septiembre 2022

Participación en el FAIaS | Happy Hour #4. Situaciones de aprendizaje para introducir para introducir el Machine Learning – Inteligencia Artificial en el aula

Comparte MatemáTICas: 1,1,2,3,5,8,13,...

El pasado 14 de junio tuvo lugar el HAPPY HOUR #4 del Proyecto FAIaS (Fomentando la Inteligencia Artificial en las Escuelas).

Moderado de manera magistral por Gregorio Robles (profesor de la Universidad Rey Juan Carlos y coordinador del proyecto), acompañado por René Fabián Zuñiga (compañero docente del proyecto y miembro del equipo directivo de una institución de Colombia) en calidad de experto invitado.
Como es habitual en este tipo de eventos organizados por FAIaS, se desarrolló en un formato muy dinámico y ameno reflexionando en torno a la introducción de la IA en las escuelas, analizando prácticas y modelos para su integración en las diferentes asignaturas y también se presentó las últimas funcionalidades que se incorporarán a la herramienta LearningML,  con el apoyo en la parte técnica de Antonio José Romero y Meritxell Díaz.

Gracias a la invitación de la organización del proyecto, participé en este evento presentando algunas situaciones de aprendizaje para intoducir la Inteligencia Artificial en el aula, mediante el trabajo con modelos numéricos con la herramienta LearningML, junto a Jesús Moreno (codirector de @programamos), reconocido especialista en el ámbito del Pensamiento Computacional y la IA, y a Juan David Rodríguez @juandalibaba padre de la herramienta LearningML quien nos adelantó las últimas novedades de esta potente herramienta. 

https://twitter.com/fosteringai/status/1575007478714023936?s=20&t=OmR_v1rglR3i0FCNFVFoyg

Si no tuviste la ocasión de verlo y tienes interés puedes volver a disfrutar el directo a través del siguiente enlace.

Vídeo con la grabación FAIaS | Happy Hour #4

SITIO WEB DEL PROYECTO
Toda la información sobre el proyecto, eventos y resultados están accesibles en el sitio web http://fosteringai.net
Recomiento seguir las diferentes publicaciones y evolución del proyecto.

Más contenido matemático en redes sociales

Comparte MatemáTICas: 1,1,2,3,5,8,13,...

Programa HelloMath! de EduCaixa. Atrévete con la creatividad matemática. Pensamiento computacional en el aula de Matemáticas

Comparte MatemáTICas: 1,1,2,3,5,8,13,...
En esta entrada comparto información sobre un nuevo programa para trabajar el pensamiento computacional en el aula de Matemáticas. Se trata de HelloMath! Tendré la suerte de ser uno de los 18 miembros del equipo de formadores, distribuidos en 4 equipos, correspondientes a otras tantas sedes: Barcelona, Madrid, Sevilla y Zaragoza.

Con el programa HelloMath! trabajarás el pensamiento computacional en clase de matemáticas y podrás compartir con tu alumnado el gusto por resolver problemas. El 22 de septiembre, a las 18.30 h, te invitamos al acto de presentación del programa. ¡Apúntate a la cuarta edición!

El equipo completo de formadores es el siguiente:

  • Nodo Barcelona: Anton Aubanell, Raül Fernández, Belén Garrido, Guido Ramellini, Arnau Sánchez y Eulàlia Tramuns
  • Nodo Zaragoza: Mónica Arnal, Pablo Beltrán-Pellicer, Núria Begué y Sergio Martínez-Juste
  • Nodo Madrid: Fernando Blasco, Jorge Calvo, Jose Ángel Murcia y Belén Palop
  • Nodo Sevillla: Francisco Javier Álvarez, Juan Manuel Dodero, Luis Miguel Iglesias y Álvaro Molina

¿Cuál es la propuesta?

Con el desarrollo tecnológico de la sociedad, las habilidades de pensamiento lógico, abstracto, creativo y computacional son cada vez más transversales y necesarias. Sin embargo, las pruebas diagnósticas indican una clara necesidad de mejora en los resultados de matemáticas. Es por eso que necesitamos explorar caminos de mejora en la manera de entender, enseñar y aprender las matemáticas mediante una integración más amplia y profunda con la informática.

