Graspable Math

(Vídeo) Ponencia en el XXVI Congreso Nacional de Matemática Educativa de Guatemala. Menú de degustación de herramientas digitales para enseñar y aprender matemática en un contexto post pandémico

El pase de diapositivas requiere JavaScript.

La tarde del pasado viernes, 25 de noviembre, tuve el gusto y el honor de participar en el XXVI Congreso Nacional de Matemática Educativa, un evento organizado por la Unidad de Modelación Matemática e Investigación, de la Facultad de Ingeniería de la Universidad de San Carlos de Guatemala, que se proyecta hacia la sociedad guatemalteca en apoyo a la mejora de la calidad educativa de matemática.

El evento ha contado con la participación de 60 ponentes, de Guatemala, México, Colombia, Panamá, Paraguay, El Salvador, Venezuela y España, de forma virtual, con talleres, foros, conferencias y grupos de reflexión acerca de la enseñanza y aprendizaje de esta materia en todos los niveles educativos, y con la participación de más de 500 docentes.

Quiero expresar mi agradecimiento a todos los miembros del Comité Organizador del Congreso, y de manera especial a la Dra. Mayra Castillo y al Dr. Julio Ricardo Castillo por todo el apoyo que me han dado. Comparto a continuación el enlace al evento en Facebook donde se encuentra en el vídeo de mi ponencia «Menú de degustación de herramientas digitales para enseñar y aprender matemática en un contexto post pandémico» donde, durante algo más de dos horas, reflexioné, compartí e interactué con los profesores participantes, realizando actividades matemáticas, simulando una situación real de clase a distancia con 4 herramientas digitales que en mi opinión son el póker de ases de las herramientas digitales para enseñar y aprender matemáticas en cualquier tipo de entorno; presencial, híbridos/blended/semipresencial y a distancia. Hablo de Geogebra Notas, Desmos, Graspable Math y Mathigon.

Espero que el vídeo sea de utilidad para tu trabajo diario en el aula de matemáticas. Quedo a la espera de tus comentarios 😉

Menú de degustación de herramientas digitales para enseñar y aprender matemática en un contexto post pandémico

XXVI Congreso Nacional de Matemática Educativa de Guatemala

Soy divisible por 9. Conóceme… Situación de aprendizaje para trabajar las competencias específicas, a través de la comprensión conceptual de un criterio de divisibilidad

Seguro que habrás leído en alguna ocasión que:

«el currículo de matemáticas estadounidense era de una milla de largo y de una pulgada de profundo».

En los currículos españoles no andábamos muy lejos de esta afirmación. Currículos excesivamente largos, con poca profundización y aprendizaje significativo, sin apenas ahondar en la comprensión conceptual (la estructura de los objetos matemáticos), ni en las conexiones entre los distintos conceptos matemáticos (numérico-algebraicas, algebraico-geométricas,…)

La amplia extensión «del temario» o «del libro» nos lleva a pasar de puntillas, dejando atrás cada tema o unidad didáctica lo antes posible, sin pararnos a pensar ni a reflexionar, repitiendo actividades de aplicación rutinarias día a día (en clase y para casa), sin apenas significado para el estudiante, dejando de lado la resolución de problemas y la realización de tareas que profundicen en el significado de los conceptos trabajados.

En esta entrada comparto una situación de aprendizaje que pretende ahondar en la comprensión de un sistema de numeración (en este caso el decimal) y de dónde surge las reglas de divisibilidad que recitamos de memoria.  Esta tarea, resuelta íntegramente con la herramienta digital Graspable Math, permite trabajar:

  • Los Sentidos: numérico, algebraico y socioafectivo
  • Las Competencias Específicas relacionadas con los procesos de Resolución de Problemas (RESPRO), Razonamiento y Prueba (RAZPRU), Conexiones (CONEX) y las Destrezas Socioafectivas (SOCAFE): CE1, CE2, CE3 , CE4, CE5CE9 y CE10

Situación de aprendizaje: Soy divisible por 9. Conóceme… · Introducción

Se trata de una tarea de corte algebraico que busca profundizar en la estructura del sistema numeración decimal y la comprensión profunda del criterio de divisibilidad por 9.

