Evaluación

Artículo sobre este blog en El Recreo Diario · ‘MatemáTICas: 1,1,2,3,5,8,13,…’: 15 años mejorando el aprendizaje en las aulas

Comparte MatemáTICas: 1,1,2,3,5,8,13,...

Hoy traigo a este espacio una bonita publicación que dedica El Recreo Diario (Periódico escolar, educativo y cultural) a esta bitácora virtual matemática, con motivo de su 15 cumpleaños.

Agradecido y sorprendido, he recordado los inicios de este blog, que coincidieron con un bonito periodo, época dorada de la blogosfera educativa y efervescencia y consolidación de la Web 2.0 educativa.

El Recreo Diario · ‘MatemáTICas: 1,1,2,3,5,8,13,…’: 15 años mejorando el aprendizaje en las aulas

El blog ‘MatemáTICas: 1,1,2,3,5,8,13,…‘, del reconocido profesor onubense de matemáticas Luis Miguel Iglesias Albarrán, cumple este jueves 14 de marzo, Día Internacional de las Matemáticas, la friolera de 15 años, una efemérides y un número redondo que bien merecen una mención especial en este periódico educativo sobre este blog que tanto bien ha hecho y hace por la didáctica de esta materia, con lo que, de paso, El Recreo Diario también quiere promover un impulso a la recuperación de la blogosfera educativa, tan escasa en la actualidad.

Funcionario de carrera del cuerpo de profesores de Enseñanza Secundaria de la especialidad de Matemáticas, Luis Miguel Iglesias Albarrán es actualmente el director del IES San Antonio de Bollullos Par del Condado (Huelva), una responsabilidad que ejerce después de una amplísima trayectoria en la que ha sido profesor de Didáctica de la Matemática en la Universidad de Huelva y que le ha llevado a participar y coordinar Proyectos de Investigación Educativa (PIV) y Elaboración de Materiales Curriculares (PEM) de la Consejería de Desarrollo Educativo y Formación Profesional.

 

«Por desgracia apenas quedan espacios de aquella blogosfera educativa, generada con la Web 2.0 y el nacimiento de redes sociales como Twitter, hoy X, que estén en activo», destaca el autor del blog ‘MatemáTICas: 1,1,2,3,5,8,13,…’, que aboga por «recuperar, recordar, homenajear y, por qué no, hacer llamamiento para continuar con los blogs para difundir los ricos productos finales de las situaciones de aprendizaje competenciales que se desarrollan en las escuelas en el contexto LOMLOE», prosigue el profesor en declaraciones realizadas a El Recreo Diario.

Autor de diversas publicaciones como artículos, monográficos y capítulos de libros sobre didáctica, innovación y tecnología educativa para enseñar y aprender, Luis Miguel Iglesias Albarrán ha participado en los últimos años en el diseño del currículo de Matemáticas LOMLOE a nivel nacional; en el Proyecto REA/DUA Andalucía, como coordinador técnico del proyecto y persona experta en Gestión de Objetos Digitales Educativos (ODE); en el Proyecto Situaciones de Aprendizaje Matemáticas INTEF-MEFP y el proyecto EDIA-CEDEC; en el grupo de trabajo encargado del ‘Análisis del Marco Común de la Competencia Digital Docente (CDD) y el asesoramiento de las actividades formativas que proporcional al personal docente lo distintos niveles de progresión de la Competencia Digital Docente’; o en el Proyecto europeo FAIaS (Fomentando la Inteligencia Artificial en las Escuelas), entre otros.

 

Más contenido matemático en redes sociales

Comparte MatemáTICas: 1,1,2,3,5,8,13,...

Inteligencia Artificial de ChatGPT para docentes. Generación de mapa mental. Clasificación de triángulos

Comparte MatemáTICas: 1,1,2,3,5,8,13,...

Continuando la serie de vídeos relativos al uso didáctico de la IA, en esta nueva entrada comparto un vídeo para trabajar saberes básicos relacionados con el sentido de la medida y el sentido espacial.

En esta ocasión vamos a crear un mapa mental. Echemos un vistazo a su definición y alguna de sus características antes de continuar.