El programa HelloMath! propone realizar esta mejora con la ayuda de la investigación de los docentes, que trabajan identificando los elementos clave del pensamiento computacional en su práctica diaria de matemáticas. Propone un método repleto de actividades ricas y estimulantes para desarrollar las competencias matemáticas e informáticas del alumnado.

El resultado es un conjunto de actividades ricas y estimulantes que fortalece las competencias matemáticas e informáticas del alumnado y su confianza, creatividad y capacidad para desarrollarse en un mundo construido sobre las tecnologías de la información. Está reconocido por el Instituto Nacional de Tecnologías Educativas y de Formación del Profesorado (INTEF) del Ministerio de Educación y formación profesional.

¿En qué consiste el programa?

Se trata de un ciclo formativo anual para docentes de matemáticas de 5º y 6º de Primaria y 1º y 2º de ESO. Sigue una modalidad híbrida: con sesiones presenciales en nuestros centros CaixaForum y en el Museo de la Ciencia CosmoCaixa; y acompañamiento online durante la fase de implementación. Empezaremos el curso con un acto de presentación abierto a todos los interesados, que se celebrará el día 22, a las 18.30 h, en streaming.

El grupo de formadores de HelloMath! Atrévete con la creatividad matemática es un grupo de expertos en matemáticas, didáctica de las matemáticas y didáctica de la informática.

Ponentes y sedes de la formación

  • Sede de Barcelona. Museo de la Ciencia CosmoCaixa 

Si tu centro es de Barcelona y alrededores, puedes consultar aquí el equipo de formadores que te acompañará y el calendario que seguirás en la formación de HelloMath! 

  • Sede de Zaragoza. CaixaForum Zaragoza

Si tu centro es de Zaragoza, puedes consultar aquí el equipo de formadores que te acompañará y el calendario que seguirás en la formación de HelloMath! 

  • Sede de Madrid. CaixaForum Madrid

Si tu centro es de Madrid, puedes consultar aquí el equipo de formadores que te acompañará y el calendario que seguirás en la formación de HelloMath! 

  • Sede de Sevilla. CaixaForum Sevillla
Si tu centro es de Sevilla, puedes consultar aquí el equipo de formadores que te acompañará y el calendario que seguirás en la formación de HelloMath!

Si tienes cualquier duda o consulta, puedes escribirnos a hellomath@educaixa.org.

Materiales y descargas y toda la información sobre HelloMath0

Aquí encontrarás materiales de interés sobre el programa.

Inscripción

Si quieres asistir a las sesiones, rellena el siguiente formulario:

Más contenido matemático en redes sociales

Comparte MatemáTICas: 1,1,2,3,5,8,13,...

Propuesta didáctica: Inteligencia artificial con LearningML. Modelo numérico. Botánicos en la escuela; clasificación de iris

Comparte MatemáTICas: 1,1,2,3,5,8,13,...
En esta entrada comparto una nueva propuesta didáctica para introducir la Inteligencia Artificial (IA) en el aula. En ella planteo un escenario de aprendizaje automático basado en un modelo numérico implementado con la herramienta LearningML. Se trata de una propuesta con enfoque STEM, que desarrolla Competencias Específicas de las materias Matemáticas y Biología y en el trabajo por ámbitos, entre ellos el ámbito científico y tecnológico de los programas de diversificación curricular.

Propuesta didáctica: Especies de iris.

Lo que he querido movilizar con esta propuesta es la capacidad de la herramienta para aprender únicamente a partir de los datos, sin ser programada de manera explícita, a clasificar iris, a partir de algunas medidas de sus sépalos y pétalos, con la especie que mejor se identifique.
Para ello, he seguido la siguiente secuencia:
  • En LearningML creo un modelo numérico basado en datos de 4 columnas.
  • A continuación creo 3 categorías, correspondientes a los tres tipos de especies.
  • Alimento el modelo con datos, en este caso concreto he usado cincuenta para cada una de las categorías.
  • Entreno el modelo para que aprenda a reconocer los números y busque patrones.
  • Una vez que finaliza el entrenamiento pasamos a ponerlo a prueba.

Captura de pantalla. Apariencia del modelo numérico implementado en LearningML

  • Además de ello, una vez que he considerado que el funcionamiento es óptimo, he elaborado un programa en Scratch asociado al modelo que nos permita trabajar en un entorno más visual.

