Tratamiento pedagógico del error

Cita: Transformación del error en oportunidad de aprendizaje

Comparte MatemáTICas: 1,1,2,3,5,8,13,...

En el aula de Matemáticas, un alto porcentaje del tiempo estamos cometiendo errores.

Aprovechemos ese valioso tiempo para establecer un diálogo matemático constructivo, perderle el miedo, y transformarlo en oportunidad de aprendizaje.

Luis M. Iglesias (2023) · MatemáTICas: 1,1,2,3,5,8,13,…

Comparte MatemáTICas: 1,1,2,3,5,8,13,...

Countle. Desarrollo del sentido de las operaciones (sentido numérico) a través del juego

Comparte MatemáTICas: 1,1,2,3,5,8,13,...

Hay múltiples opciones para desarrollar el Sentido numérico del alumnado en el aula de matemáticas.

En esta entrada os traigo una propuesta para trabajar los Saberes Básicos relacionados con el Sentido de las operaciones:

3. Sentido de las operaciones.

− Estrategias de cálculo mental con números naturales, fracciones y decimales.

− Efecto de las operaciones aritméticas con números enteros, fracciones y expresiones decimales.

− Propiedades de las operaciones (suma, resta, multiplicación, división y potenciación): cálculos de manera eficiente con números naturales, enteros, fraccionarios y decimales tanto mentalmente como de forma manual, con calculadora u hoja de cálculo.

Countle. ¿Qué es?

Es un juego donde nos dan el resultado y seis números adicionales.

Combinando los números dados, usando únicamente sumas, restas, multiplicaciones y divisiones, tenemos que obtener el mismo.

No se permiten números negativos ni fracciones.

Captura de pantalla. Ejercicio diario de Countle

Captura de pantalla. Ejercicio resuelto en Countle

Countle. Ideas para el trabajo en el aula

En el sitio web de Countle nos proponen un ejercicio cada día lo que nos posibilita un entrenamiento divertido diario, en un escenario sano y divertido de competición.

Lo ideal es que los alumnos registren sus intentos, razonando y describiendo las estrategias seguidas; sus errores y aciertos. Ya sabemos que en matemáticas los errores y caminos seguidos hasta encontrar la solución son muy válidos e importantes.

Se puede llevar un registro diario, individual o grupal, convirtiendo esta rutina diaria en una excelente oportunidad para desarrollar el sentido de las operaciones a través de este escenario gamificado.

Se puede trabajar a diario durante un periodo de tiempo determinado, semana, mes, trimestre o incluso durante todo el curso.

Countle. Sitio web

 

Sitio web de Countle: https://www.countle.org/

Si te resultó atractivo Countle, te animo a leer el post relativo a Primel y Ooodle, juegos de gran utilidad para desarrollar el sentido numérico.

Espero que te gusten, practiques el razonamiento con los mismos y disfrutes con tus alumnos con estos rompecabezas matemáticos.

Ya me contarás cómo te ha ido…

Más contenido matemático en redes sociales
Comparte MatemáTICas: 1,1,2,3,5,8,13,...

Soy divisible por 9. Conóceme… Situación de aprendizaje para trabajar las competencias específicas, a través de la comprensión conceptual de un criterio de divisibilidad

Comparte MatemáTICas: 1,1,2,3,5,8,13,...

Seguro que habrás leído en alguna ocasión que:

«el currículo de matemáticas estadounidense era de una milla de largo y de una pulgada de profundo».

En los currículos españoles no andábamos muy lejos de esta afirmación. Currículos excesivamente largos, con poca profundización y aprendizaje significativo, sin apenas ahondar en la comprensión conceptual (la estructura de los objetos matemáticos), ni en las conexiones entre los distintos conceptos matemáticos (numérico-algebraicas, algebraico-geométricas,…)

La amplia extensión «del temario» o «del libro» nos lleva a pasar de puntillas, dejando atrás cada tema o unidad didáctica lo antes posible, sin pararnos a pensar ni a reflexionar, repitiendo actividades de aplicación rutinarias día a día (en clase y para casa), sin apenas significado para el estudiante, dejando de lado la resolución de problemas y la realización de tareas que profundicen en el significado de los conceptos trabajados.