Un mapa mental es un diagrama usado para representar palabras, ideas, tareas, lecturas, dibujos, u otros conceptos ligados y dispuestos radicalmente a través de una palabra clave o de una idea central. Los mapas mentales son un método muy eficaz para extraer y memorizar información. Son una forma lógica y creativa de tomar notas, organizar, asociar y expresar ideas, que consiste en cartografiar sus reflexiones sobre un tema. Es representado por medio de dibujos imágenes, o puede no incluir estas y llevar colores para mejor representación del tema.

Un mapa mental es una imagen de distintos elementos, utilizados como puntos clave, que dan información específica de un tema en particular o de la ramificación de varios temas en relación con un punto central. Es también una manifestación gráfica del pensamiento radial donde de un núcleo central se irradian ramas en todas las direcciones cuando asociamos ideas. Es captar en un solo plano toda la información. Los mapas mentales son considerados como apuntes visuales para transmitir mejor el pensamiento, sintetizar conocimientos y lograr un aprendizaje significativo.

Dentro de los mapas mentales se pueden utilizar palabras claves, signos, símbolos, dibujos, códigos y abreviaturas. Con los mapas mentales se aprende a organizar y asociar las ideas. Para entender mejor qué es un mapa mental, imaginemos el plano de una ciudad. El centro de la urbe representa la idea principal; las principales avenidas que llevan al centro representan los pensamientos clave del proceso mental; las calles menores representan los pensamientos secundarios, etc.; las imágenes o formas especiales pueden representar monumentos o ideas especialmente importantes.

Un mapa mental se obtiene y se desarrolla alrededor de una palabra, frase o texto, situado en el centro, para luego derivar ideas, palabras y conceptos, mediante líneas que se trazan hacia alrededor del título; el sentido de estas líneas puede ser horario o antihorario; es un recurso muy efectivo para facilitar el estudio académico. El gran difusor de la idea del mapa mental fue Tony Buzan en 1974, con su libro Use Your Head, donde promueve la nemotecnia y el uso de mapas mentales como herramientas del aprendizaje.

Fuente: Wikipedia

Diferentes versiones en PDF del mapa mental

Inteligencia Artificial de ChatGPT para docentes. Mapa_mental__Clasificación_de_Triángulos_4

Inteligencia Artificial de ChatGPT para docentes. Mapa_mental__Clasificación_de_Triángulos_3

Inteligencia Artificial de ChatGPT para docentes. Mapa_mental__Clasificación_de_Triángulos_2

Inteligencia Artificial de ChatGPT para docentes. Mapa_mental__Clasificación_de_Triángulos_1 

Si consideras interesante este ejemplo puedes suscribirte al blog para estar informado por correo electrónico de las nuevas publicaciones o a mi canal de Youtube donde iré publicando todo aquello que me sea posible compartir para sacarle partido a la IA en el aula.

Seguiré informando de los avances 🙂

Ya me contarás qué te han parecido estas propuestas de aprendizaje y enseñanza apoyadas en la Inteligencia Artificial Generativa de ChatGPT.

Seguimos…

Más contenido matemático en redes sociales

Comparte MatemáTICas: 1,1,2,3,5,8,13,...

Inteligencia Artificial de ChatGPT para docentes. Generación de PDF con animación interactiva. Pendiente de una recta

Comparte MatemáTICas: 1,1,2,3,5,8,13,...

Continuando la serie de vídeos relativos al uso didáctico de la IA, en esta nueva entrada comparto un vídeo para trabajar saberes básicos relacionados con el sentido de la medida y el sentido espacial. Entre otros, los siguientes:

B. Sentido de la medida.

1. Medición.

− La pendiente y su relación con un ángulo en situaciones sencillas: deducción y aplicación.

C. Sentido espacial.

1. Figuras geométricas de dos y tres dimensiones.

− Propiedades geométricas de objetos matemáticos y de la vida cotidiana: investigación con programas de geometría dinámica.

2. Localización y sistemas de representación.

− Expresiones algebraicas de una recta: selección de la más adecuada en función de la situación a resolver.

