Aprender a aprender

Participación en Proyecto de Investigación Educativa con la herramienta ToolboX para desarrollar el pensamiento computacional en el aula de Matemáticas #STEM

Comparte MatemáTICas: 1,1,2,3,5,8,13,...

Durante el curso pasado, la D.G. de Innovación y Formación del Profesorado de la Consejería de Educación de la Junta de Andalucía puso en marcha un Proyecto de Investigación Educativa con la Universidad de Málaga consistente en realizar la “Validación de la herramienta Toolbox”, mediante la introducción de la programación informática y el pensamiento computacional en la escuela y evaluar su impacto en los aprendizajes de los estudiantes.

Al recibir dicha invitación por parte del Servicio de Innovación Educativa, tras años de trabajo en el aula y en la formación permanente del profesorado en esta línea, no dudé en sumarme a la iniciativa, así como hacer extensiva la invitación a todos mis compañeros/as del Departamento de Matemáticas. De este modo participamos los/as 6 profesores/as del Departamento, con 120 alumnos de los cursos 2º, 3º y 4º de ESO, usando el pensamiento computacional y la herramienta de programación informática, ToolboX, como medio para resolver problemas de matemáticas, con apenas 10 ordenadores portátiles como material informático disponible para la realización de este proyecto, con el esfuerzo y el trabajo de planificación que ello conlleva pero concluyendo que el esfuerzo bien mereció la pena. 

 

El proyecto de investigación constaba de dos partes o experimentos, E1 y E2.

Experimento E1. Experimento sobre adquisición de habilidades de programación («Hora del código»)

La realización de E1 en nuestro centro contó con la participación al completo del Departamento de Matemáticas (6 profesores/as) y 120 alumnos/as de 2º, 3º (incluyendo alumnado de PMAR de ambos cursos) y 4º de ESO, en las materias de Matemáticas, Matemáticas Académicas, Matemáticas Aplicadas, Ámbito Científico-Matemático y TIC.

Comenzando por el final podemos afirmar que la valoración es muy positiva, tanto en rendimiento obtenido como en las impresiones manifestadas por los estudiantes y por nosotros los docentes, si bien es cierto que la preparación previa para poder llevar a cabo la propuesta:

  • Instalación de Guadalinex Slim en 12 ultraportátiles de Escuela TIC 2.0, únicos medios con
    los que contamos para que puedan trabajar los alumnos.
  • Reunión de preparación previa en el seno del departamento y de seguimiento periódico
    posterior.
  • Cuadrante para poder desarrollar E1, sin interferir en el trabajo en la asignatura TIC que
    hace uso de estos portátiles.

ha sido realmente exigente y compleja, aunque volviendo al comienzo de mi valoración: EL ESFUERZO MERECE LA PENA.

Quiero realizar una crítica constructiva: a los centros experimentales, como los nuestros en esta experiencia, debería llegar dotación necesaria para realizar con garantías el pilotaje, ya sea ordenadores o kits para laboratorios,… o cualquier otra experimentación, el cual ayudaría a su éxito y posterior adopción a nivel de centro.

El formato de la hora del código propuesto es muy adecuado. Las tareas han estado bien seleccionadas, la herramienta está muy depurada, es bastante robusta e intuitiva y los resultados alcanzados, en muchos casos en apenas 30 minutos, son muy esperanzadores y animan a seguir en esta línea.

Tan solo una muestra de alumnos/as del centro habían trabajado con anterioridad con programación por bloques, Scratch, Papá Noel de Google,… y no hicieron alusión comparativa a ambas en ningún momento, aunque en unas tareas determinadas, si que conectaron funcionalidades trabajadas con ambas herramientas.

Experimento E2. Experimento sobre adquisición de competencias
Durante dos sesiones llevé a cabo E2 con 17 alumnos/as, en Matemáticas Académicas de 3º de ESO.
– Poner en marcha E2 en el aula fue sencillo debido a la experiencia previa acumulada con E1.
– El módulo que usé e2s3 (Experimento 2 para 3º de ESO) estaba muy bien diseñado, con tareas que van aumentando su complejidad de manera gradual por casi todos los contenidos de Estadística, los cuales trabajamos a comienzos de curso (en nuestro centro comenzamos en 3º y 4º por Estadística
y Probabilidad). A pesar de que la notación usada era ligeramente diferente a la trabajada en clase, nosotros usamos hi (Hi) en lugar de ni (Ni), no supuso mayor problema.