Captura de pantalla. Aspecto del programa implementado en Scratch asociado al modelo numérico implementado en LearningML

Vídeo con explicación paso a paso y simulación de la propuesta didáctica: Especies de iris.

Si te resultó interesante la propuesta, me alegraría leer tu comentario, opinión, sugerencia, así como si quieres compartir  la entrada para que la conozcan otros colegas a los que creas les puede ser útil.

El proyecto «Fostering Artificial Intelligence at School« (FAIaS)

Esta propuesta didáctica se enmarca en el ámbito del proyecto FAIaS. El aprendizaje automático es una de las ramas de la IA que permite que una máquina aprenda mecánicamente a partir del procesamiento de datos.
El vínculo entre la IA y la educación comprende tres ámbitos:
  • aprender con la IA, utilizando las herramientas de IA en las aulas
  • aprender sobre la IA, sus tecnologías y sus técnicas), y,
  • prepararse para la IA, permitiendo que todos los ciudadanos comprendan la repercusión potencial de la IA en nuestras vidas
Estos vínculos establecidos por la UNESCO se ponen de manifiesto y son concretados a través de la puesta en marcha de proyectos específicos.Se cree que la inteligencia artificial (IA) es un factor clave de la cuarta revolución industrial que transformará la economía y reinventará la naturaleza de nuestro trabajo. Estaremos cada vez más apoyados e interactuaremos con tecnología impulsada por Inteligencia Artificial. Esto exige una educación que nos prepare para este futuro.
Uno de los proyectos pioneros y más relevantes en el panorama educativo español y europeo es «Fostering Artificial Intelligence at School» (FAIaS). FAIaS tiene la intención de perfeccionar las habilidades, tanto cognitivas como blandas, necesarias para comprender, construir o interactuar con la Inteligencia Artificial. Por lo tanto, consideramos la IA, no en el sentido estricto y puramente tecnológico, sino en el sentido amplio, ya que afecta muchas partes diferentes de nuestras vidas. Por lo tanto, optamos decididamente por un enfoque interdisciplinario e inclusivo que se centre no solo en las actividades STEM, sino que involucre todas las materias escolares y cubra una amplia gama de aspectos, incluidos los éticos, filosóficos, económicos, legales e históricos. Creemos que abordar un tema desde diferentes perspectivas profundiza la comprensión y crea cohesión entre los alumnos en un campo intrínsecamente interdisciplinario como la Inteligencia Artificial.

Más contenido matemático en redes sociales

Comparte MatemáTICas: 1,1,2,3,5,8,13,...

Libro Aportaciones al desarrollo del currículo desde la investigación en educación matemática

Comparte MatemáTICas: 1,1,2,3,5,8,13,...

Comparto en esta entrada una completísima obra, elaborada por compañeros investigadores de la SOCIEDAD ESPAÑOLA DE INVESTIGACIÓN EN EDUCACIÓN MATEMÁTICA (www.seiem.es), que será de gran valor desde una doble vertiente: la implementación en el aula y la formación del profesorado sobre el nuevo currículo de matemáticas derivado de la implantación de la LOMLOE.

Aportaciones al desarrollo del currículo desde la investigación en educación matemática

Los editores de la obra son: Lorenzo J. Blanco Nieto, Nuria Climent Rodríguez, María Teresa González Astudillo, Antonio Moreno Verdejo, Gloria Sánchez-Matamoros García, Carlos de Castro Hernández y Clara Jiménez Gestal.

El trabajo se ha realizado con la participación de 70 profesionales, docentes e investigadores en educación matemática, pertenecientes a 23 universidades.

El documento presentado es una aportación, desde la investigación en educación matemática realizada en el seno de la SOCIEDAD ESPAÑOLA DE INVESTIGACIÓN EN EDUCACIÓN MATEMÁTICA (www.selem.es), al desarrollo de la nueva propuesta curricular y sobre la formación del profesorado de matemáticas. Su contenido refleja tanto cuestiones generales sobre la educación matemática como concretas de los diferentes organizadores del currículo (como sobre los objetivos, contenidos, metodología y evaluación, asumiendo la perspectiva adoptada en relación a las competencias generales y especificas, y otros elementos derivados de la interacción entre aspectos cognitivos, afectivos, socio-culturales y valores propios de la sociedad actual). Deseamos que los temas tratados pue- dan ser útiles al profesorado en su actividad profesional, tanto para generar actividades de aula como para poder avanzar en su formación personal como profesores de matemáticas.

