Bachillerato

Pensamiento computacional e inteligencia artificial. Cuadernillo del Día Escolar de las Matemáticas 2026 (#DEM2026) – FESPM

Comparte MatemáTICas: 1,1,2,3,5,8,13,...

Día Escolar de las Matemáticas 2026: Pensamiento Computacional e Inteligencia Artificial (PCeIA)

Como cada año, el 12 de mayo de 2026 será un día de celebración para la comunidad matemática española. Promovido por la Federación Española de Sociedades de Profesores de Matemáticas (FESPM), celebraremos un año más el Día Escolar de las Matemáticas (DEM).

En esta entrada tengo el gusto de anunciar que este año he sido el encargado de elaborar el cuadernillo oficial del Día Escolar de las Matemáticas 2026, editado por la Federación Española de Sociedades de Profesores de Matemáticas (FESPM), dedicado a un tema apasionante y de plena actualidad: el Pensamiento Computacional (PC) y la Inteligencia Artificial (IA).

Agradezco sinceramente a la FESPM y a su Secretaría de actividades con alumnos, encargada de coordinar el DEM, la confianza depositada en mí para elaborar este material, que pretende acercar a las aulas estas dos ideas clave del presente y del futuro educativo. 

No se trata de formar programadores, sino de usar estas formas de pensar para aprender matemáticas con más sentido, creatividad y significado.

Matemáticas que piensan

Aprender matemáticas es mucho más que hacer operaciones. Es una forma de mirar el mundo, de pensar con lógica y de buscar soluciones.

Vivimos rodeados de datos, algoritmos y máquinas que aprenden: desde los asistentes virtuales que responden a nuestras preguntas hasta las calculadoras inteligentes que dibujan gráficos y corrigen errores. Detrás de todo esto hay matemáticas que analizan, modelan y predicen. Matemáticas que piensan.

El cuadernillo parte de una idea sencilla pero potente: entender cómo pensamos cuando resolvemos problemas para comprender también cómo aprenden las máquinas.

Así, el pensamiento computacional nos enseña a organizar ideas, dividir problemas complejos en partes más sencillas, identificar patrones y crear algoritmos, mientras que la inteligencia artificial (IA) nos invita a reflexionar sobre cómo los sistemas pueden aprender, mejorar y tomar decisiones, siempre desde una mirada humana y ética.

Un modelo para crear, pensar y compartir

El material se apoya en un modelo que une tres ideas fundamentales:

1️⃣ Resolver un problema que motive y haga pensar.

2️⃣ Usar el pensamiento computacional para organizar y buscar soluciones.

3️⃣ Compartir y dialogar en un Círculo Matemático Computacional (CMC), aprendiendo en equipo y desarrollando la competencia comunicativa.

Este enfoque no solo mejora las habilidades matemáticas, sino también la capacidad de explicar, razonar, colaborar y pensar críticamente, integrando la tecnología de manera reflexiva.

En el cuadernillo encontraréis actividades, retos y juegos diseñados para observar, preguntar, probar, representar y decidir, empleando herramientas digitales como LearningML, Scratch y distintos simuladores.

Matemáticas con sentido y humanidad

Este trabajo se enmarca en una línea de investigación-acción que vengo desarrollando desde hace más de una década en torno al pensamiento computacional como metodología para aprender matemáticas con sentido y, desde hace varios años, en el diseño de un marco sostenible de aprendizaje, evaluación y uso didáctico y ético de la inteligencia artificial en contextos educativos.

Ambos ámbitos confluyen en una misma idea: poner la tecnología al servicio del pensamiento y del desarrollo humano, y no al revés. Esa es la esencia de proyectos como este u otros como LingMáTICas, donde lenguaje, matemáticas y tecnología se unen para fortalecer la competencia comunicativa y el razonamiento matemático en entornos digitales.

Porque las matemáticas que piensan no buscan solo respuestas correctas: enseñan a razonar bien, comunicar con claridad y actuar con responsabilidad. Y hoy, aprender matemáticas también significa aprender a convivir con las máquinas… sin dejar de ser humanos.

Descarga el cuadernillo completo

El cuadernillo se puede descargar aquí, y animamos a todo el profesorado a verlo y difundirlo. Espero que os guste y que le saquéis mucho partido en el aula con vuestros alumnos.

Como es costumbre, entorno al 12 de mayo el autor del cuadernillo dará una conferencia del tema, de la cual ya pondremos más datos cuando se aproxime.