Se presenta además un enunciado, para probar o refutar, propiciando la posibilidad de que se genere un ambiente de razonamiento y trabajo en equipo en el aula, donde tendrán que conjeturar, argumentar, aceptar errores en los diferentes planteamientos, colaborar con el resto de compañeros y compañeras,…


Situación de aprendizaje: Soy divisible por 9. Conóceme… · Enunciado

Se trata de una tarea de corte algebraico que busca profundizar en la estructura del sistema numeración decimal y la comprensión profunda del criterio de divisibilidad por 9.


Soy divisible por 9. Conóceme… · Solución

A continuación se presenta la tarea resuelta, paso a paso, en Graspable Math, herramienta dgital que facilita sobremanera el tratamiento de la notación matemática tanto para enseñar como para aprender.

Enlace a la solución en GM Canvas


Situación de aprendizaje: Soy divisible por 9. Ideas para trabajar en el aula

Mediante esta tarea pretendo profundizar en esta regla para que, los alumnos, al finalizar el trabajo con esta situación de aprendizaje, sean conscientes del por qué de este enunciado, que recitan de memoria, y sean capaces de transferirlo a otros… e incluso a conjeturar e intentar probar alguno de ellos, por analogía con el abordaje que vamos a realizar en este problema.

Criterio de divisibilidad del 9

Un número es divisible entre 9 cuando la suma de sus dígitos es 9 o múltiplo de 9. 

Algunas preguntas preguntas para romper el hielo:

  • ¿Qué significado tiene el 5 en el número 531? ¿Y en el 657?
  • ¿Qué significa ser divisible por 9?
  • ¿Qué relación tiene ser divisible por 9 con las cifras, o mejor dicho con la suma de las cifras del número? ¿Podrías afirmar algo al respecto?

Lo importante es que se animen a tomar la palabra, a comunicar sus pensamientos, oralmente y por escrito. Dales tiempo para pensar y facilita que opinen y debatan, desde el respeto a lo expuesto por otros compañeros. Es esta una tarea propicia para el trabajo en grupo por lo que, tras las tormenta de ideas inicial, se podrían formar grupos heterogéneos de tres o cuatro miembros para abordar la misma.

El trabajo en equipo facilitará su abordaje y permitirá al alumnado enriquecerse a través de los razonamientos de los demás compañeros y compañeras, aceptando, comentando para mejorar o refutando con argumentos y de manera razonada las propuestas de los demás, con lo cual estaremos trabajando las Competencias Específicas Socio Emocionales, potenciando así las Destrezas SocioAfectiva (SOCAFE):

Para atender a la diversidad presente en nuestra aula y facilitar el acercamiento a la tarea podemos proponer a los alumnos que prueben con algunos números concretos de tres cifras, e incluso se le puede ofrecer como entrada la descomposición polinómica de uno o dos números de tres cifras.

Como verás es una Tarea de Suelo Bajo y Techo Alto (SBTA) puesto que el punto de entrada es sencillo, y podemos quedarnos en las comprobaciones numéricas de la regla, y abordable por todos los estudiantes, aumentando de complejidad, enriqueciéndose, conforme vamos haciendo modificaciones a la misma o transitamos hacia el enfoque puramente algebraico.

Espero que la propuesta te haya parecido atractiva y te resulte de utilidad para el trabajo en el aula con este nuevo enfoque curricular. Si quieres compartirme algunas propuestas o trabajo con tus alumnos en el aula puedes hacerlo en luismiglesias@gmail.com o en @luismiglesias.



Más contenido matemático en redes sociales

Profundizando en la comprensión de la relación entre los coeficientes de una ecuación de segundo grado y sus raíces. Ejercicios resueltos en vídeo con Graspable Math

En esta entrada comparto tres vídeos en los que muestro cómo profundizar en la comprensión de la relación entre los coeficientes de una ecuación de segundo grado y sus raíces. En demasiadas ocasiones solemos abordar en clase la explicación de un concepto o contenido matemático y, a renglón seguido, pasamos a la aplicación práctica reiterada con una batería de ejercicios tipo, sin profundizar en la comprensión del concepto.

