respetando las emociones y experiencias de los demás, participando activa y reflexivamente en proyectos en equipos heterogéneos con roles asignados, para construir una identidad positiva como estudiante de matemáticas, fomentar el bienestar personal y grupal y crear relaciones saludables. (SOCAFE)

El desarrollo de esta competencia conlleva mostrar empatía por los demás, establecer y mantener relaciones positivas, ejercitar la escucha activa y la comunicación asertiva, trabajar en equipo y tomar decisiones responsables. Asimismo, se fomenta la ruptura de estereotipos e ideas preconcebidas sobre las matemáticas asociadas a cuestiones individuales, como, por ejemplo, las asociadas al género o a la creencia en la existencia de una aptitud innata para las matemáticas.

En esta última parte, propongo movilizar las CE9 y CE10, trabajando en parejas o en grupos de cuatro estudiantes.


Tercera parte

Dos jugadores (o dos parejas) se sientan de espaldas, cada uno con un tablero y cinco piezas.

Un jugador (o pareja) coloca las piezas, y el otro (o la otra pareja) hace preguntas, y se lleva un registro de la cantidad de preguntas que se necesitan para saber dónde están las cinco piezas. Una vez localizadas, los jugadores cambian sus roles; ahora el jugador (o pareja) que colocó las piezas hace las preguntas y viceversa.

Gana el jugador (o equipo) que haya necesitado hacer menos preguntas para localizar.

CE1, CE2, CE3, CE9, CE10


Cuarta parte

Si algún grupo de alumnos se anima, puede realizar una representación de alguna de las partidas jugadas en la Tercera Parte, presentando el reto de manera similar a como se ha presentado el reto en la primera y segunda parte de la tarea, y entregarlo en papel, o en digital.

En este caso estaríamos trabajando la Representación:

CE7. Representar, de forma individual y colectiva, conceptos, procedimientos, información y resultados matemáticos, usando diferentes tecnologías, para visualizar ideas y estructurar procesos matemáticos. (COMREP)

La forma de representar ideas, conceptos y procedimientos en matemáticas es fundamental. La representación incluye dos facetas: la representación propiamente dicha de un resultado o concepto y la representación de los procesos que se realizan durante la práctica de las matemáticas.

El desarrollo de esta competencia conlleva la adquisición de un conjunto de representaciones matemáticas que amplían significativamente la capacidad para interpretar y resolver problemas de la vida real.


Nota final

Como verás es una Tarea de Suelo Bajo y Techo Alto (SBTA) puesto que el punto de entrada es sencillo, y abordable por todos los estudiantes, aumentando de complejidad, enriqueciéndose, conforme vamos haciendo modificaciones a la misma.

Espero que la propuesta te haya parecido atractiva y te resulte de utilidad para el trabajo en el aula con este nuevo enfoque curricular. Si quieres compartirme algunas propuestas relacionadas con la Cuarta parte puedes hacerlo en luismiglesias@gmail.com o en @luismiglesias

De igual manera, si deseas que te haga llegar las soluciones de las propuestas realizadas en la Primera y Segunda parte, puedes escribirme a luismiglesias@gmail.com



Más contenido matemático en redes sociales
WP2Social Auto Publish Powered By : XYZScripts.com
%d