Enseguida captaron la relación columna de tabla – fila/lista/array en Toolbox y el patrón de las tareas:

  • la primera correcta
  • la segunda a corregir algo
  • la tercera a escribir código aprendiendo de las anteriores.

No requirieron realizar ninguna consulta en internet sobre algún concepto o parámetro
estadístico, hicieron un buen uso del tip cuando lo requirieron, estaba muy bien colocada
la ayuda al servicio de los alumnos en los momentos clave, y además las tareas iban
andamiando (semiconstruidas) sobre las anteriores.

 

Conclusiones/propuestas/sugerencias

A diferencia de E1, en E2 sí he podido apreciar con esta pequeña muestra una correlación
fuerte y positiva entre los rendimientos escolares (calificación en Matemáticas) y el ritmo y
la corrección con el que realizaban los distintos retos computacionales de e2s3, aunque
considero que es muy poco tiempo y pocos alumnos para extraer conclusiones acerca de
los aprendizajes.

– En la línea apuntada anteriormente, algún alumno llegó a visibilizar completamente el proceso afirmando «si yo preparo bien un programa en Toolbox, puede hacer las tareas por mí».

– Ha faltado una prueba escrita manual para ver el incremental del aprendizaje alcanzado tras introducir esta batería de tareas con Toolbox.

– También me gustaría probar Toolbox en distintos escenarios:

  1. Que los alumnos realicen tareas con ordenador de manera combinada conforme avanza la asignatura. (Tareas de Estadística con Toolbox, mientras se trabaja el bloque de Estadística en la asignatura).
    2. Desde el punto de vista del docente, como apoyo al proceso de enseñanza, usándolo con PDI/proyector.
    3. Combinando partes escritas con partes con ordenador en tareas/exámenes.

(Escrito a final del curso pasado – junio 2018) El curso próximo esperamos contar con medios informáticos suficientes, más allá de los 12 ultraportátiles de la Escuela TIC 2.0, año 2011, con los que contamos actualmente, para poder ofertar y desarrollar las materias TIC y la optativa que hemos diseñado desde el Departamento, «Matemáticas con ordenador». Tras los resultados obtenidos consideramos que Toolbox se ha ganado ser miembro de pleno derecho del conjunto de herramientas a usar en esa asignatura.

Agradecimiento a todos los coordinadores del pilotaje en los distintos centros por compartir vuestras experiencias a pie de aula; he aprendido mucho de ellas, al equipo UMA por la idea y el desarrollo de tan potente, robusta y versátil herramienta y a la D.G. de Innovación por apostar por ella y por confiar en nosotros para este pilotaje.

Ejemplo de tarea ToolboX

Acerca de ToolboX

La herramienta informática ToolboX (desarrollada en la Universidad de Málaga, en proyecto comandado por Francisco J. Vico, Catedrático en Ciencias de la Computación e IA de la ETS Ingeniería Informática – Universidad de Málaga) disponible en Guadalinex, tiene un amplio potencial como recurso educativo para enseñar a programar y adquirir competencias en la enseñanza preuniversitaria. Cabe destacar su carácter abierto, gratuito, la flexibilidad para que el docente adapte o incorpore nuevos contenidos, en función de sus necesidades y la facilidad de uso tanto en el aula como en el hogar por parte de los estudiantes.

En definitiva, un excelente recurso para ver como la programación ayuda a adquirir competencias, a través del trabajo con diferentes problegramas (problemas + programas), que seguiré utilizando con mis alumnos en el aula y a la cual invito a uniros.
ToolboX en nuestra clase.
Algunas imágenes tomadas durante las sesiones de trabajo con Toolbox en el aula realizando E1 y E2.

