Operaciones Combinadas

Countle. Desarrollo del sentido de las operaciones (sentido numérico) a través del juego

Comparte MatemáTICas: 1,1,2,3,5,8,13,...

Hay múltiples opciones para desarrollar el Sentido numérico del alumnado en el aula de matemáticas.

En esta entrada os traigo una propuesta para trabajar los Saberes Básicos relacionados con el Sentido de las operaciones:

3. Sentido de las operaciones.

− Estrategias de cálculo mental con números naturales, fracciones y decimales.

− Efecto de las operaciones aritméticas con números enteros, fracciones y expresiones decimales.

− Propiedades de las operaciones (suma, resta, multiplicación, división y potenciación): cálculos de manera eficiente con números naturales, enteros, fraccionarios y decimales tanto mentalmente como de forma manual, con calculadora u hoja de cálculo.

Countle. ¿Qué es?

Es un juego donde nos dan el resultado y seis números adicionales.

Combinando los números dados, usando únicamente sumas, restas, multiplicaciones y divisiones, tenemos que obtener el mismo.

No se permiten números negativos ni fracciones.

Captura de pantalla. Ejercicio diario de Countle

Captura de pantalla. Ejercicio resuelto en Countle

Countle. Ideas para el trabajo en el aula

En el sitio web de Countle nos proponen un ejercicio cada día lo que nos posibilita un entrenamiento divertido diario, en un escenario sano y divertido de competición.

Lo ideal es que los alumnos registren sus intentos, razonando y describiendo las estrategias seguidas; sus errores y aciertos. Ya sabemos que en matemáticas los errores y caminos seguidos hasta encontrar la solución son muy válidos e importantes.

Se puede llevar un registro diario, individual o grupal, convirtiendo esta rutina diaria en una excelente oportunidad para desarrollar el sentido de las operaciones a través de este escenario gamificado.

Se puede trabajar a diario durante un periodo de tiempo determinado, semana, mes, trimestre o incluso durante todo el curso.

Countle. Sitio web

 

Sitio web de Countle: https://www.countle.org/

Si te resultó atractivo Countle, te animo a leer el post relativo a Primel y Ooodle, juegos de gran utilidad para desarrollar el sentido numérico.

Espero que te gusten, practiques el razonamiento con los mismos y disfrutes con tus alumnos con estos rompecabezas matemáticos.

Ya me contarás cómo te ha ido…

Más contenido matemático en redes sociales
Comparte MatemáTICas: 1,1,2,3,5,8,13,...

El quinto es el 100. Tarea de suelo bajo y techo alto para desarrollar el sentido numérico… y algebraico

Comparte MatemáTICas: 1,1,2,3,5,8,13,...

Aprovechando el descanso estival, con la mirada puesta en el próximo curso escolar en el que entrará en vigor el nuevo currículo de matemáticas LOMLOE, os comparto en esta entrada una tarea de suelo bajo y techo alto (SBTA) para desarrollar el sentido numérico (*) en el aula de matemáticas.

Este tipo de tareas son especialmente idóneas para atender a la diversidad presente en nuestra aula. Tarea de enunciado sencillo y simple, al alcance de todos los alumnos (el «suelo», inicio o comienzo de la tarea es bajo favoreciendo la participación de todo el alumnado) y, al mismo tiempo, permite que los alumnos desarrollen las habilidades matemáticas, analizando a fondo su estructura, estableciendo conexiones, en este caso intra-matemáticas, y alcanzando aprendizajes significativos, más allá de la respuesta a la pregunta del enunciado («techo» alto y multinivel en función de las características de cada alumno).

Además, son tareas propicias para trabajar en equipo, fomentar el razonamiento y el debate matemático en el aula y promover el uso de las representaciones para comunicar los resultados.

Tarea. El quinto es el 100

Toma dos números naturales (por ejemplo, 2 y 7). Estos serán los dos primeros números.

El tercer número será la suma de los dos primeros (9).

El cuarto, la suma de los dos anteriores (16), y así sucesivamente (2, 7, 9, 16, 25, 41, …).

¿Cuáles deben ser los dos primeros números para que el quinto sea el 100?