Lo que propongo con estos tres vídeos es desplazar un poco el ejercicio típico rutinario: «Resuelve la ecuación de segundo grado …» «Halla las soluciones de la ecuación de segundo grado …» por otros que ahondan en la estructura de la ecuación y que nos permite obtener sus soluciones a partir de los coeficientes y, viceversa, obtener la expresión algebraica a partir de sus soluciones, ahondando y permitiendo ver la conexión existente.

Todos ellos han sido elaborados usando la herramienta digital interactiva Graspable Math, de las que ya os he hablado en anteriores entradas en este blog. Una herramienta ideal para acercar el lenguaje algebraico a nuestro alumnado, la cual nos facilita sobremanera a  docentes y estudiantes la escritura en lenguaje científico. Además de todo ello, se antoja como una aliada extraordinaria en entornos de enseñanza semipresencial, distancia o híbrido en el momento tan complejo que nos ha tocado vivir con motivo de la COVID.

Demostración: Relación entre coeficientes de una ecuación de 2º grado y sus raíces

Ejercicio. Comprobar relación entre los coeficientes y las raíces de una ecuación de 2ºgrado

Ejercicio. Hallar coeficiente usando relación coeficientes-raíces en ecuación de 2º grado

Podrás encontrar estos vídeos y muchos más en mi canal de Youtube MatemáTICas: 1,1,2,3,5,8,13,…  Si te ayudaron, y crees que pueden ayudar a estudiantes y profesores, suscríbete y comparte.

 

Más contenido matemático en redes sociales

Reto matemático terrorífico para la noche de Halloween – Graspable Math

En esta entrada os propongo un reto terrorífico para la noche de Halloween, basado en un modelo de áreas.

¿Cómo lo ves? ¿Eres capaz de resolverla?

¿Truco o trato? 🙂

Tarea interactiva. Reto matemático terrorífico para la noche de Halloween, realizada en Graspable Math

Pulsa aquí para completar el reto en GMA y dejar registrada tu respuesta (First Name: Tu nombre – Last Initial: Inicial de tu apellido)

Más contenido matemático en redes sociales

Vídeo de la Conferencia de Clausura del II Congreso Iberoamericano de Docentes: Recursos Educativos Abiertos para la transformación digital educativa y los ODS #CongresoIB

Conferencia de Clausura II Congreso IB – Recursos Educativos Abiertos para la transformación digital educativa y los ODS

Comparto vídeo de la Conferencia: Recursos Educativos Abiertos para la transformación digital educativa y los ODS que tuve el gusto de impartir el pasado viernes, 16 de julio, en la Clausura del II Congreso Iberoamericano de Docentes #CongresoIB.

Aprovecho estas líneas para agradecer a Formación IB y a la Universidad Politécnica de Madrid, organizadores del Congreso, por haberme dado la oportunidad de clausurar tan importante y necesario espacio para la reflexión y el desarrollo profesional docente en el contexto iberoamericano. Felicidades y a por el tercer #CongresoIB.

En el mismo traté la conexión entre tres temáticas que me apasionan y que, en mi opinión, son nucleares y básicas, actores principales, de la Escuela que se nos viene, especialmente tras la crisis sanitaria provocada por la COVID-19.

Son:

  • Objetivos de Desarrollo Sostenible (ODS)
  • Transformación Digital Educativa (TDE)y,
  • Recursos Educativos Abiertos (REA).

¿Compartes mi opinión? Espero que te guste la conferencia y sea de utilidad. Quedo a la espera de tus comentarios.

II CONGRESO IBEROAMERICANO DE DOCENTES 2021

DOCENTES FRENTE A LA PANDEMIA (Congreso Virtual). Del 5 al 16 de julio de 2021.

La imposición de la nueva normalidad ha sido un punto de inflexión en el proceso educativo. Algunos de los mejores expertos de Iberoamérica exponen sus ideas y experiencias para ayudar a todos los docentes a mejorar su eficiencia en los próximos años.

Tuve la fortuna de disfrutar del I Congreso celebrado de manera presencial en la bella ciudad de Algeciras. Escribí sobre ello en Emoción, aprendizaje, formación reglada y redes horizontales docentes. Mini-crónica de mi paso por el I Congreso Iberoamericano de Docentes. Sin duda alguna, una excelente experiencia que os animo a disfrutar, aunque en esta ocasión a causa de la COVID-19 deba celebrarse en la modalidad virtual. 