4. Visualización, razonamiento y modelización geométrica.

− Modelos geométricos: representación y explicación de relaciones numéricas y algebraicas en situaciones diversas.

− Modelización de elementos geométricos con herramientas tecnológicas como programas de geometría dinámica, realidad aumentada….

− Elaboración y comprobación de conjeturas sobre propiedades geométricas mediante programas de geometría dinámica u otras herramientas.

Visualización, mediante animación interactiva de la pendiente de una recta y su relación con la tangente del ángulo que forma con el eje de abscisas. 

PDF para descarga y visualización con Acrobat Reader. Animación interactiva en PDF. Pendiente de una recta

Este ejemplo animación interactiva en PDF como ayuda para la comprensión de un concepto matemático, en este caso la pendiente de la recta, forma parte de un producto más complejo.

Como he indicado en respuesta a un comentario al vídeo en Youtube, además de la interacción con ChatGPT, requiere conocimiento de LaTeX, algo avanzado al hacer uso de librerías específicas, y compilación para la generación del PDF final con la animación. Sería un poco largo de describir. Si saco algo de tiempo documentaré el proceso completo.

Si consideras interesante este ejemplo puedes suscribirte al blog para estar informado por correo electrónico de las nuevas publicaciones o a mi canal de Youtube donde iré publicando todo aquello que me sea posible compartir para sacarle partido a la IA en el aula.

Seguiré informando de los avances 🙂

Ya me contarás qué te han parecido estas propuestas de aprendizaje y enseñanza apoyadas en la Inteligencia Artificial Generativa de ChatGPT.

Seguimos…

Más contenido matemático en redes sociales

Comparte MatemáTICas: 1,1,2,3,5,8,13,...

Inteligencia Artificial de ChatGPT para docentes. Propuestas de ejercicios de identidades notables y aprendizaje autorregulado simplificación expresiones algebraicas

Comparte MatemáTICas: 1,1,2,3,5,8,13,...

Continuando la serie de vídeos relativos al uso didáctico de la IA, en esta nueva entrada comparto 2 vídeos para trabajar saberes básicos relacionados con el sentido algebraico. Ambos guardan una muy estrecha relación con las expresiones algebraicas, concretamente con las identidades notables.

Ejercicio clásico de matemáticas relacionado con el desarrollo de expresiones algebraicas, conteniendo identidades notables. Aprendizaje autorregulado con ayuda de la Inteligencia Artificial.

Inteligencia Artificial de ChatGPT para docentes. Propuesta de ejercicios de identidades notables

Seguiremos informando de nuestros avances 🙂

Ya me contarás qué te han parecido estas propuestas de aprendizaje y enseñanza apoyadas en la Inteligencia Artificial Generativa de ChatGPT.

Seguimos…

Más contenido matemático en redes sociales

Comparte MatemáTICas: 1,1,2,3,5,8,13,...

Una nueva era en la creación de contenidos digitales educativos de la mano de la Inteligencia Artificial de ChatGPT y eXeLearning

Comparte MatemáTICas: 1,1,2,3,5,8,13,...

Los lectores habituales de este blog son conocedores de mi pasión por la generación de contenidos educativos digitales. En este blog hay algunos de centenares de ellos. 

He tenido la suerte, además, de participar en algunos de los grandes proyectos institucionales de Recursos Educativos Abiertos de nuestro país. Concretamente, en los últimos años, como:

  • Elaborador del Proyecto EDIA. ABP de Matemáticas

  • Elaborador del Proyecto Situaciones de Aprendizaje MEFP INTEF. Creamos nuestro Círculo Matemático Computacional

 

 

 

 

 

 

 

 

https://www.juntadeandalucia.es/educacion/portals/web/transformacion-digital-educativa/rea/modelo-pedagogico-guia-tecnica

https://www.juntadeandalucia.es/educacion/portals/web/transformacion-digital-educativa/rea

Además de ello, en un campo, no ya emergente, sino de plena actualidad, como es el de la Inteligencia Artificial, he podido vivir de primera mano experiencias formativas de gran nivel, entre ellas mi participación en el

  • Proyecto Fostering Artificial Intelligence at Schools (FAIaS)

Una nueva era en la creación de contenidos digitales educativos de la mano de ChatGPT y eXeLearning

Pues bien, aprovechando el conocimiento en dichos ámbitos, se me ha ocurrido combinar ambos:

  • Recursos Educativos Abiertos, creación de contenido digital con la herramienta eXeLearning, 

+

  • Inteligencia Artificial Generativa de OpenAI, ChatGPT, y más concretamente uno de mis asistentes GPT.