 

Sebleouf, CC BY-SA 4.0 <https://creativecommons.org/licenses/by-sa/4.0>, via Wikimedia Commons

Algunas ideas para su tratamiento en el aula
  1. Divide la clase en grupos. Deja unos minutos para que lean y analicen el enunciado y, pasado este tiempo, abre turno para que un miembro de cada grupo traslade posibles dudas/preguntas. Las dudas de algún grupo pueden ser las mismas que las de otro. Una vez concluida la ronda pública inicial de consultas, anima a los alumnos a que participen y respondan a las dudas planteadas por los compañeros de otros grupos.
  2. Finalizado esta puesta en común y debate inicial, abordarán en equipo la resolución de la tarea. Una vez concluida, comunicarán al resto de clase la solución obtenida, apoyando sus razonamientos en las representaciones gráficas que consideren.
  3. ¿Hay más de una solución? ¿Sí/No? ¿Por qué?
  4. ¿Son correctas? ¿Hay alguna solución propuesta por alguno de los grupos que sea errónea? Anima a los alumnos a intervenir para ayudar a localizar el error o los errores cometidos por otros grupos y reflexionad sobre ellos.
  5. El profesor interviene, poniendo el foco en los saberes trabajados, sintetizando y dando por concluida esta fase.
  6. Anima a los alumnos a que realicen una variación del enunciado y que cada grupo proponga una nueva tarea. Planteo dos opciones:
    • Variando el término, para que en lugar del quinto sea el décimo u otro que consideren
    • Variando el número al que deben llegar, para que en lugar de 100 sea 200, 1000 u otro que consideren
  7. Si han trabajado con anterioridad números negativos, se puede bajar el valor del quinto número para se tenga que recurrir a iniciar y operar con números negativos. Planteo dos opciones:
    • Números enteros
    • Números racionales
  8. En función del curso donde trabajes la tarea puedes ir más allá y trabajar también el sentido algebraico, observando su estructura, trabajando el concepto de sucesión recurrente, término general… 
  9. Y así podríamos seguir ampliando el «techo»…

Espero que te resulte de utilidad para el trabajo en el aula. Si analizamos la tarea propuesta, conjuntamente con las ideas que os he compartido para su abordaje en el aula, veremos que estamos bastante alineados con lo recogido en el nuevo currículo en lo relativo a las competencias específicas establecidas para Matemáticas:

Las competencias específicas entroncan y suponen una profundización con respecto a las adquiridas por el alumnado a partir del área de Matemáticas durante la Educación Primaria, proporcionando una continuidad en el aprendizaje de las matemáticas que respeta el desarrollo psicológico y el progreso cognitivo del alumnado. Se relacionan entre sí y han sido agrupadas en torno a cinco bloques competenciales según su naturaleza: resolución de problemas (1 y 2), razonamiento y prueba (3 y 4), conexiones (5 y 6), comunicación y representación (7 y 8) y destrezas socioafectivas (9 y 10)

En la medida que el tiempo me lo permita iré compartiendo por aquí más ideas y propuestas didácticas para trabajar en el aula con este nuevo enfoque curricular. Salud y a seguir disfrutando del verano 😉

Más contenido matemático en redes sociales
Comparte MatemáTICas: 1,1,2,3,5,8,13,...

miniTAREA. Oferta promocional #eXPLÍCAlo

Comparte MatemáTICas: 1,1,2,3,5,8,13,...

Matemáticas en la vida cotidiana. Observa la imagen con la oferta promocional y lee con atención las siguientes situaciones hipotéticas de compras:
  • Situación 1. Producto 1 – Valor 1000 € y Producto 2 – Valor 10 €.
  • Situación 2. Producto 1 – Valor 10 € y Producto 2 – Valor 1000 €.
¿Qué importe deberíamos abonar en cada una de las situaciones?
¿Qué opción elegirías si fueras el comprador?
¿Qué observas?
#eXPLÍCAlo
Comparte MatemáTICas: 1,1,2,3,5,8,13,...

Materiales en Abierto (REAs) para trabajar por proyectos (ABP) en Matemáticas en Secundaria. Proyecto EDIA

Comparte MatemáTICas: 1,1,2,3,5,8,13,...