En esta entrada comparto una situación de aprendizaje que pretende ahondar en la comprensión de un sistema de numeración (en este caso el decimal) y de dónde surge las reglas de divisibilidad que recitamos de memoria.  Esta tarea, resuelta íntegramente con la herramienta digital Graspable Math, permite trabajar:

  • Los Sentidos: numérico, algebraico y socioafectivo
  • Las Competencias Específicas relacionadas con los procesos de Resolución de Problemas (RESPRO), Razonamiento y Prueba (RAZPRU), Conexiones (CONEX) y las Destrezas Socioafectivas (SOCAFE): CE1, CE2, CE3 , CE4, CE5CE9 y CE10

Situación de aprendizaje: Soy divisible por 9. Conóceme… · Introducción

Se trata de una tarea de corte algebraico que busca profundizar en la estructura del sistema numeración decimal y la comprensión profunda del criterio de divisibilidad por 9.

Se presenta además un enunciado, para probar o refutar, propiciando la posibilidad de que se genere un ambiente de razonamiento y trabajo en equipo en el aula, donde tendrán que conjeturar, argumentar, aceptar errores en los diferentes planteamientos, colaborar con el resto de compañeros y compañeras,…


Situación de aprendizaje: Soy divisible por 9. Conóceme… · Enunciado

Se trata de una tarea de corte algebraico que busca profundizar en la estructura del sistema numeración decimal y la comprensión profunda del criterio de divisibilidad por 9.


Soy divisible por 9. Conóceme… · Solución

A continuación se presenta la tarea resuelta, paso a paso, en Graspable Math, herramienta dgital que facilita sobremanera el tratamiento de la notación matemática tanto para enseñar como para aprender.

Enlace a la solución en GM Canvas


Situación de aprendizaje: Soy divisible por 9. Ideas para trabajar en el aula

Mediante esta tarea pretendo profundizar en esta regla para que, los alumnos, al finalizar el trabajo con esta situación de aprendizaje, sean conscientes del por qué de este enunciado, que recitan de memoria, y sean capaces de transferirlo a otros… e incluso a conjeturar e intentar probar alguno de ellos, por analogía con el abordaje que vamos a realizar en este problema.

Criterio de divisibilidad del 9

Un número es divisible entre 9 cuando la suma de sus dígitos es 9 o múltiplo de 9. 

Algunas preguntas preguntas para romper el hielo:

  • ¿Qué significado tiene el 5 en el número 531? ¿Y en el 657?
  • ¿Qué significa ser divisible por 9?
  • ¿Qué relación tiene ser divisible por 9 con las cifras, o mejor dicho con la suma de las cifras del número? ¿Podrías afirmar algo al respecto?

Lo importante es que se animen a tomar la palabra, a comunicar sus pensamientos, oralmente y por escrito. Dales tiempo para pensar y facilita que opinen y debatan, desde el respeto a lo expuesto por otros compañeros. Es esta una tarea propicia para el trabajo en grupo por lo que, tras las tormenta de ideas inicial, se podrían formar grupos heterogéneos de tres o cuatro miembros para abordar la misma.

El trabajo en equipo facilitará su abordaje y permitirá al alumnado enriquecerse a través de los razonamientos de los demás compañeros y compañeras, aceptando, comentando para mejorar o refutando con argumentos y de manera razonada las propuestas de los demás, con lo cual estaremos trabajando las Competencias Específicas Socio Emocionales, potenciando así las Destrezas SocioAfectiva (SOCAFE):

Para atender a la diversidad presente en nuestra aula y facilitar el acercamiento a la tarea podemos proponer a los alumnos que prueben con algunos números concretos de tres cifras, e incluso se le puede ofrecer como entrada la descomposición polinómica de uno o dos números de tres cifras.

Como verás es una Tarea de Suelo Bajo y Techo Alto (SBTA) puesto que el punto de entrada es sencillo, y podemos quedarnos en las comprobaciones numéricas de la regla, y abordable por todos los estudiantes, aumentando de complejidad, enriqueciéndose, conforme vamos haciendo modificaciones a la misma o transitamos hacia el enfoque puramente algebraico.

Espero que la propuesta te haya parecido atractiva y te resulte de utilidad para el trabajo en el aula con este nuevo enfoque curricular. Si quieres compartirme algunas propuestas o trabajo con tus alumnos en el aula puedes hacerlo en luismiglesias@gmail.com o en @luismiglesias.



Más contenido matemático en redes sociales
Comparte MatemáTICas: 1,1,2,3,5,8,13,...

Matemáticas y ajedrez. Situación de aprendizaje para trabajar las competencias específicas resolución de problemas, razonamiento y socioafectivas, a través de acertijos matemáticos

Comparte MatemáTICas: 1,1,2,3,5,8,13,...