El resultado de esta fusión se puede comprobar en el siguiente vídeo, en el que muestro el proceso de creación de contenidos en eXeLearning, previa sencilla supervisión del contenido devuelto por mi asistente GPT. Creo que serán únicamente las primeras fusiones entre ambas tecnologías, ya que creo que mis asistentes y yo nos llevaremos bien y formaremos un gran equipo.

Seguiremos informando de nuestros avances 🙂

 

Una nueva era en la creación de contenidos digitales educativos de la mano de ChatGPT y eXeLearning

Pulsa en el siguiente enlace para que puedas interactuar con mi asistente (a fecha 5/12/2023 se requiere disponer de cuenta ChatGPT Plus de pago).

Ya me contarás qué te ha parecido esta manera de generar contenidos digitales educativos interactivos en eXeLearning.

Seguimos…

Más contenido matemático en redes sociales

Comparte MatemáTICas: 1,1,2,3,5,8,13,...

Creamos nuestro Círculo Matemático Computacional (CMC) para trabajar el Pensamiento Computacional y la Resolución de Problemas. Proyecto Situaciones de Aprendizaje del MEFP

Comparte MatemáTICas: 1,1,2,3,5,8,13,...

Este curso 22/23 se ha implantado el nuevo currículo derivado de la implantación de la LOMLOE en los cursos impares (1º, 3º y 5º de Primaria, 1º y 3º de Secundaria y 1º de Bachillerato). A partir de septiembre se implantará en los pares, finalizando así dicha implantación. 

Uno de los nuevos paradigmas propuestos en el nuevo marco curricular son las Situaciones de Aprendizaje, que son situaciones y actividades que implican el despliegue por parte del alumnado de actuaciones asociadas a competencias clave y competencias específicas, y que contribuyen a la adquisición y desarrollo de las mismas.

Acompañando al desarrollo normativo se han realizado diferentes acciones. Entre ellas se ha establecido un itinerario formativo para el profesorado y se ha puesto en marcha el proyecto Situaciones de Aprendizaje, un proyecto que publicará en torno a 200 Situaciones de Aprendizaje de todas las etapas (desde Infantil a Bachillerato) y de todas las materias. 

He tenido la suerte de participar en este bonito proyecto de Recursos Educativos Abiertos (REA), concretamente en el grupo de trabajo de Matemáticas,  con la elaboración de una de las Situaciones de Aprendizaje la cual espero sea de utilidad, si no ya para el presente curso, que está tocando a su fin, para el curso que viene. 

Creamos nuestro Círculo Matemático Computacional (CMC)

Situación de Aprendizaje: Creamos nuestro Círculo Matemático Computacional (CMC)

 

 

Situaciones de Aprendizaje de Matemáticas

Con la excelente coordinación por parte de José Luis Muñoz Casado, hemos trabajado el siguiente equipo de Matemáticas:

  • Julio Rodríguez Taboada
  • Antonio Moreno
  • Ester Solves
  • María Ángeles Portilla
  • José Rafael Viana Sánchez
  • Luis Miguel Iglesias
  • Claudia Lázaro
  • José María Vázquez
  • Laureano Serrano Muñoz
  • Lluis Bonet
  • Pilar Sabariego
  • Berta Sánchez García
  • Carmen Lahiguera Serrano
  • Pablo Peñalver Alonso
  • Francisco Zapatero Sánchez

Todas las Situaciones de Aprendizaje de Matemáticas pueden ser localizadas accediendo a a la web del proyecto y filtrando (marcando la casilla Matemáticas). 