EVENTO DE PRESENTACIÓN DEL II CONGRESO IB

Vídeo del Taller: Herramientas para un nuevo tiempo en la enseñanza y el aprendizaje de la matemática – II Congreso Iberoamericano de Docentes #CongresoIB

Vídeo del Taller: Herramientas para un nuevo tiempo en la enseñanza y el aprendizaje de la matemática – II Congreso Iberoamericano de Docentes #CongresoIB

Taller: Herramientas para un nuevo tiempo en la enseñanza y el aprendizaje de la matemática

Comparto vídeo del Taller: Herramientas para un nuevo tiempo en la enseñanza y el aprendizaje de la matemática que impartí el pasado jueves, 15 de julio, en el marco del II Congreso Iberoamericano de Docentes #CongresoIB.

En el mismo traté, sin poder profundizar en exceso debido al tiempo disponible, 4 herramientas que en mi opinión, como docente a pie de aula, investigador de la didáctica matemática y creador de contenidos educativos digitales, considero que:

  • forman parte de una nueva generación de herramientas digitales,
  • aportan un gran valor añadido y,
  • enriquecen sobremanera las clases de matemáticas y los aprendizajes de los estudiantes.

Soy usuario de las 4 y forman parte de mi “caja de herramientas”.

Estoy hablando de Geogebra Notas, Desmos Activities, Graspable Math Activities y Mathigon.

Sin duda alguna, estas herramientas digitales innovadoras han abierto un nuevo tiempo en la enseñanza y el aprendizaje de las matemáticas.

¿Compartes mi opinión? Espero que te guste el taller. Quedo a la espera de tus comentarios.

II CONGRESO IBEROAMERICANO DE DOCENTES 2021

DOCENTES FRENTE A LA PANDEMIA (Congreso Virtual). Del 5 al 16 de julio de 2021.

La imposición de la nueva normalidad ha sido un punto de inflexión en el proceso educativo. Algunos de los mejores expertos de Iberoamérica exponen sus ideas y experiencias para ayudar a todos los docentes a mejorar su eficiencia en los próximos años.

Tuve la fortuna de disfrutar del I Congreso celebrado de manera presencial en la bella ciudad de Algeciras. Escribí sobre ello en Emoción, aprendizaje, formación reglada y redes horizontales docentes. Mini-crónica de mi paso por el I Congreso Iberoamericano de Docentes. Sin duda alguna, una excelente experiencia que os animo a disfrutar, aunque en esta ocasión a causa de la COVID-19 deba celebrarse en la modalidad virtual. 

EVENTO DE PRESENTACIÓN DEL II CONGRESO IB

Colaboración con el Observatorio de Tecnología Educativa del INTEF. Graspable Math: una nueva manera de explorar y hacer matemáticas

El pase de diapositivas requiere JavaScript.

En esta entrada tengo el gusto de compartir artículo elaborado para el Observatorio de Tecnología Educativa del INTEF, un espacio de referencia en torno a la innovación digital en el aula.

Está dedicado a Graspable Math, una herramienta joven, aún poco extendida en España y en el contexto iberoamericano, con mucha potencialidad didáctica para el aula de matemáticas y con la que he trabajado de manera intensiva el último año.

 

ARTÍCULO EN EL OBSERVATORIO

Se trata de  “Graspable Math: una nueva manera de explorar y hacer matemáticas”. Está escrito por Luis Miguel Iglesias Albarrán, profesor de enseñanza secundaria en la especialidad de Matemáticas y Director del IES San Antonio en Bollullos Par del Condado (Huelva).

Graspable Math es una herramienta digital interactiva innovadora que permite una nueva manera de explorar y comprender, mediante la interacción (tocando y arrastrando números y símbolos), las relaciones matemáticas. Forma parte de un proyecto de investigación financiado por el Institute of Education Sciences (IES) dependiente del U.S. Department of Education.

Es una herramienta permite “aprender haciendo” (learning by doing) matemáticas, favoreciendo el aprendizaje autónomo de los estudiantes y permitiéndoles poner el foco en las estructuras matemáticas. El diseño de la herramienta ayuda a salvar el obstáculo de la notación formal, haciendo posible que el alumnado se centre en cómo funcionan. Les brinda, en este sentido, oportunidades para razonar y deducir de manera flexible sobre las tareas matemáticas.