Entre las Competencias Específicas presentes en el nuevo Currículo Básico de Matemáticas de Secundaria encontramos, relacionadas con los procesos Resolución de Problemas (RESPRO) y Razonamiento y Prueba (RESPRO), las siguientes:


CE1. Interpretar, modelizar y resolver problemas de la vida cotidiana y propios de las matemáticas, aplicando diferentes estrategias y formas de razonamiento, para explorar distintas maneras de proceder y obtener posibles soluciones. (RESPRO)

La resolución de problemas constituye un eje fundamental en el aprendizaje de las matemáticas, ya que es un proceso central en la construcción del conocimiento matemático. Tanto los problemas de la vida cotidiana en diferentes contextos como los problemas propuestos en el ámbito de las matemáticas permiten ser catalizadores de nuevo conocimiento, ya que las reflexiones que se realizan durante su resolución ayudan a la construcción de conceptos y al establecimiento de conexiones entre ellos.


CE2. Analizar las soluciones de un problema usando diferentes técnicas y herramientas, evaluando las respuestas obtenidas, para verificar su validez e idoneidad desde un punto de vista matemático y su repercusión global. (RESPRO)

El desarrollo de esta competencia conlleva procesos reflexivos propios de la metacognición como la autoevaluación y la coevaluación, la utilización de estrategias sencillas de aprendizaje autorregulado, uso eficaz de herramientas digitales como calculadoras u hojas de cálculo, la verbalización o explicación del proceso y la selección entre diferentes métodos de comprobación de soluciones o de estrategias para validar las soluciones y su alcance.


CE3. Formular y comprobar conjeturas sencillas o plantear problemas de forma autónoma, reconociendo el valor del razonamiento y la argumentación, para generar nuevo conocimiento. (RAZPRU)

El desarrollo de esta competencia conlleva formular y comprobar conjeturas, examinar su validez y reformularlas para obtener otras nuevas susceptibles de ser puestas a prueba promoviendo el uso del razonamiento y la demostración como aspectos fundamentales de las matemáticas. Cuando el alumnado plantea nuevos problemas, mejora el razonamiento y la reflexión al tiempo que construye su propio conocimiento, lo que se traduce en un alto nivel de compromiso y curiosidad, así como de entusiasmo hacia el proceso de aprendizaje de las matemáticas.

En 8 prácticas de enseñanza esenciales para una Educación Matemática eficaz. Nuevo currículo de Matemáticas LOMLOE podemos ver como una de las prácticas recomendadas es:

2. Implementar tareas que promuevan el razonamiento y la resolución de problemas.

La enseñanza efectiva de las matemáticas involucra a los estudiantes en actividades que implican resolver y discutir, aquellas que promueven el razonamiento matemático y la resolución de problemas, y que permiten que emerjan múltiples maneras de abordar los problemas y una variedad de estrategias de resolución.

En esta entrada os propongo precisamente esto; una tarea para trabajar principalmente las CE1, CE2 y CE3, así como otras relacionadas con las Destrezas Socioafectivas (SOCAFE), de las que hablaré más adelante.


Situación de aprendizaje: El ajedrez de Ray y Smull

Los acertijos matemáticos son tan antiguos como la propia historia de la humanidad y nos han ofrecido juegos de ingenio bellísimos y entretenidos a los que han dedicado su estudio celebres personajes, matemáticos y no matemáticos.

Los mismos ofrecen un contexto idóneo para trabajar la resolución de problemas y el razonamiento desde un acercamiento lúdico, sin miedo al error, y, aparentemente, nada formal y profundo… nada más lejos de la realidad, porque en muchos de ellos, hay altas dosis de fundamentos matemáticos.

Por otro lado, sabemos que pocos juegos alcanzan el potencial educativo y de razonamiento del ajedrez. Muestra de ello es que figure como asignatura propia en algunos países o bien en forma de programas educativos, como es el caso de AulaDJaque en Andalucía.

La siguiente situación tiene que ver con posiciones de fichas en el tablero de ajedrez, a partir de unas condiciones iniciales que se dan como dato. Está basada en el clásico acertijo del mismo nombre, planteado por el gran Martin Gardner, en homenaje al matemático Ray Smullian por sus dos excelentes colecciones de problemas de ajedrez: iMysteries of Sherlock Holmes y The Chess Mysteries of the Arabian Knights.

La situación la he estructurado en tres partes, y una cuarta parte (opcional) de ampliación.