Permitir que cualquier docente pueda introducir la metodología de trabajo por proyectos en el aula de Matemáticas. Este es el objetivo fundamental del Proyecto EDIA de CeDeC, que inicia la publicación de recursos educativos abiertos (REAs) para Matemáticas en Secundaria, continuando así la serie ya iniciada en otras materias de esta misma etapa y también para Primaria.

Cabeceras-cedec-educalab-intef-ministerio

EDIA-REA-ABP-ESSI

Evento’s Solutions, servicios integrales (ESSI)

Es el sugerente título del primer REA publicado, el cual he tenido el gusto de diseñar y elaborar ;-), el cual, por supuesto, puedes descargar, modificar y adaptar libremente para tu grupo/clase, ya que se publican bajo licencia abierta CC-BY-SA, o bien, usar tal cual en tu aula ya que como se indica en la propia Guía didáctica del proyecto incluida en el propio REA.

El presente proyecto está dirigido al alumnado del Primer Ciclo de la Educación Secundaria Obligatoria, consta de distintas secuencias didácticas que giran en torno al estudio del bloque 2, Números y Álgebra del currículo de Secundaria (Materia 29. Matemáticas) publicado por Real Decreto 1105/2014, de 26 de diciembre, por el que se establece el currículo básico de la Educación Secundaria Obligatoria y del Bachillerato.

Planteamiento del proyecto

Propuesta docente

La aquí presentada es una propuesta basada en el aprendizaje activo de los estudiantes, los cuales deberán ver el trabajo colaborativo e investigativo como parte esencial del aprendizaje matemático. El docente es clave en la gestión de las dinámicas de aula que surgen al introducir estos nuevos modelos de enseñanza-aprendizaje en el aula de matemáticas.

Propuesta de investigación / acción

El objetivo del siguiente REA es favorecer que el alumnado de 1º – 2º de ESO adquiera un aprendizaje significativo y comprensivo de los distintos conjuntos de números (naturales, enteros, decimales,…), operaciones combinadas con ellos en contextos reales, porcentajes, proporcionalidad y escala, que les proporcione su uso instantáneo y con soltura en situaciones de la vida cotidiana que requieran de ellos para su resolución.

Objetivos y producto final

Este conocimiento será impulsado a través de retos, tareas conectadas con el mundo real que requieran de cierta indagación y modelización matemática.

A partir de una situación real de experiencia negativa de una pareja en la celebración de su boda, se le presenta al alumnado la creación de una empresa desde cero, a la que hemos bautizado como Evento’s Solutions, servicios integrales (ESSI), dedicada a la gestión integral de eventos.

En los primeros meses de vida se inicia la selección del local de celebraciones, la distribución del salón, la compra del material para el catering, elaboración de anuncios publicitarios para dar a conocer la empresa y elaboración de oferta promocional de lanzamiento para llevar a cabo la captación de los primeros clientes. Finalmente recopilaremos y difundiremos los distintos productos elaborados durante todo el desarrollo del proyecto y reflexionaremos sobre todo el proyecto.

essi-procomun-1

En definitiva, con la elaboración y publicación de estos recursos se pretende ofrecer a los docentes un recurso completo y flexible para trabajar en el aula los contenidos, objetivos, criterios de evaluación y estándares de aprendizaje evaluables de Matemáticas por medio de metodologías activas de aprendizaje, en un contexto real que favorece de manera clara un aprendizaje competencial integral por parte del alumnado.

En el marco del Proyecto EDIA se irán publicando en los próximos meses más recursos educativos para trabajar por proyectos en Matemáticas en Secundaria, en los que estamos implicados un grupo de compañero/as, comandados por el CeDeC, a quien agradezco la confianza depositada en mi persona para participar en este atractivo y vanguardista proyecto de creación de materiales curriculares digitales en abierto para trabajar por proyectos (ABP) en el aula de matemáticas, que espero sea de ayuda y utilidad para que muchos docentes se animen a trabajar en clase usando esta metodología de trabajo.

essi-procomun-2

Desde estas líneas te animo a visitar y explorar este primer proyecto y a difundirlo entre los compañero/as de tu claustro y en tus contactos en redes sociales, así como te invito a estar vigilante a la publicación de los siguientes proyectos.

¡Feliz y merecido descanso estival!