Con Graspable Math se nos presenta, en definitiva, una nueva manera de explorar, enseñar y de hacer matemáticas.

Si quieres saber más sobre Grapable Math, puedes leer el artículo elaborado por Luis Miguel Iglesias Albarrán en el que, además, hace una valoración personal y ofrece recomendaciones para el empleo de esta herramienta.

Acceso al artículo “Graspable Math: una nueva manera de explorar y hacer matemáticas” en formatos PDF y web

 

Dejo a continuación más material por si quieres iniciarte en el uso de esta versátil herramienta.

PUBLICACIONES SOBRE GRASPABLE MATH

En este espacio he realizado distintas publicaciones al respecto:

 

LISTA DE VÍDEOS SOBRE GRASPABLE MATH

Comparto también lista con más de una treintena de vídeos sobre diferentes usos didácticos de esta herramienta.

 

Lista de vídeos en Youtube sobre Graspable Math (33 vídeos)

Te animo a usarla con tu alumnado, a compartirla con tus contactos y compañeros a través de la red y quedo a tu disposición para cualquier duda o comentario al respecto, en forma de comentario bajo esta entrada o en mis perfiles en redes sociales.

¡Ya me contarás cómo te ha ido con tus alumnos en clase! 🙂

MÁS CONTENDO MATEMÁTICO EN REDES SOCIALES

Artículo en monográfico Dialogia – O (Re)inventar da Educação em Tempos de Pandemia. El aprendizaje del álgebra en Educación Secundaria: las estrategias metacognitivas desde la tecnología digital

Se trata de una investigación realizada con mis directoras de Tesis, las doctoras Isabel Pascual y Blanca Arteaga, sobre el aprendizaje del álgebra en Educación Secundaria, usando las estrategias metacognitivas desde la tecnología digital. Aprovecho estas líneas para agradecer todo su conocimiento y el apoyo que me están brindando desde el primer instante de este viaje académico.

Dialogia – Dossiê: O (Re)inventar da Educação em Tempos de Pandemia [La (re) invención de la educación en tiempos de pandemia]

El número 36 de la Revista Dialogia ha publicado el monográfico “La (Re) invención de la educación en tiempos de pandemia” donde se recogen investigaciones que presentan como temáticas los diferentes matices y procesos de adaptación / transformación de la Educación Básica y Superior que, entre otros cambios, se reestructuraron en el entorno en línea, inesperadamente. En cierta medida, dicha migración aceleró la (re) invención de prácticas pedagógicas, dando un nuevo significado a los viejos espacios y creando nuevos lugares para el aprendizaje y la enseñanza. Esta nueva situación ha generado numerosos desafíos a la Educación, en su conjunto, afectando, en particular, a docentes, estudiantes, directivos y familiares, a la vez que brinda un despertar al énfasis y expansión de la educación en línea en el país y el mundo.

En este sentido, el monográfico temático de esta edición de Dialogia cubre diferentes aspectos, innovaciones y desafíos que se plantean a la Educación en tiempos de Pandemia. Se trata de pensar y problematizar, en este contexto, las diferentes formas y contenidos de la nueva organización pedagógica en el entorno online y fuera de él. Entre otros procesos, este nuevo marco socioeconómico y cultural viene provocando cambios en diferentes frentes, involucrando recursos humanos, didácticos, tecnológicos, estrategias educativas, acceso social, formación docente, llevando al foco analítico los avances y dificultades encontradas en esta coyuntura nacional y global. tan particular en la trayectoria histórica de la humanidad.

Más información: aquí.

 

Artículo: El aprendizaje del álgebra en Educación Secundaria: las estrategias metacognitivas desde la tecnología digital

Resumen

La situación de aprendizaje en las escuelas españolas cambió cuando se decretó el estado de alarma en el mes de marzo de 2020, cerrando las escuelas de una forma brusca. Este artículo muestra la adaptación a un medio de aprendizaje íntegramente digital, llevada a cabo en un instituto de Educación Secundaria, en el sur de España. El trabajo se desarrolla en un aula de Matemáticas con estudiantes de 14-15 años, que aprenden conceptos de álgebra. Para ello, se utilizan materiales diversos que facilitan el aprendizaje autónomo y la comunicación docente-estudiante. Los instrumentos de evaluación utilizados son dos plantillas para la resolución de problemas sustentadas en estrategias metacognitivas. Los resultados muestran que los estudiantes han superado los criterios de evaluación marcados para este bloque de contenido, a la vez que el diseño ha facilitado unos niveles de retroalimentación óptima durante todo el proceso de enseñanza-aprendizaje.