  • Particularmente trabajaría la misma en 2 sesiones de 1 hora, alcanzando 3 sesiones si profundizamos en las partes tercera y cuarta.
  • En la primera sesión presentaría la tarea, recordaría de manera breve los movimientos de las piezas del ajedrez, con especial énfasis en las cinco participantes en la tarea y trabajaríamos las dos primeras partes.
  • En la segunda sesión recapitularía sobre las dos primeras partes y trabajaría, si es posible más de una vez, la tercera parte. Desde mi punto de mi vista, la más creativa, enriquecedora… y compleja atractiva :-).
  • En la tercera sesión profundizar en la tercera y cuarta parte.

Comparto imagen, por si quiere imprimir y repartir, así como enlace a la versión interactiva que he elaborado en Mathigon, se puede pulsar sobre el icono de pantalla completa y usar las lupas +/- y desplazar en la pantalla, para aumentar, disminuir el tamaño y mover, respectivamente.


Primera parte

Elaborado con Polypad de Mathigon, bajo licencia CC BY SA, por Luis M. Iglesias https://luismiglesias.es a partir del problema original «Ajedrez de Ray y Smull» de Martin Gardner



Segunda parte


Elaborado con Polypad de Mathigon, bajo licencia CC BY SA, por Luis M. Iglesias https://luismiglesias.es a partir del problema original «Ajedrez de Ray y Smull» de Martin Gardner


Segunda parte (bis)

Para atender a la diversidad presente en nuestra aula, podemos ofrecer alguna pista para el abordaje de la segunda parte, indicando las posiciones concretas en las que se sitúan las fichas, además de la información inicial de «amenazas» que se ofrece en el enunciado original.

Elaborado con Polypad de Mathigon, bajo licencia CC BY SA, por Luis M. Iglesias https://luismiglesias.es a partir del problema original «Ajedrez de Ray y Smull» de Martin Gardner


Como se puede apreciar, esta tarea es especialmente idónea para el trabajo en equipo, lo cual facilitará su abordaje y permitirá al alumnado enriquecerse a través de los razonamientos de los demás compañeros y compañeras, aceptando, comentando para mejorar o refutando con argumentos y de manera razonada las propuestas de los demás, con lo cual estaremos trabajando las Competencias Específicas Socio Emocionales, potenciando así las Destrezas SocioAfectiva (SOCAFE):

CE9. Desarrollar destrezas personales, identificando y gestionando emociones, poniendo en práctica estrategias de aceptación del error como parte del proceso de aprendizaje y adaptándose ante situaciones de incertidumbre, para mejorar la perseverancia en la consecución de objetivos y el disfrute en el aprendizaje de las matemáticas. (SOCAFE)

Resolver problemas matemáticos –o retos más globales en los que intervienen las matemáticas– debería ser una tarea gratificante. Las destrezas emocionales dentro del aprendizaje de las matemáticas fomentan el bienestar del alumnado, la regulación emocional y el interés por su aprendizaje.

El desarrollo de esta competencia conlleva identificar y gestionar las emociones, reconocer fuentes de estrés, ser perseverante, pensar de forma crítica y creativa, mejorar la resiliencia y mantener una actitud proactiva ante nuevos retos matemáticos.


CE10. Desarrollar destrezas sociales reconociendo y respetando las emociones y experiencias de los demás, participando activa y reflexivamente en proyectos en equipos heterogéneos con roles asignados, para construir una identidad positiva como estudiante de matemáticas, fomentar el bienestar personal y grupal y crear relaciones saludables. (SOCAFE)

El desarrollo de esta competencia conlleva mostrar empatía por los demás, establecer y mantener relaciones positivas, ejercitar la escucha activa y la comunicación asertiva, trabajar en equipo y tomar decisiones responsables. Asimismo, se fomenta la ruptura de estereotipos e ideas preconcebidas sobre las matemáticas asociadas a cuestiones individuales, como, por ejemplo, las asociadas al género o a la creencia en la existencia de una aptitud innata para las matemáticas.

En esta última parte, propongo movilizar las CE9 y CE10, trabajando en parejas o en grupos de cuatro estudiantes.


Tercera parte

Dos jugadores (o dos parejas) se sientan de espaldas, cada uno con un tablero y cinco piezas.

Un jugador (o pareja) coloca las piezas, y el otro (o la otra pareja) hace preguntas, y se lleva un registro de la cantidad de preguntas que se necesitan para saber dónde están las cinco piezas. Una vez localizadas, los jugadores cambian sus roles; ahora el jugador (o pareja) que colocó las piezas hace las preguntas y viceversa.