FESPM – PCeIA – DEM 2026

Cuadernillo DEM 2026

 

DEM2026-PCeIA
DEM_26_PC_e_IA-01
DEM_26_PC_e_IA-02
DEM_26_PC_e_IA-03
DEM_26_PC_e_IA-04
« de 7 »

Cuadernillo DEM 2026

Día Escolar de las Matemáticas en la web de la FESPM y enlaces a cuadernillos desde el año 2000

Día Escolar de las Matemáticas

MÁS CONTENIDO MATEMÁTICO EN REDES SOCIALES

Comparte MatemáTICas: 1,1,2,3,5,8,13,...

Conferencia plenaria en el XXVI ENEM. ‘IA y Matemáticas: transformar la enseñanza sin perder el sentido’

Comparte MatemáTICas: 1,1,2,3,5,8,13,...

A finales de julio tuve el privilegio de participar y disfrutar, impartiendo una Conferencia plenaria, en el XXVI Encuentro Nacional de Estudiantes de Matemáticas (ENEM), representando a la Federación Española de Sociedades de Profesores de Matemáticas (FEPM). Mi intervención llevó por título “IA y Matemáticas: transformar la enseñanza sin perder el sentido”.

En la charla planteé preguntas que siguen abiertas:

 

  • ¿Puede una máquina ayudarnos a pensar mejor?
  • ¿Qué ocurre cuando la inteligencia artificial entra en el aula de matemáticas?

A partir de ellas, compartí reflexiones y ejemplos sobre cómo el pensamiento computacional, el aprendizaje automático (Machine Learning) y la Inteligencia Artificial Generativa (IAG) están transformando el aprendizaje matemático. Subrayé que, más allá de automatizar tareas, la IA puede convertirse en una potente herramienta para modelizar problemas, explorar patrones, formular conjeturas, plantear nuevas preguntas y reforzar el razonamiento matemático.

Defendí, además, la necesidad de que el profesor siga siendo el guía esencial y que el alumno ocupe el centro del proceso, potenciando su intuición, su capacidad de equivocarse y de aprender del error, así como fomentar su creatividad para conectar ideas.

Quiero aprovechar estas líneas para agradecer a la Federación Española de Sociedades de Profesores de Matemáticas (FESPM) la confianza en mi persona, así como a la Asociación Nacional de Estudiantes de Matemáticas (ANEM) por la excelente organización del encuentro, así como la cálida acogida que recibí. De manera especial para Paula García Linares, Directora de Actividades del ENEM, por su dedicación y atención constante antes, durante y después del evento.

Sobre el XXVI ENEM

El ENEM 2025 convirtió a Granada en el epicentro del pensamiento matemático joven, regresando a la ciudad que lo vio nacer hace 25 años. Durante una semana, más de 350 estudiantes de Matemáticas, Estadística y Ciencia de Datos participaron en una edición conmemorativa que evidenció el papel creciente de estas disciplinas en campos clave como la inteligencia artificial, la biomedicina, la sostenibilidad o la economía.

Organizado por la Asociación Nacional de Estudiantes de Matemáticas (ANEM), el encuentro ofreció conferencias plenarias, talleres y mesas redondas con expertos del mundo académico, empresarial e investigador, muchos de ellos con proyección internacional. Esta edición incorporó un formato híbrido, que permitió seguir las ponencias en línea y ampliar su impacto.

Entre los espacios más destacados estuvo el Foro de Empresas y Emprendimiento, pensado para conectar a los jóvenes con entidades públicas y privadas que demandan perfiles cualificados en análisis de datos, modelización matemática y diseño de algoritmos, favoreciendo entrevistas en directo y contactos profesionales.

La Universidad de Granada, anfitriona a través de su Facultad de Ciencias, ofreció un marco inmejorable. Reconocida entre las 100 mejores del mundo en Matemáticas y Estadística y situada en el puesto 20 global en Ciencias de la Computación, su apoyo institucional resultó clave para el éxito del congreso.

Más allá de las sesiones académicas, los asistentes disfrutaron de un programa cultural que les permitió descubrir Granada desde dentro, demostrando que las mejores ideas también surgen en los momentos de convivencia.

El ENEM 2025 dejó claro que las matemáticas son mucho más que teoría. Son motor de innovación, puente entre disciplinas, y herramienta para comprender y transformar el mundo. Haber compartido esta experiencia con tantos jóvenes talentosos ha sido muy gratificante, productivo y enriquecedor. El futuro de la educación matemática en España, está más que asegurado. 