Más información
Web de ToolboX

 

Nota: Esta entrada la tenía pendiente desde final del curso pasado, junio’18, y por un motivo u otro la he ido postergando. Mi reciente paso por el I Congreso Iberoamericano de Docentes me ha animado a escribir. Creo que puede ser de utilidad para muchos otros docentes del contexto iberoamericano que quieran introducir el pensamiento computacional en sus aulas y, de manera especial, para los docentes de los más de 500 centros andaluces que han iniciado su andadura durante el presente curso en el programa PRODIG.

Comparte MatemáTICas: 1,1,2,3,5,8,13,...

Artículo en Revista Epsilon 97 – Demostraciones del Teorema de Pitágoras con goma EVA. STEAM en el aula de Matemáticas

Comparte MatemáTICas: 1,1,2,3,5,8,13,...

Acaba de publicarse oficialmente el número 97 de la revista Epsilon, veterana revista editada por la Sociedad Andaluza de Educación Matemática «Thales».

En esta entrada comparto un artículo que se incluye en dicho número:

Demostraciones del Teorema de Pitágoras con goma EVA. STEAM en el aula de Matemáticas

el cual os invito y animo a leer, referente a una gratificante y enriquecedora experimentación didáctica de aula en torno a la realización por parte de estudiantes de 2º de ESO de distintas construcciones, con goma EVA, para elaborar otras tantas demostraciones distintas del Teorema de Pitágoras, a partir de demostraciones sin palabras del mismo construidas con Geogebra. Experiencia STEAM = STEM + A, con un enfoque activo y competencial desarrollado en el aula de matemáticas.

Espero que el artículo os guste y os resulte enriquecedor para vuestro día a día en las aulas.

Demostraciones del Teorema de Pitágoras con goma EVA. STEAM en el aula de Matemáticas

Asimismo recomiendo la lectura del resto de artículos, los cuales enlazo a continuación y, a los que se puede acceder completamente en abierto desde la web de la revista: http://thales.cica.es/epsilon

Comparte MatemáTICas: 1,1,2,3,5,8,13,...

Proyecto moviLMáTICas. Publicación de App _neuronal (Lógica, Retos) #apps #android #mlearning

Comparte MatemáTICas: 1,1,2,3,5,8,13,...

Acabo de publicar hace apenas unas horas y colocada para descarga libre en la Play Store, una aplicación amena y divertida, para que pongas a trabajar tus neuronas :-).

¿Cuántos neuropuntos serás capaz de conseguir? Juega, gana y comparte tus resultados.

Descripción de la App _neuronal by moviLMáTICas (Lógica, Matemáticas)

Diviértete resolviendo retos matemáticos sencillos para entrenar tus neuronas.

Asimismo es un buen recurso para ser utilizado en el aula de matemáticas, trabajando con el alumnado situaciones problemáticas amenas y divertidas, planificando concursos,…

 

Capturas de pantalla de la aplicación

Vídeo demostración

Incluyo a continuación vídeo que contiene pequeña demostración de la App _neuronal by moviLMáTICas que podrás encontrar en la Play Store.

Te animo a difundirla entre tus contactos, a que la instaléis en vuestros móviles y la uséis, en los centros educativos y fuera de ellos.

Asimismo me gustaría recibir valoración de la misma, retroalimentación, en la Play Store., aquí mismo en el blog o por cualquier otro medio.

MatemáTICas activas, MatemáTICas móviles… moviLMáTICas

Comparte MatemáTICas: 1,1,2,3,5,8,13,...

Applet interactivo Geogebra, vídeo y canvas para la resolución gráfica (paso a paso) de sistemas de ecuaciones lineales

Comparte MatemáTICas: 1,1,2,3,5,8,13,...

Comparto en esta entrada documento de utilidad he elaborado y usado esta misma mañana en clase, con una buena acogida por parte de mis aprendices de 2º de ESO. Visto el grado de aceptación de la misma, he decidido compartirla en el blog para su uso tanto en el aula como fuera de ella.