Aunque no soy objetivo por ser parte del proyecto, os recomiendo encarecidamente visitar y conocer las Situaciones de Aprendizaje de Matemáticas, y del resto de materias elaboradas, y os animo a adaptarlas y llevarlas a vuestras aulas. 

Acceder a la web del Proyecto y activa el filtro «Matemáticas» https://intef.es/recursos-educativos/situaciones-aprendizaje/

 

Proyecto Situaciones de Aprendizaje MEFP

Acceder a la web del Proyecto: https://intef.es/recursos-educativos/situaciones-aprendizaje/

 

¿Qué se ofrece?

Una colección de situaciones de aprendizaje y otros materiales didácticos de naturaleza competencial creados por docentes en activo, para Educación Infantil, Educación Primaria, Educación Secundaria Obligatoria y Bachillerato. Todos ellos se publican con una licencia abierta (Creative Commons Reconocimiento-CompartirIgual 4.0) e incluyen el archivo fuente para su descarga y posible edición posterior.

Información curricular

Estos materiales se han diseñado conforme a los objetivos, competencias, criterios de evaluación y saberes básicos fijados en el Real Decreto 95/2022, de 1 de febrero, por el que se establece la ordenación y las enseñanzas mínimas de la Educación Infantil, el Real Decreto 157/2022, de 1 de marzo, por el que se establecen la ordenación y las enseñanzas mínimas de la Educación Primaria, el Real Decreto 217/2022, de 29 de marzo, por el que se establece la ordenación y las enseñanzas mínimas de la Educación Secundaria Obligatoria y el Real Decreto 243/2022, de 5 de abril, por el que se establecen la ordenación y las enseñanzas mínimas del Bachillerato.

Información técnica (eXeLearning)

Todos los materiales se han elaborado con la herramienta eXeLearning, un editor de recursos educativos interactivos, gratuito y de código abierto, lo que hace posible que cualquier usuario los pueda descargar y utilizar -con o sin conexión-, así como editar para adaptarlos a sus necesidades. Ofrece, asimismo, la ventaja de que permite exportar los contenidos a diferentes formatos estándar para su utilización en entornos web (html) o en plataformas de gestión de contenido educativo (SCORM) como Moodle y otros LMS.

 

Currículo básico Matemáticas Secundaria LOMLOE

Comparte MatemáTICas: 1,1,2,3,5,8,13,...

Instrumento para la evaluación competencial. Diana de evaluación y metacognición con Geogebra

Comparte MatemáTICas: 1,1,2,3,5,8,13,...

A estas alturas, como docentes de matemáticas, es de sobra conocido el potencial didáctico de la herramienta Geogebra. El límite a lo que podamos hacer con ella depende, no de la herramienta en sí, sino más bien de nuestra creatividad y de nuestra capacidad técnica.

En esta entrada os presento un uso de Geogebra un tanto diferente al habitual. En este caso la he usado para elaborar un instrumento de evaluación, concretamente una diana de aprendizaje o diana de evaluación y metacognición. La misma la elaboré en el marco del Proyecto REA/DUA Andalucía, proyecto bellísimo y superpotente de creación de Recursos Educativos Abiertos (REA) según los principios del Diseño Universal de Aprendizaje (DUA), en el que tengo la fortuna de participar desde el rol de Coordinador Técnico, junto a más de 200 compañeros y compañeras docentes de Andalucía. Si aún no lo conoces te animo a visitarlo, explorar y compartir las más de 250 situaciones de aprendizaje disponibles, adaptadas al nuevo marco curricular derivado de la implantación de la LOMLOE, con licencia Creative Commons.

Vídeo: Diana de evaluación y metacognición con Geogebra

Diana de aprendizaje de evaluación y metacognición

A continuación os dejo un fragmento de un excelente post publicado por Ingrid Mosquera en el sitio web del Máster Universitario en Formación del Profesorado de Secundaria de la UNIR (https://www.unir.net/educacion/revista/dianas-de-aprendizaje-que-son-y-para-que-sirven/). Recomiendo su lectura completa, además de otros posts de la serie relacionados con las dianas digitales.