GALERÍA DE IMÁGENES               

El pase de diapositivas requiere JavaScript.

Comparte MatemáTICas: 1,1,2,3,5,8,13,...

Cita: el cerebro existe para resolver problemas

Comparte MatemáTICas: 1,1,2,3,5,8,13,...

 

El cerebro existe para resolver problemas. Es su razón de ser.

Luis M. Iglesias (2025) · MatemáTICas: 1,1,2,3,5,8,13,…

Solo el ejercicio mantiene vivas las capacidades mentales.
Las matemáticas no son solo números: son una forma de pensar, de entender el mundo… de abordar sus problemas y proponer soluciones.
Porque aprender a pensar también es aprender a vivir.
 

Video 🎞️

La capacidad 🧠 de los cuervos 🐦‍⬛ para resolver problemas es 🔝
Comparte MatemáTICas: 1,1,2,3,5,8,13,...

Cita: el valor de un buen problema de matemáticas

Comparte MatemáTICas: 1,1,2,3,5,8,13,...

Un buen problema vale más por las ideas que despierta que por la respuesta que guarda.

Luis M. Iglesias (2025) · MatemáTICas: 1,1,2,3,5,8,13,…

Comparte MatemáTICas: 1,1,2,3,5,8,13,...

Música y matemáticas se dan la mano en el cuadrado infinito (The infinite square)

Comparte MatemáTICas: 1,1,2,3,5,8,13,...

Una partitura que parece un juego. Un dibujo que suena. Un cuadrado que no acaba nunca…

Así es The Infinite Square (1975), una obra del compositor cubano-estadounidense Aurelio de la Vega, al que descubrí hace algún tiempo. Aurelio es una de esas mentes que supo entrelazar arte, azar y abstracción con una libertad que parece nacida del mismo espíritu que impulsa a un matemático cuando imagina infinitos caminos en un tablero finito.

Nacido en La Habana en 1925 y fallecido en California en 2022, De la Vega forma parte de esa constelación de creadores que apostaron por una música gráfica. Entre 1975 y 1977 dibujó, coloreó a mano y diseñó un conjunto de partituras que son auténticos paisajes sonoros por descubrir.

The Infinite Square no está compuesta para una formación concreta, sino “para cualquier número de instrumentos y/o voces”. En la versión que puedes escuchar aquí, el cuadrado cobra vida gracias a una flauta, un oboe, un saxofón alto y un clarinete bajo, dibujando un espacio sonoro cambiante, libre, casi como un plano de una ciudad donde las rutas se improvisan.

Y ahí están las matemáticas, sin necesidad de que se aparezcan en foma de números.

  • El cuadrado, representando simetría y estructura.
  • El infinito, concepto matemático que tanto inquieta, al tiempo que seduce.
  • La indeterminación, tan propia de las matemáticas como de la música aleatoria.

Cada interpretación es distinta. Como en la matemática combinatoria, las posibilidades crecen y se expanden. No hay dos cuadrados iguales. No hay un único infinito.

Sin duda alguna nos invita a mirar con los oídos y a escuchar con los ojos convirtiendo al intérprete en creador, y al oyente en coautor, cómplice, de esta nueva creación.

Como ya he comentado en otras entradas de este blog, nos recuerda que las matemáticas también son una forma de arte, y el arte, una forma de pensar con precisión… aunque el camino sea incierto.

🎼 The Infinite Square (1975), de Aurelio de la Vega.🎼 

🎷 Interpretado por Simon Desorgher (flauta), Catherine Pluygers (oboe), Adrian Northover (saxofón alto) e Ian Mitchell (clarinete bajo)

Ya lo veis, cuando matemáticas y música se dan la mano, surgen caminos inesperados. El cuadrado infinito (The infinite square) es un buen ejemplo de ello.

Más contenido matemático en redes sociales

Comparte MatemáTICas: 1,1,2,3,5,8,13,...

Resolución de problemas y razonamiento matemático. Ejercicios vs. Problemas en Matemáticas

Comparte MatemáTICas: 1,1,2,3,5,8,13,...

El nuevo currículo de Matemáticas de la LOMLOE, tiene como líneas principales en la definición de las competencias específicas de matemáticas: la resolución de problemas y las destrezas socioafectivas.