Comparte MatemáTICas: 1,1,2,3,5,8,13,...

Destreza de orden superior: Evaluación. Bloom en el aula de matemáticas

Comparte MatemáTICas: 1,1,2,3,5,8,13,...

Antes de mostrar el caso, del cual sólo mostraré una imagen, recordemos aspectos clave sobre La taxonomía de Bloom los cuales resume de manera clara Wikipedia.

La taxonomía de Bloom es jerárquica, esto significa que asume que el aprendizaje a niveles superiores depende de la adquisición del conocimiento y habilidades de ciertos niveles inferiores.

Hay tres dimensiones en la taxonomía de objetivos de la educación propuesta por Benjamin Bloom:

  • Dimensión afectiva
  • Dimensión psicomotora
  • Dimensión cognitiva

Dimensión afectiva

El modo como la gente reacciona emocionalmente, su habilidad para sentir el dolor o la alegría de otro ser viviente. Los objetivos afectivos apuntan típicamente a la conciencia y crecimiento en actitud, emoción y sentimientos.

Hay cinco niveles en el dominio afectivo. Mencionando los procesos de orden inferiores a los superiores, son:

  • Recepción – Sin este nivel no puede haber aprendizaje.
  • Respuesta – El estudiante participa activamente en el proceso de aprendizaje, no sólo atiende a estímulos, el estudiante también reacciona de algún modo.
  • Valoración – El estudiante asigna un valor a un objeto, fenómeno o e información.
  • Organización – Los estudiantes pueden agrupar diferentes valores, informaciones e ideas y acomodarlas dentro de su propio esquema; comparando, relacionando y elaborando lo que han aprendido.
  • Caracterización – El estudiante cuenta con un valor particular o creencia que ahora ejerce influencia en su comportamiento de modo que se torna una característica.

Es importante tener en cuenta que si el estudiante no está motivado, el interés por aprender es muy bajo.

Dimensión psicomotora

La pericia para manipular físicamente una herramienta o instrumento con la mano o un martillo. Los objetivos del dominio psicomotor generalmente apuntan en el cambio desarrollado en la conducta o habilidades.

Comprende los siguientes niveles: – Percepción – Disposición – Mecanismo – Respuesta compleja – Adaptación – Creación

Dimensión cognitiva

Es la habilidad para pensar sobre los objetos de estudio. Los objetivos del dominio cognitivo giran en torno del conocimiento y la comprensión de cualquier tema dado.

Hay seis niveles en la taxonomía propuesta por Benjamín Bloom y colaboradores. En orden ascendente son los siguientes:

Conocimiento
Muestra el recuerdo de conocimiento previamente aprendidos por medio de hechos evocables, términos, conceptos básicos y respuestas
  • Conocimiento de terminología o hechos específicos
  • Conocimiento de los modos y medios para tratar con convenciones, tendencias y secuencias específicas, clasificaciones y categorías, criterios, metodología.
  • Conocimiento de los universales y abstracciones en un campo: principios y generalizaciones, teorías y estructuras
Comprensión
Entendimiento demostrativo de hechos e ideas por medio de la organización, la comparación, la traducción, la interpretación, las descripciones.
  • Traducción
  • Interpretación
  • Extrapolación
Aplicación
Uso de conocimiento nuevo. Resolver problemas en nuevas situaciones aplicando el conocimiento adquirido, hechos, técnicas y reglas en un modo diferente
Análisis
Examen y discriminación de la información identificando motivos o causas. Hacer inferencias y encontrar evidencia para fundamentar generalizaciones
  • Análisis de los elementos
  • Análisis de las relaciones
  • Análisis de los principios de organización
Síntesis
Compilación de información de diferentes modos combinando elementos en un patrón nuevo o proponiendo soluciones alternativas
  • Elaboración de comunicación unívoca
  • Elaboración de un plan o conjunto de operaciones propuestas
  • Derivación de un conjunto de relaciones abstractas
Evaluación
Presentación y defensa de opiniones juzgando la información, la validez de ideas o la calidad de una obra en relación con un conjunto de criterios
  • Juicios en términos de evidencia interna
  • Juicios en términos de criterios externos

 

A continuación nos centramos en el nivel cognitivo, concretamente en la Evaluación. Orden superior por excelencia en la Taxonomía de Bloom y compartiendo escalón superior en el modelo SAMR con Crear.