Gana el jugador (o equipo) que haya necesitado hacer menos preguntas para localizar.

CE1, CE2, CE3, CE9, CE10


Cuarta parte

Si algún grupo de alumnos se anima, puede realizar una representación de alguna de las partidas jugadas en la Tercera Parte, presentando el reto de manera similar a como se ha presentado el reto en la primera y segunda parte de la tarea, y entregarlo en papel, o en digital.

En este caso estaríamos trabajando la Representación:

CE7. Representar, de forma individual y colectiva, conceptos, procedimientos, información y resultados matemáticos, usando diferentes tecnologías, para visualizar ideas y estructurar procesos matemáticos. (COMREP)

La forma de representar ideas, conceptos y procedimientos en matemáticas es fundamental. La representación incluye dos facetas: la representación propiamente dicha de un resultado o concepto y la representación de los procesos que se realizan durante la práctica de las matemáticas.

El desarrollo de esta competencia conlleva la adquisición de un conjunto de representaciones matemáticas que amplían significativamente la capacidad para interpretar y resolver problemas de la vida real.


Nota final

Como verás es una Tarea de Suelo Bajo y Techo Alto (SBTA) puesto que el punto de entrada es sencillo, y abordable por todos los estudiantes, aumentando de complejidad, enriqueciéndose, conforme vamos haciendo modificaciones a la misma.

Espero que la propuesta te haya parecido atractiva y te resulte de utilidad para el trabajo en el aula con este nuevo enfoque curricular. Si quieres compartirme algunas propuestas relacionadas con la Cuarta parte puedes hacerlo en luismiglesias@gmail.com o en @luismiglesias

De igual manera, si deseas que te haga llegar las soluciones de las propuestas realizadas en la Primera y Segunda parte, puedes escribirme a luismiglesias@gmail.com



Más contenido matemático en redes sociales
Comparte MatemáTICas: 1,1,2,3,5,8,13,...

Errores conceptuales que no afloran en pruebas tipo tests. Un ejemplo del área de #matemáticas

Comparte MatemáTICas: 1,1,2,3,5,8,13,...

¿Se puede acertar en matemáticas aunque haya una probabilidad bajísima de hacerlo y cometiendo errores conceptuales gravísimos?

¿La respuesta? Sí.

Basta observar la siguiente imagen… 🙂

¿Para echarnos unas risas? Por supuesto.

Pero también nos vale para reflexionar profundamente sobre el uso de las pruebas tipo tests, repletas de ítems de selección múltiple, que obvian y dejan completamente de lado la tan temida para cualquier estudiante pero, al mismo tiempo, potentísima expresión: «Justifica tu respuesta».

¿Coincides conmigo? El ejemplo que muestro corresponde al área de matemáticas, mi hábitat natural, aunque estoy convencido de que ocurre algo similar en diferentes áreas.

Si conoces más errores matemáticos que no afloren en pruebas tipo tests (cargadas de ítems de selección múltiple) y quieres compartirlo, puedes hacerlo en comentarios, por correo electrónico, vía Twitter en @luismiglesias o en Facebook MatemáTICas Compartidas.

 

Ventajas y desventajas del ítem de selección múltiple 
Las preguntas de selección múltiple han sido criticadas por algunos autores, debido a su filiación con un modelo pedagógico conductista. Sin embargo, ello depende del uso que se dé a este tipo de instrumento. Por ello, es importante que conozcas cuáles son las ventajas y desventajas de este tipo de ejercicios.

Ventajas

  • Permite medir conocimientos generales, conocimientos especializados, competencias, habilidades y destrezas pre-establecidas en una taxonomía.
  • Elimina el factor de ambigüedad (o de polisemia) propio de las respuestas abiertas.
  • Su aplicación necesita de menos tiempo que las preguntas de desarrollo.
  • La cantidad de ítemes a utilizar depende del grado de medición que se vaya a utilizar: un contenido específico, la materia de un tema general, un control trimestral o semestral, una prueba final, etc.
  • La corrección es rápida e incluso puede mecanizarse.

Desventajas

  • No evalúan aspectos de producción como los ítemes de respuesta de desarrollo.
  • Presentan ciertas dificultades en su construcción, como saber determinar con precisión qué contenido se está evaluando y cómo se está haciendo (habilidad cognitiva).
  • A veces, no es fácil elaborar distractores posibles para los problemas.