En la introducción de la materia se recoge literalmente:

La investigación en didáctica ha demostrado que el rendimiento en matemáticas puede mejorar si se cuestionan los prejuicios y se desarrollan emociones positivas hacia las matemáticas. Por ello, el dominio de destrezas socioafectivas como identificar y manejar emociones, afrontar los desafíos, mantener la motivación y la perseverancia y desarrollar el autoconcepto, entre otras, permitirá al alumnado aumentar su bienestar general, construir resiliencia y prosperar como estudiante de matemáticas.

Por otro lado, resolver problemas no es solo un objetivo del aprendizaje de las matemáticas, sino que también es una de las principales formas de aprender matemáticas. En la resolución de problemas destacan procesos como su interpretación, la traducción al lenguaje matemático, la aplicación de estrategias matemáticas, la evaluación del proceso y la comprobación de la validez de las soluciones. Relacionado con la resolución de problemas se encuentra el pensamiento computacional. Este incluye el análisis de datos, la organización lógica de los mismos, la búsqueda de soluciones en secuencias de pasos ordenados y la obtención de soluciones con instrucciones que puedan ser ejecutadas por una herramienta tecnológica programable, una persona o una combinación de ambas, lo cual amplía la capacidad de resolver problemas y promueve el uso eficiente de recursos digitales.

En este nuevo paradigma curricular se hace necesario poner la mirada en lo que la investigación educativa ha caracterizado como buenos resolutores de problemas, así como aquellos alumnos que presentan dificultades a la hora para resolver problemas matemáticos.

Infografía. Presentación interactiva. Ejercicios vs. Problemas

Mostrar presentación: Ejercicios vs. Problemas · MatemáTICas: 1,1,2,3,5,8,13,…

Enlaces de interés

Más contenido matemático en redes sociales

Comparte MatemáTICas: 1,1,2,3,5,8,13,...

Material del Taller: «Integración de GeoGebra y Phyton: PyGgb» en el V Día Nacional Geogebra · FESPM

Comparte MatemáTICas: 1,1,2,3,5,8,13,...

Los pasados días 4 y 5 de octubre tuvo lugar en la Facultad de Educación del Campus de Cuenca de la Universidad de Castilla La Mancha, el V Día Nacional Geogebra, organizado por la Federación Española de Sociedades de Profesores de Matemáticas (FESPM), con el apoyo de distintas administraciones.

Fueron dos días intensos de aprendizaje y compartiendo con colegas de todo el territorio nacional en torno a la mejora de la Educación Matemática con ayuda de esta potente herramienta digital y los excelentes recursos digitales compartidos por la comunidad docente mundial. 

Libro Geogebra. Material del Taller sobre PyGgb

 
PyGgb es una herramienta aún en estado embrionario, pero con una potencialidad didáctica increíble, como pudimos ver durante el desarrollo del taller y se puede comprobar en el libro Geogebra que elaboré expresamente para el mismo el cual os comparto a continuación:
T3-V-DNG-TALLER-PYTHON-GEOGEBRA-PYGGB-LUIS-MIGUEL-IGLESIAS-ALBARRAN-5
T3-V-DNG-TALLER-PYTHON-GEOGEBRA-PYGGB-LUIS-MIGUEL-IGLESIAS-ALBARRAN-1
T3-V-DNG-TALLER-PYTHON-GEOGEBRA-PYGGB-LUIS-MIGUEL-IGLESIAS-ALBARRAN-2
T3-V-DNG-TALLER-PYTHON-GEOGEBRA-PYGGB-LUIS-MIGUEL-IGLESIAS-ALBARRAN-3
T3-V-DNG-TALLER-PYTHON-GEOGEBRA-PYGGB-LUIS-MIGUEL-IGLESIAS-ALBARRAN-4

INTEGRACIÓN DE GEOGEBRA Y PYTHON: PYGGB. EXPLORANDO NUEVAS FRONTERAS EN LA ENSEÑANZA Y EN EL APRENDIZAJE DE LAS MATEMÁTICAS
Luis Miguel Iglesias Albarrán
lu***********@***il.com · https://luismiglesias.es
IES San Antonio (Bollullos Par del Condado – Huelva) · España

Nivel educativo: Educación Secundaria Obligatoria y Bachillerato

Palabras clave: GeoGebra, Python, Pensamiento Computacional, Competencias Específicas

Resumen
En el marco del V Día GeoGebra en España, presentamos PyGgb, una poderosa combinación de GeoGebra y Python que abre nuevas posibilidades para la Enseñanza y para el Aprendizaje de las Matemáticas. GeoGebra es una herramienta ampliamente utilizada por la comunidad educativa matemática, y de otras disciplinas, a nivel mundial, para visualizar y apoyar las explicaciones facilitando la comprensión e interpretación de los conceptos matemáticos, modelizar fenómenos y situaciones de la vida real,… Por otra parte, Python es un lenguaje de programación versátil y popular en la ciencia de datos y la automatización. La herramienta PyGgb es un puente que conecta estas dos potentes herramientas, permitiendo a los usuarios, en nuestro caso profesores y alumnos, aprovechar lo mejor de ambos mundos.