¿Qué es una diana de evaluación?

Se puede decir que es un sistema visual, rápido y sencillo de llevar a cabo un aprendizaje participativo. Una participación que puede darse en todos los estadios de su empleo, desde la propia elaboración de la misma hasta el debate sobre los resultados obtenidos. Suele definirse como una posible representación gráfica de una evaluación que nos conducirá a la reflexión a partir de una única imagen que aglutina diferentes informaciones. Es el visual thinking de las evaluaciones, por usar terminología actual.

El dibujo o la plantilla de una diana consiste en círculos concéntricos que, de dentro hacia fuera, indican el nivel de cumplimiento o de adaptación a cada uno de los ítems incluidos. Alrededor del círculo más amplio tendremos los nombres de los ítems y para cubrir la diana iremos indicando el número que corresponde en cada uno de ellos. Así, al final, uniendo los puntos, obtendremos lo que se viene denominando como mapa de evaluación.

Aquí podemos ver un ejemplo sencillo en el que únicamente una persona participa, reflexionando sobre sus propias capacidades lingüísticas:

autoevaluacion

Dianas de evaluación y metacognición

La diana puede servir para autoevaluarse, para coevaluar a otros compañeros, para valorar el trabajo en grupo o para que los estudiantes puedan calificarnos como docentes. A menudo suelen emplearse para evaluar las actitudes y la participación del alumnado. Dependiendo del objetivo último para la que se elabore, muchos de los puntos presentados en la enumeración anterior vendrán determinados de antemano.

 

Como elemento de autoevaluación, las dianas contribuirán al desarrollo de la metacognición de nuestros alumnos. Igualmente, una autoevaluación, como la presentada en la imagen previa, puede ser comparada con la coevaluación y autoevaluación de otros compañeros, o con la propia evaluación del docente. De esta manera, de un solo vistazo, se podrá abrir un interesante debate en el que los alumnos podrán reflexionar acerca de las percepciones que tienen sobre su propio aprendizaje.

 Diana de evaluación y metacognición en Geogebra.org


Acceso a la diana de evaluación en Geogebra.org

 

Espero que sea de utilidad para ti y para tus estudiantes y le saquéis mucho partido en el aula.

Más contenido matemático en redes sociales

Comparte MatemáTICas: 1,1,2,3,5,8,13,...

Estructura de la prueba final de la ESO 2016/2017 – Competencia Matemática (Orden ECD/393/2017)

Comparte MatemáTICas: 1,1,2,3,5,8,13,...
En lo relativo a la Competencia Matemática (Matemáticas orientadas a las enseñanzas académicas y Matemáticas orientadas a las enseñanzas aplicadas), la estructura, análoga a la del resto de competencias evaluadas, queda definida mediante una matriz de especificaciones compuesta por:
  • Bloques de contenido.
  • Porcentajes asignado a cada uno de los bloques.
  • Estándares de aprendizaje relacionados con los bloques de contenidos y con los procesos cognitivos correspondientes, clasificados estos últimos en: conocer, aplicar y razonar.

de la siguiente manera:

 

Matriz de especificaciones de la Competencia Matemática

Orden ECD/393/2017, de 4 de mayo – BOE 6 de mayo de 2017.

Comparte MatemáTICas: 1,1,2,3,5,8,13,...

Tratamiento pedagógico del error en el aula… de matemáticas. Una mirada a los apuntes de clase #Evaluación #DebatEducativo

Comparte MatemáTICas: 1,1,2,3,5,8,13,...

Los lectores habituales de este blog saben de la importancia que otorgo en la practica educativa al tratamiento pedagógico del error.

Resulta curioso pero, cuando un determinado hecho se convierte en rutinario, no tomas conciencia de ello. Simplemente lo aplicas porque crees que es bueno para tus aprendices, sin más.

Pero, no hay mejor manera de contrastar que uno sigue «predicando» en una determinada dirección, ya son unos cuantos años, que observar las notas que tus estudiantes toman en clase.