Dicho documento contiene:

  • Un modelo esquematizado, tipo canvas, que describe paso a paso el método gráfico de resolución de un sistema de dos ecuaciones lineales con dos incógnitas (pulsar para descargar fichero PDF). Este documento es idóneo tanto para proyección y uso en Pizarra Digital Interactiva, como para su impresión y que el alumnado practique el proceso usando esta plantilla guiada, lo que le facilitará su asimilación para resolver otros sistemas de ecuaciones a futuro.

Canvas-Resolucion-Sist2EcuLin-Metodo-Gráfico

  • Enlace a un applet interactivo realizado con Geogebra donde el alumnado puede introducir el sistema y comprobar si ha realizado correctamente la actividad, potenciando de este modo el aprendizaje autónomo de nuestro alumnado, así como dar la vuelta a la clase (#FlippedClassroom), sacando la rutina fuera de ella y ganando tiempo para abordar la resolución de problemas y tareas competenciales más enriquecedoras en clase.

Canvas-Resolucion-Sist2EcuLin-Metodo-Gráfico

Está compartido con licencia Creative Commons CC-BY-NC-SA para que puedas usarlo y distribuirlo libremente, con la única condición de citar la fuente original.

Espero sea de utilidad. ¡Ya me contarás qué te parece!

Más contenido matemático en redes sociales

Comparte MatemáTICas: 1,1,2,3,5,8,13,...

Materiales en Abierto (REAs) para trabajar por proyectos (ABP) en Matemáticas en Secundaria. Proyecto EDIA

Comparte MatemáTICas: 1,1,2,3,5,8,13,...

Permitir que cualquier docente pueda introducir la metodología de trabajo por proyectos en el aula de Matemáticas. Este es el objetivo fundamental del Proyecto EDIA de CeDeC, que inicia la publicación de recursos educativos abiertos (REAs) para Matemáticas en Secundaria, continuando así la serie ya iniciada en otras materias de esta misma etapa y también para Primaria.

Cabeceras-cedec-educalab-intef-ministerio

EDIA-REA-ABP-ESSI

Evento’s Solutions, servicios integrales (ESSI)

Es el sugerente título del primer REA publicado, el cual he tenido el gusto de diseñar y elaborar ;-), el cual, por supuesto, puedes descargar, modificar y adaptar libremente para tu grupo/clase, ya que se publican bajo licencia abierta CC-BY-SA, o bien, usar tal cual en tu aula ya que como se indica en la propia Guía didáctica del proyecto incluida en el propio REA.

El presente proyecto está dirigido al alumnado del Primer Ciclo de la Educación Secundaria Obligatoria, consta de distintas secuencias didácticas que giran en torno al estudio del bloque 2, Números y Álgebra del currículo de Secundaria (Materia 29. Matemáticas) publicado por Real Decreto 1105/2014, de 26 de diciembre, por el que se establece el currículo básico de la Educación Secundaria Obligatoria y del Bachillerato.

Planteamiento del proyecto

Propuesta docente

La aquí presentada es una propuesta basada en el aprendizaje activo de los estudiantes, los cuales deberán ver el trabajo colaborativo e investigativo como parte esencial del aprendizaje matemático. El docente es clave en la gestión de las dinámicas de aula que surgen al introducir estos nuevos modelos de enseñanza-aprendizaje en el aula de matemáticas.

Propuesta de investigación / acción

El objetivo del siguiente REA es favorecer que el alumnado de 1º – 2º de ESO adquiera un aprendizaje significativo y comprensivo de los distintos conjuntos de números (naturales, enteros, decimales,…), operaciones combinadas con ellos en contextos reales, porcentajes, proporcionalidad y escala, que les proporcione su uso instantáneo y con soltura en situaciones de la vida cotidiana que requieran de ellos para su resolución.

Objetivos y producto final

Este conocimiento será impulsado a través de retos, tareas conectadas con el mundo real que requieran de cierta indagación y modelización matemática.

A partir de una situación real de experiencia negativa de una pareja en la celebración de su boda, se le presenta al alumnado la creación de una empresa desde cero, a la que hemos bautizado como Evento’s Solutions, servicios integrales (ESSI), dedicada a la gestión integral de eventos.