Libro Geogebra: https://www.geogebra.org/m/mzzmnwus

Fotos de momentos del evento y con amigos

VDNGGBFESPM-luismiglesias-07
VDNGGBFESPM-luismiglesias-01
VDNGGBFESPM-luismiglesias-05
VDNGGBFESPM-luismiglesias-09
VDNGGBFESPM-luismiglesias-03
« de 4 »

Las palabras de mi amigo Juan Martínez-Tébar Giménez, merecen mención especial: «De Huelva me encantan las gambas 🦐, el jamón 🐖 y Luismi 🧑‍💻» 🤗.

 
 
En resumidas cuentas, regresé con la mochila 🎒 cargada de aprendizajes, libros y buenos momentos de convivencia con los colegas de las sociedades de profesores de matemáticas del país.

Enlaces de interés

Más contenido matemático en redes sociales

Comparte MatemáTICas: 1,1,2,3,5,8,13,...

Taller: «Integración de GeoGebra y Phyton: PyGgb» en el V Día Nacional Geogebra · FESPM

Comparte MatemáTICas: 1,1,2,3,5,8,13,...

Los próximos días 4 y 5 de octubre tendrá lugar en Cuenca el V Día Nacional Geogebra, organizado por la Federación Española de Sociedades de Profesores de Matemáticas (FESPM), con el apoyo de distintas administraciones. Serán dos días intensos compartiendo con colegas de todo el territorio nacional en torno a esta potente y versátil herramienta, fundamental para el desarrollo de los procesos de Enseñanza-Aprendizaje en las aulas de todo el mundo.

Además compartir buenos ratos de tertulia matemática con los compañeros, aprender en sus talleres y conferencias, tendré la oportunidad de impartir un taller, en la mañana del sábado día 5, sobre PyGGb =  Python + Geogebra

INTEGRACIÓN DE GEOGEBRA Y PYTHON: PYGGB. EXPLORANDO NUEVAS FRONTERAS EN LA ENSEÑANZA Y EN EL APRENDIZAJE DE LAS MATEMÁTICAS
Luis Miguel Iglesias Albarrán
lu***********@***il.com · https://luismiglesias.es
IES San Antonio (Bollullos Par del Condado – Huelva) · España

Nivel educativo: Educación Secundaria Obligatoria y Bachillerato

Palabras clave: GeoGebra, Python, Pensamiento Computacional, Competencias Específicas

Resumen
En el marco del V Día GeoGebra en España, presentamos PyGgb, una poderosa combinación de GeoGebra y Python que abre nuevas posibilidades para la Enseñanza y para el Aprendizaje de las Matemáticas. GeoGebra es una herramienta ampliamente utilizada por la comunidad educativa matemática, y de otras disciplinas, a nivel mundial, para visualizar y apoyar las explicaciones facilitando la comprensión e interpretación de los conceptos matemáticos, modelizar fenómenos y situaciones de la vida real,… Por otra parte, Python es un lenguaje de programación versátil y popular en la ciencia de datos y la automatización. La herramienta PyGgb es un puente que conecta estas dos potentes herramientas, permitiendo a los usuarios, en nuestro caso profesores y alumnos, aprovechar lo mejor de ambos mundos.

ENTRADA SOBRE PyGgb EN MATEMÁTICAS: 1,1,2,3,5,8,13,…

 

 

INFORMACIÓN DE LA FESPM SOBRE LOS DÍAS GEOGEBRA

Durante los últimos años se han venido celebrando distintas actividades de formación que tenían como tema de trabajo el uso de este software con fines didácticos, para dar a conocer las posibilidades que a lo largo de sus sucesivas versiones ha ido incorporando.

En particular han sido numerosas las actividades realizadas en torno al programa GeoGebra, tanto en cada Comunidad Autónoma como de carácter más general, entre las que cabe mencionar el Día GeoGebra Iberoamericano celebrado en Madrid en 2017, el I Congreso Internacional GeoGebra de Córdoba, en 2023, o el último Día GeoGebra estatal celebrado en Albacete en 2018.