Portada libro

Índice de la obra
La SEIEM ante los retos de la educación matemática
en todos los niveles educativos …………………………………………………………………… 7
Parte 1. El currículum de matemáticas………………………………………………………. 14
Introducción……………………………………………………………………………………………………….. 15
Reflexiones curriculares desde la historia de la educación matemática
en la segunda mitad del siglo XX ……………………………………………………………………. 17
Consideraciones acerca de la enseñanza y aprendizaje
de las Matemáticas……………………………………………………………………………………………. 37
Sentido matemático Escolar…………………………………………………………………………….. 55
La evaluación en Matemáticas………………………………………………………………………… 80
Parte 2. Las matemáticas en los niveles escolares………………………………….. 104
Introducción……………………………………………………………………………………………………….. 105
Matemáticas en la Educación Infantil …………………………………………………………….. 107
Matemáticas en la Educación Primaria…………………………………………………………… 148
Matemáticas en la Educación Secundaria Obligatoria ………………………………… 172
Matemáticas en el Bachillerato ……………………………………………………………………….. 199
Matemáticas en la Universidad……………………………………………………………………….. 224
Matemáticas en la Formación Profesional …………………………………………………….. 260
Las Matemáticas en la educación de personas adultas……………………………….. 285
Pensemos en unas matemáticas para todo el alumnado……………………………. 322
6 índice
Parte 3. Cuestiones transversales en la enseñanza y
aprendizaje de las matemáticas………………………………………………………………….. 348
Introducción……………………………………………………………………………………………………….. 349
Tensiones y prácticas inclusivas en la enseñanza de las matemáticas……… 352
Desarrollar las competencias de resolución de problemas
y modelización para aprender matemáticas…………………………………………………. 373
Entornos tecnológicos para el desarrollo del pensamiento
computacional y de la competencia en resolución de problemas……………. 399
Recursos didácticos para el aula de Matemáticas………………………………………… 425
Matemáticas transversales……………………………………………………………………………….. 453
Parte 4. Formación y desarrollo profesional del profesorado
de matemáticas………………………………………………………………………………………………… 480
Introducción……………………………………………………………………………………………………….. 482
Parte A. Formación Inicial…………………………………………………………………………………. 485
A.1. Interpretar el pensamiento matemático de los estudiantes
para decidir sobre la enseñanza ……………………………………………………………………… 485
A.2. Oportunidades de aprendizaje y tareas matemáticas escolares………… 498
A.3. Criterios de idoneidad didáctica para orientar el rediseño
de la planificación e implementación de secuencias didácticas……………….. 506
Parte B. Acceso a la Formación docente. ……………………………………………………….. 515
Parte C. Desarrollo profesional………………………………………………………………………… 516
C.1. Desarrollo profesional en el contexto de investigaciones
colaborativas………………………………………………………………………………………………………. 517
C.2. Uso combinado de Lesson Study y los Criterios de
Idoneidad Didáctica………………………………………………………………………………………….. 522
Parte D. Cuestiones transversales: Dominio Afectivo…………………………………… 523
Descarga

La obra, publicada por la Editorial de la Universidad de Granada, puede descargarse de manera gratuita desde su página web.

Editorial Universidad de Granada. Acceso a la descarga en formato PDF

Más contenido matemático en redes sociales

Comparte MatemáTICas: 1,1,2,3,5,8,13,...

Resolución de problemas (RESPRO) en el nuevo currículo de Matemáticas LOMLOE. Una mirada a la investigación educativa: buenos resolutores y alumnos con dificultades en resolución de problemas

Comparte MatemáTICas: 1,1,2,3,5,8,13,...

El nuevo currículo de Matemáticas de la LOMLOE, tiene como líneas principales en la definición de las competencias específicas de matemáticas: la resolución de problemas y las destrezas socioafectivas.

En la introducción de la materia se recoge literalmente:

La investigación en didáctica ha demostrado que el rendimiento en matemáticas puede mejorar si se cuestionan los prejuicios y se desarrollan emociones positivas hacia las matemáticas. Por ello, el dominio de destrezas socioafectivas como identificar y manejar emociones, afrontar los desafíos, mantener la motivación y la perseverancia y desarrollar el autoconcepto, entre otras, permitirá al alumnado aumentar su bienestar general, construir resiliencia y prosperar como estudiante de matemáticas.