 

Experiencia de aula

Todos los docentes, a la hora de planificar las actividades, sea siguiendo un determinado material didáctico elaborado o usando el nuestro propio, debemos tener presentes la citada Taxonomía.

De una manera u otra comenzamos explicando determinados conceptos que el alumnado va trabajando hasta alcanzar la comprensión de los mismos. Pasamos posteriormente a su aplicación en determinados ejercicios, usándolos para resolver problemas,… y así deberíamos seguir para conseguir un aprendizaje pleno, significativo y funcional por parte de nuestros aprendices.

Lo que ocurre es que en demasiadas ocasiones, más de las que debiera ocurrir, apenas pasamos del nivel de Aplicación. Esto es, nos quedamos a mitad de camino.

Tengo que decir, que lo que más satisfacción me ofrece como docente es elaborar propuestas, proponerles retos, miniTAREAS o tareas de envergadura que involucren el trabajo con destrezas de orden superior.

Disfruto viéndolos Aplicar, Analizar, Sintetizar, Coevaluando el trabajo de otros compañero/as, proponer otras vías de solución y creando sus propias tareas. Hoy mismo he recopilado y disfrutado en clase con una tarea de Creación que publicaré, si saco unos minutos libres, en los próximos días.

El caso propuesto es una actividad cuyo enunciado es el siguiente:

«Determina los errores que se han cometido en la resolución de esta operación y corrígelos:

(-3) · (-5) : [ (-6) + (+3) ] = (-15) · (-9) = +135

Se trata de que adopten el papel de profes, cuando debemos evaluar una tarea corregir una prueba escrita, y que encuentren los errores, para luego evaluarlo con la puntuación adecuada en función de la tipología de los errores cometidos.

Os animo a trabajar actividades de este tipo en el aula. Dan mucho juego y sacan a las claras muchos detalles para después incidir en ellos.

Para finalizar os dejo con una imagen de dicha actividad, corregida y perfectamente explicada en la PDI por Hugo, alumno de 1º de ESO A, cuya corrección entendería cualquier persona por anumérica que sea. ¡Es una gozada verlo trabajar a diario y actividades como estas le vienen como anillo al dedo!.

Trabajando actividades de este tipo, como se suele decir de forma coloquial, <<matamos dos pájaros de un tiro>>:

  • Atendemos a la diversidad, en este caso por arriba que también lo merecen.
  • Sus clarísimas explicaciones y el debate posterior, ayudan a consolidar aprendizajes al resto de compañero/as.

Proponer, dejar hacer, mirarlos a los ojos, escuchar atentamente cada una de sus reflexiones. Es su turno. Metodologías activas centradas en el estudiante como motor del cambio educativa, potencias del nuevo paradigma de la educación del siglo XXI: aprender activo, crítico y reflexivo.

Seguimos… ¡disfrutando!

Seguimos… ¡aprendiendo!

Seguimos… ¡compartiendo!

20160115_101159

Comparte MatemáTICas: 1,1,2,3,5,8,13,...

La importancia de la jerarquía de las operaciones… en un concurso de TV

Comparte MatemáTICas: 1,1,2,3,5,8,13,...

Si tenemos claro que…

«Multiplicaciones y divisiones se realizan antes que sumas y restas» 

no nos pasará lo que le ha ocurrido a esta concursante de un programa de la televisión china.

Si es que, es lo que repito cada día hasta la saciedad:

Sin matemáticas, no podemos funcionar 😉

Comparte MatemáTICas: 1,1,2,3,5,8,13,...

Scrabble Maths, un excelente recurso para #gamificar el trabajo con operaciones combinadas

Comparte MatemáTICas: 1,1,2,3,5,8,13,...

Qué mejor manera que practicar operaciones combinadas jugando.

Clica en la imagen y accederás al juego del Scrabble en su versión matemática.

A ver quien es el campeón o la campeona de la clase 🙂

Scrabble-MathsAcceso a Scrabble Maths

Comparte MatemáTICas: 1,1,2,3,5,8,13,...
WP2Social Auto Publish Powered By : XYZScripts.com