En los primeros meses de vida se inicia la selección del local de celebraciones, la distribución del salón, la compra del material para el catering, elaboración de anuncios publicitarios para dar a conocer la empresa y elaboración de oferta promocional de lanzamiento para llevar a cabo la captación de los primeros clientes. Finalmente recopilaremos y difundiremos los distintos productos elaborados durante todo el desarrollo del proyecto y reflexionaremos sobre todo el proyecto.

essi-procomun-1

En definitiva, con la elaboración y publicación de estos recursos se pretende ofrecer a los docentes un recurso completo y flexible para trabajar en el aula los contenidos, objetivos, criterios de evaluación y estándares de aprendizaje evaluables de Matemáticas por medio de metodologías activas de aprendizaje, en un contexto real que favorece de manera clara un aprendizaje competencial integral por parte del alumnado.

En el marco del Proyecto EDIA se irán publicando en los próximos meses más recursos educativos para trabajar por proyectos en Matemáticas en Secundaria, en los que estamos implicados un grupo de compañero/as, comandados por el CeDeC, a quien agradezco la confianza depositada en mi persona para participar en este atractivo y vanguardista proyecto de creación de materiales curriculares digitales en abierto para trabajar por proyectos (ABP) en el aula de matemáticas, que espero sea de ayuda y utilidad para que muchos docentes se animen a trabajar en clase usando esta metodología de trabajo.

essi-procomun-2

Desde estas líneas te animo a visitar y explorar este primer proyecto y a difundirlo entre los compañero/as de tu claustro y en tus contactos en redes sociales, así como te invito a estar vigilante a la publicación de los siguientes proyectos.

¡Feliz y merecido descanso estival!

Comparte MatemáTICas: 1,1,2,3,5,8,13,...

Tarea: Matemáticas en la “Fiesta de los patios de Córdoba” #STEM #STEAM

Comparte MatemáTICas: 1,1,2,3,5,8,13,...

Os dejo por aquí la tarea a realizar sobre un uso utilitario de las matemáticas en la “Fiesta de los patios de Córdoba”

Contiene varios retos atractivos ;-).

Ya me contaréis en clase cómo os ha ido.

Tarea-matematicas-patios-cordoba-luismiglesias

Acceso a la tarea: http://luismiglesias.es/tarea-patios-cordoba/

Seguimos…

Comparte MatemáTICas: 1,1,2,3,5,8,13,...

Matemáticas y fútbol. Operaciones matemáticas en la equipación de Rumanía #Gamificación

Comparte MatemáTICas: 1,1,2,3,5,8,13,...

Con esta entrada quiero hacerme eco de una noticia curiosa, la cual apoyo plenamente. Se trata de una iniciativa que la Federación Rumana de Fútbol puso en marcha coincidiendo con el partido frente a la selección española de fútbol.

Es un programa de ámbito nacional destinado a luchar contra el abandono escolar. El programa comienza con una serie de juegos y ejercicios de matemáticas inspirados en el mundo del fútbol.

Fuente: Marca.com

La noticia publicada en la versión digital de Marca, el pasado domingo, recoge:

Los resultados de las fórmulas matemáticas dan como resultado los números de las camisetas de los jugadores de la selección de Rumanía. El novedoso programa comenzará antes del partido entre Rumania y España.

Claudiu Keseru, jugador del Ludogorets, apoyará la iniciativa a través de un vídeo que será emitido en los videomarcadores del estadio del Cluj.

Ejemplos de problemas a resolver:

1. Florin Andone y Bogdan Stancu han marcado 27 goles esta temporada . Andone anotó 9 goles más que Stancu. ¿Cuántos anotó Andone? ¿Y Stancu?

2. Durante varios partidos , Claudiu Keserü , Razvan Rat y Gabriel Torje corrieron 49 kilómetros. Torje corrió 9 kilómetros más que Rat y 5 más que Keser . Averigüe cuántos kilómetros corrió cada uno de los tres.