Por otro lado, resolver problemas no es solo un objetivo del aprendizaje de las matemáticas, sino que también es una de las principales formas de aprender matemáticas. En la resolución de problemas destacan procesos como su interpretación, la traducción al lenguaje matemático, la aplicación de estrategias matemáticas, la evaluación del proceso y la comprobación de la validez de las soluciones. Relacionado con la resolución de problemas se encuentra el pensamiento computacional. Este incluye el análisis de datos, la organización lógica de los mismos, la búsqueda de soluciones en secuencias de pasos ordenados y la obtención de soluciones con instrucciones que puedan ser ejecutadas por una herramienta tecnológica programable, una persona o una combinación de ambas, lo cual amplía la capacidad de resolver problemas y promueve el uso eficiente de recursos digitales.

En este nuevo paradigma curricular se hace necesario poner la mirada en lo que la investigación educativa ha caracterizado como buenos resolutores de problemas, así como aquellos alumnos que presentan dificultades a la hora para resolver problemas matemáticos.

Características de los buenos resolutores de problemas

Al elaborar recomendaciones para la enseñanza de la resolución de problemas en matemáticas, muchos investigadores se han fijado en las características de los excelentes solucionadores de problemas (véase, por ejemplo, Erbas & Okur (2012); Jitendra et al. (2015); Lucangeli, Coi, & Bosco (1997); Scheid (1993); Schoenfeld (1992) (2013); Stillman & Galbraith (1998)).

De estos trabajos se deduce que los buenos resolutores de problemas en matemáticas:

  • Tienen conocimientos bien conectados y estructurados (no aislados).
  • Tienden a centrarse en las características estructurales de los problemas y perciben esas estructuras con rapidez y con precisión.
  • Reconocen patrones al dar sentido a los problemas.
  • Tienen éxito a la hora de controlar y regular sus esfuerzos.
  • Muestran flexibilidad durante la resolución de problemas.
  • Tienen una buena capacidad de estimación (predicción).
  • Tienden a utilizar procesos potentes relacionados con el contenido (en lugar de los generales).
  • Muestran actitudes beneficiosas como la persistencia y la curiosidad.
  • Utilizan una serie de estrategias de forma eficaz y son capaces de cambiar de estrategia según sea necesario.
  • Utilizan la verificación metacognitiva para asegurarse de que responden a la(s) pregunta(s).
  • Son capaces de generar descripciones completas de su trabajo en los problemas.
  • Aprenden de cada experiencia de resolución de problemas.
Características de los alumnos que presentan dificultades a la hora para resolver problemas matemáticos.

Por otro lado, trabajos como los de Fuchs et al. (2010), Gersten et al. (2009) y Shin & Bryant (2013);van Garderen, Scheurermann y Jackson (2012); Andersson (2008); Swanson, Jerman y Zheng (2008); Montague & Applegate (1993); Cook & Riser (2005), también nos permiten conocer algunas de las características comunes que presentan los alumnos que tienen dificultades para resolver problemas matemáticos.

  • Suelen malinterpretar el lenguaje de los problemas.
  • No son capaces de distinguir la información importante de la irrelevante.
  • Tienen dificultades para seleccionar los algoritmos adecuados.
  • No son capaces de generalizar estrategias entre tipos de problemas.
  • Los solucionadores de problemas deficientes tienen problemas para representar la información de los problemas en diagramas u otros modelos, y a menudo se basan en la historia superficial del problema o en estrategias de solución menos sofisticadas como ensayo y error.
  • Estos estudiantes pueden tener déficits en la memoria de trabajo y la atención, lo que afecta a su concentración en los aspectos importantes de un problema y seguimiento de la selección de operaciones y la realización de cálculos de varios pasos.
  • Los alumnos que resuelven mal los problemas suelen tener lagunas en la comprensión de los conceptos matemáticos, un déficit que les impide establecer conexiones y reconocer patrones. Utilizan menos estrategias metacognitivas para planificar, ejecutar y supervisar su trabajo.
  • Los malos resolutores de problemas dedican menos tiempo a comprender el problema y a traducirlo en representaciones útiles. Tienden a «coger los números» y a realizar las operaciones operaciones familiares sin dar sentido al problema y a sus resultados.