Desde la FESPM consideramos que es el momento de retomar esta última actividad, aprovechando el éxito del pasado I Congreso internacional, que tendrá continuidad en 2025 con una nueva edición, que en este caso se celebrará en Portugal.

La convocatoria de un Día GeoGebra con carácter estatal servirá para retomar la coordinación entre los distintos Institutos de GeoGebra creados en las distintas comunidades autónomas, con el objetivo de aunar esfuerzos para lograr que se siga trabajando para generalizar el uso de este software como recurso en el aula, de manera que se puedan aprovechar las posibilidades didácticas que ofrece para promover un cambio metodológico en la enseñanza de las matemáticas en los diferentes niveles educativos, desde Educación Infantil hasta Universidad.

Con estos objetivos se propone la celebración de una nueva edición estatal del Día GeoGebra, que tendrá lugar en Cuenca, durante los días 4 y 5 de octubre de 2024.

Enlace a web FESPM: Descarga la convocatoria aquí

Enlace a web FESPM: Descarga el programa aquí

 
Comparte MatemáTICas: 1,1,2,3,5,8,13,...

Matemáticas con herramientas digitales. Problema geométrico: dos cuadrados y un rectángulo, con Geogebra

Comparte MatemáTICas: 1,1,2,3,5,8,13,...

Navegando por la red me topé con este bonito problema:

«Dos cuadrados y un rectángulo. ¿Cuánto vale el área del rectángulo?»

Tras analizarlo con detalle y resolverlo usando un poco de trigonometría me di cuenta que era bastante más rico de lo que aparentaba y que escondía un bonito invariante geométrico relacionado con él área del cuadrado inicial, independientemente de cuales fueran las áreas de los cuadrados adyacentes dibujados. 

Y, en efecto, con ayuda de este magnífico software de geometría dinámica, Geogebra, pude certificar que era cierta mi observación. 

Es por ello por lo que he pensado que tal vez sería de utilidad para otros compañeros docentes que quieran trabajarlo en el aula. 

Bien como problema aislado, para analizar en detalle y promover un escenario de conjeturas (razonamiento y prueba), para seguir el protocolo de construcción y que los alumnos realicen construcciones del problema con diferentes tamaños, compartan sus resultados y conjeturen,…

Applet interactivo en Geogebra.org

Applet interactivo en Geogebra.org

Pulsa para colocar a pantalla completa (esquina inferior derecha) y pulsa el botón de reproducir (play)

 

Vídeo con explicación del problema e interacción con el applet

 

Espero que resulte de utilidad. Ya me contarás qué te parece y si te ha funcionado en el aula. 

Saludos y feliz domingo 😉

Más contenido matemático en redes sociales

Comparte MatemáTICas: 1,1,2,3,5,8,13,...

Matemáticas con herramientas digitales. Posición relativa de rectas en el plano: resolución analítica (hoja de cálculo) y gráfica (Geogebra)

Comparte MatemáTICas: 1,1,2,3,5,8,13,...

En esta entrada comparto un ejercicio de estudio de la posición relativa de dos rectas en el plano, apoyado en dos herramientas digitales:

  1. Para la resolución analítica hemos usado la Hoja de cálculo de Google.
  2. Para la resolución gráfica hemos usado la archiconocida Geogebra.

Esta doble resolución favorece la comprensión por parte de nuestro alumnado, así ha ocurrido en Matemáticas B de 4º de ESO, y es por ello por lo que os lo he querido dejar por aquí. Al disponer de la representación gráfica y enfrentarla con la resolución analítica, favorece la conexión intra-matemática entre la ecuación, el significado de los distintos coeficientes y la representación gráfica de la recta. 

Posición relativa de rectas en el plano – Resolución gráfica (Pulsar para acceder a Geogebra)

Esto puede ser utilizado para enseñar, proyectando en la Pizarra Digital, o para que el alumnado elabore sus propios productos digitales, favoreciendo el aprendizaje significativo y el desarrollo competencial del mismo.

Espero que resulte de utilidad. Ya me contarás qué te parece y si te ha funcionado en el aula. 

Saludos y buen finde 😉

Más contenido matemático en redes sociales

Comparte MatemáTICas: 1,1,2,3,5,8,13,...
WP2Social Auto Publish Powered By : XYZScripts.com