3. Rumanía ha logrado hasta ahora cuatro victorias y dos empates en el grupo de clasificación para el Mundial . Si la victoria significa 3 puntos y un empate sólo un punto… ¿Cuántos puntos tiene de momento Rumanía?

Interesante y atractiva iniciativa, ¿verdad?

Comparte MatemáTICas: 1,1,2,3,5,8,13,...

Tratamiento pedagógico del error en el aula… de matemáticas. Una mirada a los apuntes de clase #Evaluación #DebatEducativo

Comparte MatemáTICas: 1,1,2,3,5,8,13,...

Los lectores habituales de este blog saben de la importancia que otorgo en la practica educativa al tratamiento pedagógico del error.

Resulta curioso pero, cuando un determinado hecho se convierte en rutinario, no tomas conciencia de ello. Simplemente lo aplicas porque crees que es bueno para tus aprendices, sin más.

Pero, no hay mejor manera de contrastar que uno sigue «predicando» en una determinada dirección, ya son unos cuantos años, que observar las notas que tus estudiantes toman en clase.

Y es que, sigo pensando que: «Prevenir (hasta infinito, si hiciese falta), es mejor que castigar». Así, llegado el momento de la evaluación, en cualquier contexto, actividad, ejercicio, tarea,… cuando pasas el bolígrafo o realizas un comentario sobre cualquier producto digital indicando: «No es correcto, deberías…», ellos mismos asienten y reconocen que han caído. Ahí poco puedes hacer. Como docente, creyente y practicante de este modo de proceder en el aula, os aseguro que es mucho menos traumático que un «Mal», a secas. Esto último no me gusta :-(.

Y es que «cada maestrillo, tiene su librillo» 😉

Esta es mi forma de ver este asunto. Y tú, ¿que opinas?

Comparte MatemáTICas: 1,1,2,3,5,8,13,...

“El dinero está en las matemáticas», enriquecimiento curricular matemático para alcanzar la cima del éxito

Presentación PLE Matemático - 15 JAEM Gijón - Julio'11
Comparte MatemáTICas: 1,1,2,3,5,8,13,...

Este es el titular de un artículo de El Confidencial, donde se describe la tendencia existente en EEUU de fortalecer el aprendizaje matemático en programas de enriquecimiento curricular de alto valor económico, hasta 3000 dólares, para así poder acceder a las titulaciones STEM y poder llegar a ingresar a posteriori en sitios como Sillicon Valley u otras grandes multinacionales.

Fuente: Wikipedia

La clave del éxito de los citados programas, transcribo literalmente del mencionado artículo:

Una metodología alternativa

Obviamente, la manera de impartir las matemáticas es muy distinta en estos cursos, campamentos o círculos, y tiene mucho que ver con las recientes recomendaciones de la OCDE que se están empezando a implantar en lugares como Singapur. El enfoque crítico de las matemáticas presentado por la organización se refleja en la comprensión conceptual de las matemáticas, “utilizado como una herramienta para predecir, explorar y explicar el mundo que los rodea”.

Este enfoque ha sido básico en la educación matemática de los países de la antigua URSS y en universidades de élite como el MIT o Caltech

Ni falta hace señalar que la velocidad del cálculo no tiene una gran importancia en estos sistemas, como explicábamos en un reciente artículo sobre la paradoja de las matemáticas. Lo que importa es la resolución de problemas que, obviamente, van mucho más allá de los que podemos encontrar en un libro de texto. “Este enfoque ha sido básico en le educación matemática de los países de la antigua Unión Soviética y en universidades de élite como el MIT o Caltech”. Estos problemas se presentan en un pequeño número a los grupos de estudiantes, que deben resolver cuestiones para los que no hay una única solución.

Los lectores habituales de este blog son conscientes de la importancia que otorgo en mis clases al fomento del aprendizaje por indagación, la modelización matemática y el trabajo con situaciones abiertas, resolubles de múltiples maneras y con un abánico impotante de posibles respuestas.