El conocimiento obtenido durante los últimos años es de gran valor para los profesores de matemáticas. Disponer de estos catálogos nos permitirán diagnosticar y redirigir la acción didáctica en el aula, para una mejor atención educativa a nuestro alumnado. Espero que sea de utilidad y le saques partido en el aula.

Más contenido matemático en redes sociales

Comparte MatemáTICas: 1,1,2,3,5,8,13,...

Countle. Desarrollo del sentido de las operaciones (sentido numérico) a través del juego

Comparte MatemáTICas: 1,1,2,3,5,8,13,...

Hay múltiples opciones para desarrollar el Sentido numérico del alumnado en el aula de matemáticas.

En esta entrada os traigo una propuesta para trabajar los Saberes Básicos relacionados con el Sentido de las operaciones:

3. Sentido de las operaciones.

− Estrategias de cálculo mental con números naturales, fracciones y decimales.

− Efecto de las operaciones aritméticas con números enteros, fracciones y expresiones decimales.

− Propiedades de las operaciones (suma, resta, multiplicación, división y potenciación): cálculos de manera eficiente con números naturales, enteros, fraccionarios y decimales tanto mentalmente como de forma manual, con calculadora u hoja de cálculo.

Countle. ¿Qué es?

Es un juego donde nos dan el resultado y seis números adicionales.

Combinando los números dados, usando únicamente sumas, restas, multiplicaciones y divisiones, tenemos que obtener el mismo.

No se permiten números negativos ni fracciones.

Captura de pantalla. Ejercicio diario de Countle

Captura de pantalla. Ejercicio resuelto en Countle

Countle. Ideas para el trabajo en el aula

En el sitio web de Countle nos proponen un ejercicio cada día lo que nos posibilita un entrenamiento divertido diario, en un escenario sano y divertido de competición.

Lo ideal es que los alumnos registren sus intentos, razonando y describiendo las estrategias seguidas; sus errores y aciertos. Ya sabemos que en matemáticas los errores y caminos seguidos hasta encontrar la solución son muy válidos e importantes.

Se puede llevar un registro diario, individual o grupal, convirtiendo esta rutina diaria en una excelente oportunidad para desarrollar el sentido de las operaciones a través de este escenario gamificado.

Se puede trabajar a diario durante un periodo de tiempo determinado, semana, mes, trimestre o incluso durante todo el curso.

Countle. Sitio web

 

Sitio web de Countle: https://www.countle.org/

Si te resultó atractivo Countle, te animo a leer el post relativo a Primel y Ooodle, juegos de gran utilidad para desarrollar el sentido numérico.

Espero que te gusten, practiques el razonamiento con los mismos y disfrutes con tus alumnos con estos rompecabezas matemáticos.

Ya me contarás cómo te ha ido…

Más contenido matemático en redes sociales
Comparte MatemáTICas: 1,1,2,3,5,8,13,...

Soy divisible por 9. Conóceme… Situación de aprendizaje para trabajar las competencias específicas, a través de la comprensión conceptual de un criterio de divisibilidad

Comparte MatemáTICas: 1,1,2,3,5,8,13,...

Seguro que habrás leído en alguna ocasión que:

«el currículo de matemáticas estadounidense era de una milla de largo y de una pulgada de profundo».

En los currículos españoles no andábamos muy lejos de esta afirmación. Currículos excesivamente largos, con poca profundización y aprendizaje significativo, sin apenas ahondar en la comprensión conceptual (la estructura de los objetos matemáticos), ni en las conexiones entre los distintos conceptos matemáticos (numérico-algebraicas, algebraico-geométricas,…)

La amplia extensión «del temario» o «del libro» nos lleva a pasar de puntillas, dejando atrás cada tema o unidad didáctica lo antes posible, sin pararnos a pensar ni a reflexionar, repitiendo actividades de aplicación rutinarias día a día (en clase y para casa), sin apenas significado para el estudiante, dejando de lado la resolución de problemas y la realización de tareas que profundicen en el significado de los conceptos trabajados.