Palabras clave

Aprendizaje del algebra; Aprendizaje en línea; COVID-19; Enseñanza virtual; Metacognición; Formación matemática en secundaria

Texto completo

PDF (ESPAÑOL (ESPAÑA))

 

Índice completo del número 36 de la revista Dialogia

Número 36 (2020): septiembre / diciembre

Índice

Editorial

Rosiley Aparecida Teixeira, Adriana Aparecida de Lima Terçariol, Daniela Melaré Vieira Barros, Jason Ferreira Mafra
1-2

Entrevista

Rosiley Aparecida Teixeira, Adriana Aparecida de Lima Terçariol
3-6

Monográfico La (re) invención de la educación en tiempos de pandemia

Lisandra da Trindade Alfaro, Caroline Tavares de Souza Clesar, Lucia Maria Martins Giraffa
7-21
Leer Raquel Almeida, Carla Spagnolo
22-34
Tárcila Lorrane Fernandes de Souza Soares, Ícaro Silva de Santana, Maria Luiza Caires Comper
35-48
Luis Miguel Iglesias Albarrán, Isabel Pascual Gómez, Blanca Arteaga-Martínez
49-72
Andréia Martins, Agata Laisa Laremberg Alves Cavalcanti, Anne Caroline Soares Dourado
73-85
Marcos Godoi, Larissa Beraldo Kawashima, Luciane de Almeida Gomes
86-101
Juliana Pedroso Bruns, Rita Buzzi Rausch
102-115
Fernanda Carla Da Silva Costa, Viviane Lima Martins
116-127
Joao Ferreira Sobrinho Junior, Cristina de Cássia Pereira Moraes
128-148
Jordana da Silva Corrêa, Neiva Afonso Oliveira
149-161
Regiane Caldeira, Stephanni G. Silva Sudré, Gabriel José Pereira
162-175
Fernando José de Almeida, Maria da Graça Moreira Silva, Maria Elizabeth Bianconcini de Almeida
176-192
Jacks Richard de Paulo, Stela Maris Mendes Siqueira Araújo, Priscila Daniele de Oliveira
193-204
Brenda Iolanda Silva do Nascimento, Iago Vilaça de Carvalho, Fernanda Antunes Gomes da Costa
205-219
Michel Douglas Pachiega, Débora Raquel da Costa Milani
220-234
Luciana Longuini da Silva, Kellen Jacobsen Follador
235-251
Raquel Mignoni de Oliveira, Ygor Corrêa
252-268
Jane Helen Gomes de Lima, Gislane Sávio, Graziela Pavei Peruch Rosso
269-282
Eniel de Espírito Santo, Tatiana Polliana Pinto de Lima
283-297
Ana Carolina Oliveira Silva, Shirliane de Araújo Sousa, Jones Baroni Ferreira de Menezes
298-315
Filipa Seabra, Luísa Aires, António Teixeira
316-334
Wanderleya Nara Gonçalves Costa
335-347
Alexandre José de Carvalho Silva, Sayonara Ribeiro Marcelino Cruz, Warlley Ferreira Sahb
348-366
Ana Nobre, Ana Mouraz
367-381
Carla Cristie de França Silva, Lêda Gonçalves de Freitas
382-395
Fernanda Araujo Coutinho Campos, Rute Pereira
396-410
Jucelia Cruz, Elisabeth dos Santos Tavares, Michel Costa
411-427