Sinceramente, ahí esta la clave, desde mi punto de vista:

Una vez más, evidencias claras de que se debe poner el foco en el uso de metodologías activas, colocando al alumno en el centro del proceso de aprendizaje, ante situaciones problemáticas abiertas, en escenarios de incertidumbre… de donde debe salir a flote, seguido muy de cerca por el docente.

A ver si vamos tomando conciencia, poco a poco, sin prisa pero sin pausa, del camino a seguir.

El artículo completo, cuya lectura recomiendo de todas, todas, aquí:

“El dinero está en las matemáticas”: la élite se prepara para arrasar en los números

Cada vez más centros abren sus puertas para ofrecer una formación complementaria y extracurricular en matemáticas, especialmente en lugares claves como Silicon Valley o las grandes capitales
Comparte MatemáTICas: 1,1,2,3,5,8,13,...

Destreza de orden superior: Evaluación. Bloom en el aula de matemáticas. Tratamiento pedagógico del error

Comparte MatemáTICas: 1,1,2,3,5,8,13,...

Antes de mostrar el caso, del cual sólo mostraré una imagen, recordemos aspectos clave sobre La taxonomía de Bloom los cuales resume de manera clara Wikipedia.

La taxonomía de Bloom es jerárquica, esto significa que asume que el aprendizaje a niveles superiores depende de la adquisición del conocimiento y habilidades de ciertos niveles inferiores.

Hay tres dimensiones en la taxonomía de objetivos de la educación propuesta por Benjamin Bloom:

  • Dimensión afectiva
  • Dimensión psicomotora
  • Dimensión cognitiva

Dimensión afectiva

El modo como la gente reacciona emocionalmente, su habilidad para sentir el dolor o la alegría de otro ser viviente. Los objetivos afectivos apuntan típicamente a la conciencia y crecimiento en actitud, emoción y sentimientos.

Hay cinco niveles en el dominio afectivo. Mencionando los procesos de orden inferiores a los superiores, son:

  • Recepción – Sin este nivel no puede haber aprendizaje.
  • Respuesta – El estudiante participa activamente en el proceso de aprendizaje, no sólo atiende a estímulos, el estudiante también reacciona de algún modo.
  • Valoración – El estudiante asigna un valor a un objeto, fenómeno o e información.
  • Organización – Los estudiantes pueden agrupar diferentes valores, informaciones e ideas y acomodarlas dentro de su propio esquema; comparando, relacionando y elaborando lo que han aprendido.
  • Caracterización – El estudiante cuenta con un valor particular o creencia que ahora ejerce influencia en su comportamiento de modo que se torna una característica.

Es importante tener en cuenta que si el estudiante no está motivado, el interés por aprender es muy bajo.

Dimensión psicomotora

La pericia para manipular físicamente una herramienta o instrumento con la mano o un martillo. Los objetivos del dominio psicomotor generalmente apuntan en el cambio desarrollado en la conducta o habilidades.

Comprende los siguientes niveles: – Percepción – Disposición – Mecanismo – Respuesta compleja – Adaptación – Creación

Dimensión cognitiva

Es la habilidad para pensar sobre los objetos de estudio. Los objetivos del dominio cognitivo giran en torno del conocimiento y la comprensión de cualquier tema dado.

Hay seis niveles en la taxonomía propuesta por Benjamín Bloom y colaboradores. En orden ascendente son los siguientes:

Conocimiento
Muestra el recuerdo de conocimiento previamente aprendidos por medio de hechos evocables, términos, conceptos básicos y respuestas
  • Conocimiento de terminología o hechos específicos
  • Conocimiento de los modos y medios para tratar con convenciones, tendencias y secuencias específicas, clasificaciones y categorías, criterios, metodología.
  • Conocimiento de los universales y abstracciones en un campo: principios y generalizaciones, teorías y estructuras
Comprensión
Entendimiento demostrativo de hechos e ideas por medio de la organización, la comparación, la traducción, la interpretación, las descripciones.
  • Traducción
  • Interpretación
  • Extrapolación
Aplicación
Uso de conocimiento nuevo. Resolver problemas en nuevas situaciones aplicando el conocimiento adquirido, hechos, técnicas y reglas en un modo diferente
Análisis
Examen y discriminación de la información identificando motivos o causas. Hacer inferencias y encontrar evidencia para fundamentar generalizaciones
  • Análisis de los elementos
  • Análisis de las relaciones
  • Análisis de los principios de organización
Síntesis
Compilación de información de diferentes modos combinando elementos en un patrón nuevo o proponiendo soluciones alternativas
  • Elaboración de comunicación unívoca
  • Elaboración de un plan o conjunto de operaciones propuestas
  • Derivación de un conjunto de relaciones abstractas
Evaluación
Presentación y defensa de opiniones juzgando la información, la validez de ideas o la calidad de una obra en relación con un conjunto de criterios
  • Juicios en términos de evidencia interna
  • Juicios en términos de criterios externos

A continuación nos centramos en el nivel cognitivo, concretamente en la Evaluación. Orden superior por excelencia en la Taxonomía de Bloom y compartiendo escalón superior en el modelo SAMR con Crear.

Experiencia de aula

Todos los docentes, a la hora de planificar las actividades, sea siguiendo un determinado material didáctico elaborado o usando el nuestro propio, debemos tener presentes la citada Taxonomía.

De una manera u otra comenzamos explicando determinados conceptos que el alumnado va trabajando hasta alcanzar la comprensión de los mismos. Pasamos posteriormente a su aplicación en determinados ejercicios, usándolos para resolver problemas,… y así deberíamos seguir para conseguir un aprendizaje pleno, significativo y funcional por parte de nuestros aprendices.

Lo que ocurre es que en demasiadas ocasiones, más de las que debiera ocurrir, apenas pasamos del nivel de Aplicación. Esto es, nos quedamos a mitad de camino.

Tengo que decir, que lo que más satisfacción me ofrece como docente es elaborar propuestas, proponerles retos, miniTAREAS o tareas de envergadura que involucren el trabajo con destrezas de orden superior.

Disfruto viéndolos Aplicar, Analizar, Sintetizar, Coevaluando el trabajo de otros compañero/as, proponer otras vías de solución y creando sus propias tareas. Hoy mismo he recopilado y disfrutado en clase con una tarea de Creación que publicaré, si saco unos minutos libres, en los próximos días.

El caso propuesto es una actividad cuyo enunciado es el siguiente:

«Determina los errores que se han cometido en la resolución de esta operación y corrígelos:

(-3) · (-5) : [ (-6) + (+3) ] = (-15) · (-9) = +135

Se trata de que adopten el papel de profes, cuando debemos evaluar una tarea corregir una prueba escrita, y que encuentren los errores, para luego evaluarlo con la puntuación adecuada en función de la tipología de los errores cometidos.

Os animo a trabajar actividades de este tipo en el aula. Dan mucho juego y sacan a las claras muchos detalles para después incidir en ellos.

Para finalizar os dejo con una imagen de dicha actividad, corregida y perfectamente explicada en la PDI por Hugo, alumno de 1º de ESO A, cuya corrección entendería cualquier persona por anumérica que sea. ¡Es una gozada verlo trabajar a diario y actividades como estas le vienen como anillo al dedo!.

Trabajando actividades de este tipo, como se suele decir de forma coloquial, <<matamos dos pájaros de un tiro>>:

  • Atendemos a la diversidad, en este caso por arriba que también lo merecen.
  • Sus clarísimas explicaciones y el debate posterior, ayudan a consolidar aprendizajes al resto de compañero/as.

Proponer, dejar hacer, mirarlos a los ojos, escuchar atentamente cada una de sus reflexiones. Es su turno. Metodologías activas centradas en el estudiante como motor del cambio educativa, potencias del nuevo paradigma de la educación del siglo XXI: aprender activo, crítico y reflexivo.

Seguimos… ¡disfrutando!

Seguimos… ¡aprendiendo!

Seguimos… ¡compartiendo!

20160115_101159

Comparte MatemáTICas: 1,1,2,3,5,8,13,...
WP2Social Auto Publish Powered By : XYZScripts.com