En esta entrada comparto una situación de aprendizaje que pretende ahondar en la comprensión de un sistema de numeración (en este caso el decimal) y de dónde surge las reglas de divisibilidad que recitamos de memoria.  Esta tarea, resuelta íntegramente con la herramienta digital Graspable Math, permite trabajar:

  • Los Sentidos: numérico, algebraico y socioafectivo
  • Las Competencias Específicas relacionadas con los procesos de Resolución de Problemas (RESPRO), Razonamiento y Prueba (RAZPRU), Conexiones (CONEX) y las Destrezas Socioafectivas (SOCAFE): CE1, CE2, CE3 , CE4, CE5CE9 y CE10

Situación de aprendizaje: Soy divisible por 9. Conóceme… · Introducción

Se trata de una tarea de corte algebraico que busca profundizar en la estructura del sistema numeración decimal y la comprensión profunda del criterio de divisibilidad por 9.

Se presenta además un enunciado, para probar o refutar, propiciando la posibilidad de que se genere un ambiente de razonamiento y trabajo en equipo en el aula, donde tendrán que conjeturar, argumentar, aceptar errores en los diferentes planteamientos, colaborar con el resto de compañeros y compañeras,…


Situación de aprendizaje: Soy divisible por 9. Conóceme… · Enunciado

Se trata de una tarea de corte algebraico que busca profundizar en la estructura del sistema numeración decimal y la comprensión profunda del criterio de divisibilidad por 9.


Soy divisible por 9. Conóceme… · Solución

A continuación se presenta la tarea resuelta, paso a paso, en Graspable Math, herramienta dgital que facilita sobremanera el tratamiento de la notación matemática tanto para enseñar como para aprender.

Enlace a la solución en GM Canvas


Situación de aprendizaje: Soy divisible por 9. Ideas para trabajar en el aula

Mediante esta tarea pretendo profundizar en esta regla para que, los alumnos, al finalizar el trabajo con esta situación de aprendizaje, sean conscientes del por qué de este enunciado, que recitan de memoria, y sean capaces de transferirlo a otros… e incluso a conjeturar e intentar probar alguno de ellos, por analogía con el abordaje que vamos a realizar en este problema.

Criterio de divisibilidad del 9

Un número es divisible entre 9 cuando la suma de sus dígitos es 9 o múltiplo de 9. 

Algunas preguntas preguntas para romper el hielo:

  • ¿Qué significado tiene el 5 en el número 531? ¿Y en el 657?
  • ¿Qué significa ser divisible por 9?
  • ¿Qué relación tiene ser divisible por 9 con las cifras, o mejor dicho con la suma de las cifras del número? ¿Podrías afirmar algo al respecto?

Lo importante es que se animen a tomar la palabra, a comunicar sus pensamientos, oralmente y por escrito. Dales tiempo para pensar y facilita que opinen y debatan, desde el respeto a lo expuesto por otros compañeros. Es esta una tarea propicia para el trabajo en grupo por lo que, tras las tormenta de ideas inicial, se podrían formar grupos heterogéneos de tres o cuatro miembros para abordar la misma.

El trabajo en equipo facilitará su abordaje y permitirá al alumnado enriquecerse a través de los razonamientos de los demás compañeros y compañeras, aceptando, comentando para mejorar o refutando con argumentos y de manera razonada las propuestas de los demás, con lo cual estaremos trabajando las Competencias Específicas Socio Emocionales, potenciando así las Destrezas SocioAfectiva (SOCAFE):

Para atender a la diversidad presente en nuestra aula y facilitar el acercamiento a la tarea podemos proponer a los alumnos que prueben con algunos números concretos de tres cifras, e incluso se le puede ofrecer como entrada la descomposición polinómica de uno o dos números de tres cifras.

Como verás es una Tarea de Suelo Bajo y Techo Alto (SBTA) puesto que el punto de entrada es sencillo, y podemos quedarnos en las comprobaciones numéricas de la regla, y abordable por todos los estudiantes, aumentando de complejidad, enriqueciéndose, conforme vamos haciendo modificaciones a la misma o transitamos hacia el enfoque puramente algebraico.

Espero que la propuesta te haya parecido atractiva y te resulte de utilidad para el trabajo en el aula con este nuevo enfoque curricular. Si quieres compartirme algunas propuestas o trabajo con tus alumnos en el aula puedes hacerlo en luismiglesias@gmail.com o en @luismiglesias.



Más contenido matemático en redes sociales
Comparte MatemáTICas: 1,1,2,3,5,8,13,...
WP2Social Auto Publish Powered By : XYZScripts.com