Fuente: educarchile

Esta entrada participa en la Edición 8.4 “Matemáticas de todos y para todos” del Carnaval de Matemáticas cuyo anfitrión es, en esta ocasión, matematicascercanas

Comparte MatemáTICas: 1,1,2,3,5,8,13,...

2=1 ¿Fallan las matemáticas o erramos nosotros?

Comparte MatemáTICas: 1,1,2,3,5,8,13,...

Capture+_2017-01-03-14-07-42

eXPLÍCAlo

Comparte MatemáTICas: 1,1,2,3,5,8,13,...

Tratamiento pedagógico del error en el aula… de matemáticas. Una mirada a los apuntes de clase #Evaluación #DebatEducativo

Comparte MatemáTICas: 1,1,2,3,5,8,13,...

Los lectores habituales de este blog saben de la importancia que otorgo en la practica educativa al tratamiento pedagógico del error.

Resulta curioso pero, cuando un determinado hecho se convierte en rutinario, no tomas conciencia de ello. Simplemente lo aplicas porque crees que es bueno para tus aprendices, sin más.

Pero, no hay mejor manera de contrastar que uno sigue «predicando» en una determinada dirección, ya son unos cuantos años, que observar las notas que tus estudiantes toman en clase.

Y es que, sigo pensando que: «Prevenir (hasta infinito, si hiciese falta), es mejor que castigar». Así, llegado el momento de la evaluación, en cualquier contexto, actividad, ejercicio, tarea,… cuando pasas el bolígrafo o realizas un comentario sobre cualquier producto digital indicando: «No es correcto, deberías…», ellos mismos asienten y reconocen que han caído. Ahí poco puedes hacer. Como docente, creyente y practicante de este modo de proceder en el aula, os aseguro que es mucho menos traumático que un «Mal», a secas. Esto último no me gusta :-(.

Y es que «cada maestrillo, tiene su librillo» 😉

Esta es mi forma de ver este asunto. Y tú, ¿que opinas?

Comparte MatemáTICas: 1,1,2,3,5,8,13,...

Prohibido no preguntar… En matemáticas, no te quedes con dudas

Comparte MatemáTICas: 1,1,2,3,5,8,13,...

Un aplauso para esa persona que se anima a decir »Yo no lo entiendo» en mitad de una clase de matemáticas y salva a toda la clase.

 

No te quedes con dudas

 

Comparte MatemáTICas: 1,1,2,3,5,8,13,...

Artículo en Revista DIM 23 – Reflexiones en torno al tratamiento pedagógico del error. El blog educativo como plataforma de debate en red

Reflexiones en torno al tratamiento pedagógico del error. El blog educativo como plataforma de debate en red.
Comparte MatemáTICas: 1,1,2,3,5,8,13,...

Acaba de publicarse oficialmente el número 23 de la revista DIM, Revista de Opinión y Divulgación Cuatrimestral perteneciente al Grupo de Investigación Didáctica, Innovación y Multimedia de la Universitat Autonònoma de Barcelona, dirigido por el Dr. Pere Marquès Graells

 

Cabecera Revista DIM 23
Revista DIM 23
 

Tengo la suerte de contar con una publicación en la Sección de Artículos de dicha revista que lleva por título:

Reflexiones en torno al tratamiento pedagógico del error. El blog educativo como plataforma de debate en red.

el cual os invito y animo a leer, referente a una gratificante y enriquecedora experiencia acontecida a raíz de la publicación en este blog educativo de matemáticas de un post referente a una noticia educativa publicada en la versión digital del diario argentino Clarín. Se analiza en el mismo el interesante y fructífero debate originado en distintos servicios de la Web Social y se enumerarán algunas de las valiosas reflexiones vertidas por muchos profesionales del mundo educativo.

Un artículo nacido en este blog, concretamente con este post, resumen de un trabajo de reflexión grupal en red usando el blog como plataforma para el debate en red y, que vuelve al mismo en forma de artículo publicado en una revista tan importante como lo es Didáctica, Innovación y Multimedia. Aprovecho la ocasión para agradecer a su consejo científico / evaluadores sus valiosas recomendaciones.

Espero que a los docentes os guste y os resulte enriquecedor para vuestro día a día en las aulas. Especialmente interesantes son, desde mi punto de vista, las reflexiones en torno al tratamiento pedagógico del error efectuadas por casi un centenar de profesionales del mundo educativo.

¡Feliz curso 2012/2013!

Comparte MatemáTICas: 1,1,2,3,5,8,13,...
WP2Social Auto Publish Powered By : XYZScripts.com