Y es que, sigo pensando que: «Prevenir (hasta infinito, si hiciese falta), es mejor que castigar». Así, llegado el momento de la evaluación, en cualquier contexto, actividad, ejercicio, tarea,… cuando pasas el bolígrafo o realizas un comentario sobre cualquier producto digital indicando: «No es correcto, deberías…», ellos mismos asienten y reconocen que han caído. Ahí poco puedes hacer. Como docente, creyente y practicante de este modo de proceder en el aula, os aseguro que es mucho menos traumático que un «Mal», a secas. Esto último no me gusta :-(.

Y es que «cada maestrillo, tiene su librillo» 😉

Esta es mi forma de ver este asunto. Y tú, ¿que opinas?

Comparte MatemáTICas: 1,1,2,3,5,8,13,...

Destreza de orden superior: Evaluación. Bloom en el aula de matemáticas

Comparte MatemáTICas: 1,1,2,3,5,8,13,...

Antes de mostrar el caso, del cual sólo mostraré una imagen, recordemos aspectos clave sobre La taxonomía de Bloom los cuales resume de manera clara Wikipedia.

La taxonomía de Bloom es jerárquica, esto significa que asume que el aprendizaje a niveles superiores depende de la adquisición del conocimiento y habilidades de ciertos niveles inferiores.

Hay tres dimensiones en la taxonomía de objetivos de la educación propuesta por Benjamin Bloom:

  • Dimensión afectiva
  • Dimensión psicomotora
  • Dimensión cognitiva

Dimensión afectiva

El modo como la gente reacciona emocionalmente, su habilidad para sentir el dolor o la alegría de otro ser viviente. Los objetivos afectivos apuntan típicamente a la conciencia y crecimiento en actitud, emoción y sentimientos.

Hay cinco niveles en el dominio afectivo. Mencionando los procesos de orden inferiores a los superiores, son:

  • Recepción – Sin este nivel no puede haber aprendizaje.
  • Respuesta – El estudiante participa activamente en el proceso de aprendizaje, no sólo atiende a estímulos, el estudiante también reacciona de algún modo.
  • Valoración – El estudiante asigna un valor a un objeto, fenómeno o e información.
  • Organización – Los estudiantes pueden agrupar diferentes valores, informaciones e ideas y acomodarlas dentro de su propio esquema; comparando, relacionando y elaborando lo que han aprendido.
  • Caracterización – El estudiante cuenta con un valor particular o creencia que ahora ejerce influencia en su comportamiento de modo que se torna una característica.

Es importante tener en cuenta que si el estudiante no está motivado, el interés por aprender es muy bajo.

Dimensión psicomotora

La pericia para manipular físicamente una herramienta o instrumento con la mano o un martillo. Los objetivos del dominio psicomotor generalmente apuntan en el cambio desarrollado en la conducta o habilidades.

Comprende los siguientes niveles: – Percepción – Disposición – Mecanismo – Respuesta compleja – Adaptación – Creación

Dimensión cognitiva

Es la habilidad para pensar sobre los objetos de estudio. Los objetivos del dominio cognitivo giran en torno del conocimiento y la comprensión de cualquier tema dado.

Hay seis niveles en la taxonomía propuesta por Benjamín Bloom y colaboradores. En orden ascendente son los siguientes:

Conocimiento
Muestra el recuerdo de conocimiento previamente aprendidos por medio de hechos evocables, términos, conceptos básicos y respuestas
  • Conocimiento de terminología o hechos específicos
  • Conocimiento de los modos y medios para tratar con convenciones, tendencias y secuencias específicas, clasificaciones y categorías, criterios, metodología.
  • Conocimiento de los universales y abstracciones en un campo: principios y generalizaciones, teorías y estructuras
Comprensión
Entendimiento demostrativo de hechos e ideas por medio de la organización, la comparación, la traducción, la interpretación, las descripciones.
  • Traducción
  • Interpretación
  • Extrapolación
Aplicación
Uso de conocimiento nuevo. Resolver problemas en nuevas situaciones aplicando el conocimiento adquirido, hechos, técnicas y reglas en un modo diferente
Análisis
Examen y discriminación de la información identificando motivos o causas. Hacer inferencias y encontrar evidencia para fundamentar generalizaciones
  • Análisis de los elementos
  • Análisis de las relaciones
  • Análisis de los principios de organización
Síntesis
Compilación de información de diferentes modos combinando elementos en un patrón nuevo o proponiendo soluciones alternativas
  • Elaboración de comunicación unívoca
  • Elaboración de un plan o conjunto de operaciones propuestas
  • Derivación de un conjunto de relaciones abstractas
Evaluación
Presentación y defensa de opiniones juzgando la información, la validez de ideas o la calidad de una obra en relación con un conjunto de criterios
  • Juicios en términos de evidencia interna
  • Juicios en términos de criterios externos

 

A continuación nos centramos en el nivel cognitivo, concretamente en la Evaluación. Orden superior por excelencia en la Taxonomía de Bloom y compartiendo escalón superior en el modelo SAMR con Crear.

 

Experiencia de aula

Todos los docentes, a la hora de planificar las actividades, sea siguiendo un determinado material didáctico elaborado o usando el nuestro propio, debemos tener presentes la citada Taxonomía.

De una manera u otra comenzamos explicando determinados conceptos que el alumnado va trabajando hasta alcanzar la comprensión de los mismos. Pasamos posteriormente a su aplicación en determinados ejercicios, usándolos para resolver problemas,… y así deberíamos seguir para conseguir un aprendizaje pleno, significativo y funcional por parte de nuestros aprendices.

Lo que ocurre es que en demasiadas ocasiones, más de las que debiera ocurrir, apenas pasamos del nivel de Aplicación. Esto es, nos quedamos a mitad de camino.

Tengo que decir, que lo que más satisfacción me ofrece como docente es elaborar propuestas, proponerles retos, miniTAREAS o tareas de envergadura que involucren el trabajo con destrezas de orden superior.

Disfruto viéndolos Aplicar, Analizar, Sintetizar, Coevaluando el trabajo de otros compañero/as, proponer otras vías de solución y creando sus propias tareas. Hoy mismo he recopilado y disfrutado en clase con una tarea de Creación que publicaré, si saco unos minutos libres, en los próximos días.

El caso propuesto es una actividad cuyo enunciado es el siguiente:

«Determina los errores que se han cometido en la resolución de esta operación y corrígelos:

(-3) · (-5) : [ (-6) + (+3) ] = (-15) · (-9) = +135

Se trata de que adopten el papel de profes, cuando debemos evaluar una tarea corregir una prueba escrita, y que encuentren los errores, para luego evaluarlo con la puntuación adecuada en función de la tipología de los errores cometidos.

Os animo a trabajar actividades de este tipo en el aula. Dan mucho juego y sacan a las claras muchos detalles para después incidir en ellos.

Para finalizar os dejo con una imagen de dicha actividad, corregida y perfectamente explicada en la PDI por Hugo, alumno de 1º de ESO A, cuya corrección entendería cualquier persona por anumérica que sea. ¡Es una gozada verlo trabajar a diario y actividades como estas le vienen como anillo al dedo!.

Trabajando actividades de este tipo, como se suele decir de forma coloquial, <<matamos dos pájaros de un tiro>>:

  • Atendemos a la diversidad, en este caso por arriba que también lo merecen.
  • Sus clarísimas explicaciones y el debate posterior, ayudan a consolidar aprendizajes al resto de compañero/as.

Proponer, dejar hacer, mirarlos a los ojos, escuchar atentamente cada una de sus reflexiones. Es su turno. Metodologías activas centradas en el estudiante como motor del cambio educativa, potencias del nuevo paradigma de la educación del siglo XXI: aprender activo, crítico y reflexivo.

Seguimos… ¡disfrutando!

Seguimos… ¡aprendiendo!

Seguimos… ¡compartiendo!

20160115_101159

Comparte MatemáTICas: 1,1,2,3,5,8,13,...
WP2Social Auto Publish Powered By : XYZScripts.com