Artículos

Anaide Maria Alves da Paz, Maria de Fátima Gomes da Silva
428-440
Anselmo Calzolari, Éverton Madaleno Batisteti, Roseli Rodrigues de Mello
441-457
Elizabete Pereira Barbosa, Luciana Freitas de Oliveira Almeida
458-469
Linda Carter Souza da Silva, Luiz Gomes da Silva Filho
470-483
Givanildo da Silva, Alex Vieira da Silva, Inalda Maria dos Santos
484-501
Marinalva Lopes Ribeiro, Taiara de Lima Silva Sales
502-517
Ana Paula de Almeida Guimarães, Lenie Machado, Gabriela Reyes Ormeno
518-531
Jorge França de Farias Júnior
532-549
Telma Temoteo dos Santos
550-567
Rosemary Roggero, Adriana Zanini da Silva
568-580
Milena da Silva Langhanz, Lorena Almeida Gill
581-594
Maria Daiane da Silva Monteiro, Suely Alves da Silva
595-609

Dialogía

Graspable Math y Geogebra; aliadas extraordinarias para enseñar y aprender matemáticas en contextos presenciales discontinuos. 5 tareas resueltas en vídeos sobre funciones lineales, afines, paralelismo y ecuaciones de la recta

Los lectores asiduos de este rincón virtual matemático conocen sobradamente mi predilección por estas dos poderosas herramientas digitales. En mi opinión, indispensables ambas para la enseñanza y el aprendizaje de la matemática en el siglo XXI, siendo especialmente útiles en los contextos de enseñanza-aprendizaje semipresencial y a distancia especialmente extendidos con motivo de la COVID-19.

Aprovecho estas líneas para invitarte a visitar las distintas publicaciones sobre propuestas didácticas para trabajar en el aula y los materiales que he compartido sobre ambas en los últimos años:

Pues bien, si juntamos ambas, el resultado no puede ser catalogado de otro modo que excelente.

Como muestra de ello comparto en esta entrada 5 tareas resueltas paso a paso, en otros tantos vídeos, con ayuda de Geogebra y Graspable Math. 

Estos materiales los desarrollé para mis estudiantes de Matemáticas de 3º de ESO (14-15 años) para trabajar en modalidad online durante el cierre de los centros educativos españoles, periodo de la suspensión de la actividad docente presencial (marzo-junio 2020), con motivo de la COVID-19.

Espero te animes a usar los vídeos con tu alumnado si los consideras de utilidad.

 

Vídeos

1. Funciones lineales. Pertenencia a recta. Ecuación de la recta Geométrico – Graspable Math & Geogebra

 

2. Funciones lineales. Pertenencia a recta. Ecuación de la recta. Geometría Analítica. Graspable Math

 

3. Funciones afines. Ecuación de la recta. Recta paralela pasando por un punto – Graspable Math & Geogebra

 

4. Funciones lineales – Paralelismo – Significado de m y n en la ecuación explícita – Graspable Math & Geogebra

 

5. Funciones afines. Ecuación de la recta. Recta paralela pasando por un punto – Graspable Math & Geogebra

Más contenido matemático en redes sociales

Tarea Open Middle sobre logaritmos (cambio de base) elaborada en Graspable Math y en Scratch

Comenzamos la semana con esta entrada donde comparto los materiales de una propuesta didáctica para trabajar los logaritmos (teorema del cambio de base).

Se trata de una tarea de tipo Open Middle, traducida al español y adaptada a partir de la original en inglés del profesor Bryan Anderson. La he implementado en dos herramientas que en mi opinión presentan un potencial didáctico increible y a las que soy adicto; Graspable Math y Scratch.

Para ayudarte a implementar esta propuesta con tus estudiantes incluyo:

  1. Enunciado de la tarea en Graspable Math
  2. Tarea interactiva. Logaritmos OM realizada en Graspable Math
  3. Tarea interactiva. Logaritmos OM realizada en Scratch

Espero te animes a usar la propuesta con tu alumnado y os resulte atractiva y de utilidad.

Ya me contarás cómo te ha ido.

¡Ánimo!

 

Propuesta didáctica

 

1. Enunciado de la tarea en Graspable Math

 

2. Tarea interactiva. Logaritmos OM, realizada en Graspable Math.

 

3. Tarea interactiva. Logaritmos OM realizada en Scratch

Enlace a Logaritmos OM en Scratch

 

Esta entrada participa en la Edición 11.6: Conjeturas del Carnaval de Matemáticas, que en esta ocasión organiza Gaussianos.

 

Más contenido matemático en redes sociales

WP2Social Auto Publish Powered By : XYZScripts.com
A %d blogueros les gusta esto: