Educación

Propuesta didáctica: Inteligencia artificial con LearningML. Modelo numérico. Matemáticas; puntos, coordenadas y cuadrantes

Comparte MatemáTICas: 1,1,2,3,5,8,13,...
En esta entrada comparto una propuesta didáctica para introducir la Inteligencia Artificial (IA) en el aula de Matemáticas. En ella planteo un escenario de aprendizaje automático basado en un modelo numérico implementado con la herramienta LearningML.

Propuesta didáctica: ¿A qué cuadrante pertenece?

Lo que he querido movilizar con esta propuesta es la capacidad de la herramienta para aprender únicamente a partir de los datos, sin ser programada de manera explícita, a ubicar puntos, a partir de sus coordenadas, en el cuadrante que les corresponda.
Para ello, he seguido la siguiente secuencia:
  • En LearningML creo un modelo numérico basado en datos de dos columnas.
  • A continuación creo 4 categorías, correspondientes a los distintos cuadrantes del plano cartesiano.
  • Alimento el modelo con datos, en este caso concreto he usado una docena para cada una de las categorías.
  • Entreno el modelo para que aprenda a reconocer los números y busque patrones.
  • Una vez que finaliza el entrenamiento pasamos a ponerlo a prueba.

Captura de pantalla. Apariencia del modelo numérico implementado en LearningML

  • Además de ello, una vez que he considerado que el funcionamiento es óptimo, he elaborado un programa en Scratch asociado al modelo que nos permita trabajar en un entorno más visual.

Captura de pantalla. Aspecto del programa implementado en Scratch asociado al modelo numérico implementado en LearningML

Vídeo con explicación paso a paso y simulación de la propuesta didáctica: ¿A qué cuadrante pertenece?

Si te resultó interesante la propuesta, me alegraría leer tu comentario, opinión, sugerencia, así como si quieres compartir  la entrada para que la conozcan otros colegas a los que creas les puede ser útil.

El proyecto «Fostering Artificial Intelligence at School« (FAIaS)

Esta propuesta didáctica se enmarca en el ámbito del proyecto FAIaS. El aprendizaje automático es una de las ramas de la IA que permite que una máquina aprenda mecánicamente a partir del procesamiento de datos.
El vínculo entre la IA y la educación comprende tres ámbitos:
  • aprender con la IA, utilizando las herramientas de IA en las aulas
  • aprender sobre la IA, sus tecnologías y sus técnicas), y,
  • prepararse para la IA, permitiendo que todos los ciudadanos comprendan la repercusión potencial de la IA en nuestras vidas
Estos vínculos establecidos por la UNESCO se ponen de manifiesto y son concretados a través de la puesta en marcha de proyectos específicos.Se cree que la inteligencia artificial (IA) es un factor clave de la cuarta revolución industrial que transformará la economía y reinventará la naturaleza de nuestro trabajo. Estaremos cada vez más apoyados e interactuaremos con tecnología impulsada por Inteligencia Artificial. Esto exige una educación que nos prepare para este futuro.
Uno de los proyectos pioneros y más relevantes en el panorama educativo español y europeo es «Fostering Artificial Intelligence at School» (FAIaS). FAIaS tiene la intención de perfeccionar las habilidades, tanto cognitivas como blandas, necesarias para comprender, construir o interactuar con la Inteligencia Artificial. Por lo tanto, consideramos la IA, no en el sentido estricto y puramente tecnológico, sino en el sentido amplio, ya que afecta muchas partes diferentes de nuestras vidas. Por lo tanto, optamos decididamente por un enfoque interdisciplinario e inclusivo que se centre no solo en las actividades STEM, sino que involucre todas las materias escolares y cubra una amplia gama de aspectos, incluidos los éticos, filosóficos, económicos, legales e históricos. Creemos que abordar un tema desde diferentes perspectivas profundiza la comprensión y crea cohesión entre los alumnos en un campo intrínsecamente interdisciplinario como la Inteligencia Artificial.

Más contenido matemático en redes sociales

Comparte MatemáTICas: 1,1,2,3,5,8,13,...

Participación en «Learning, Training & Teaching Activity (LTTA) FAIaS Braga · Fomentando la Inteligencia Artificial en las Escuelas»

Comparte MatemáTICas: 1,1,2,3,5,8,13,...

Inteligencia Artificial en Educación. LTTA FAIaS Braga

La pasada semana tuvo lugar, en la antigua y monumental ciudad de Braga (Portugal), un importante evento educativo para introducir la Inteligencia Artificial (IA) en la escuela, desde una visión interdisciplinar e inclusiva.
Si hace relativamente poco celebrábamos la introducción de competencias específicas y saberes básicos relacionados con el pensamiento computacional en Matemáticas y en otras materias en los Reales Decretos de Enseñanzas Mínimas de nueva ley educativa española,  LOMLOE (recomiendo lectura de este interesante análisis de Programamos), me encantaría poder ver reflejado en un futuro no muy lejano pasos en la misma dirección respecto a la IA.

Según la UNESCO, la inteligencia artificial (IA) tiene la capacidad de hacer frente a algunos de los mayores desafíos que afronta, hoy en día, el ámbito de la educación, de desarrollar prácticas de enseñanza y aprendizaje innovadoras y, finalmente, de acelerar el progreso en la consecución del ODS 4. No obstante, estos avances tecnológicos rápidos implican inevitablemente numerosos riesgos y retos, que los debates sobre las políticas y los marcos reglamentarios tienen aún dificultades para poder superarlos.
El vínculo entre la IA y la educación comprende tres ámbitos:
  • aprender con la IA, utilizando las herramientas de IA en las aulas
  • aprender sobre la IA, sus tecnologías y sus técnicas), y,
  • prepararse para la IA, permitiendo que todos los ciudadanos comprendan la repercusión potencial de la IA en nuestras vidas
Estos vínculos establecidos por la UNESCO se ponen de manifiesto y son concretados a través de la puesta en marcha de proyectos específicos.
Uno de los proyectos pioneros y más relevantes en el panorama educativo español y europeo es «Fostering Artificial Intelligence at School« (FAIaS) un proyecto Erasmus+ (2020-1-ES01-KA201-083047) financiado por la Comisión Europea durante el período comprendido entre el 01/09/2020 y el 31/08/2023 y con las siguientes instituciones como socios participantes:
  • Universidad Rey Juan Carlos (Spain), co-ordinator
  • Vrije Universiteit Brussel (Belgium)
  • CollectiveUp (Belgium)
  • Theatro Circo de Braga (Portugal)

Desde el 31 de mayo al 3 de junio de 2022, los investigadores invitados hemos participado en conferencias, actividades y talleres relacionados con el uso de la Inteligencia Artificial en las escuelas.

Durante estas intensas, interesantes y enriquecedoras jornadas de trabajo, aprovecho estas líneas para agradecer la invitación recibida desde la coordinación del proyecto,  he tenido la oportunidad de:

  • aprender, conocer y compartir con colegas de España, Portugal, Bélgica, Luxemburgo, Grecia y Colombia, interesantes experiencias sobre el uso de la IA en Educación
  • reflexionar sobre los modos de introducir la IA en las escuelas,
  • debatir sobre sus implicaciones éticas
  • analizar las necesidades formativas previas de los docentes, e,
  • iniciar el diseño de planes de clase para ayudar y acompañar en los momentos iniciales a los docentes en la introducción de esta tendencia emergente en educación

El proyecto «Fostering Artificial Intelligence at School« (FAIaS)

Se cree que la inteligencia artificial (IA) es un factor clave de la cuarta revolución industrial que transformará la economía y reinventará la naturaleza de nuestro trabajo. Estaremos cada vez más apoyados e interactuaremos con tecnología impulsada por Inteligencia Artificial. Esto exige una educación que nos prepare para este futuro.
FAIaS tiene la intención de perfeccionar las habilidades, tanto cognitivas como blandas, necesarias para comprender, construir o interactuar con la Inteligencia Artificial. Por lo tanto, consideramos la IA, no en el sentido estricto y puramente tecnológico, sino en el sentido amplio, ya que afecta muchas partes diferentes de nuestras vidas. Por lo tanto, optamos decididamente por un enfoque interdisciplinario e inclusivo que se centre no solo en las actividades STEM, sino que involucre todas las materias escolares y cubra una amplia gama de aspectos, incluidos los éticos, filosóficos, económicos, legales e históricos. Creemos que abordar un tema desde diferentes perspectivas profundiza la comprensión y crea cohesión entre los alumnos en un campo intrínsecamente interdisciplinario como la Inteligencia Artificial.
OBJETIVOS
El objetivo final de FAIaS es mejorar el conocimiento de la inteligencia artificial en niños y jóvenes. Desglosamos esta meta en los siguientes objetivos de alto nivel:
  • Mejorar la comprensión de los estudiantes de secundaria sobre las tecnologías de IA y su impacto.
  • Proporcionar a los docentes de todas las materias herramientas y pautas en línea y fuera de línea que puedan integrarse fácilmente en sus cursos.
  • Mejorar los conocimientos de las minorías y grupos desfavorecidos de la sociedad en concreto, a través de la educación no formal.
  • Crear una herramienta interactiva en línea para que los alumnos y los profesores experimenten con la IA

SITIO WEB DEL PROYECTO
Toda la información sobre el proyecto, eventos y resultados están accesibles en el sitio web http://fosteringai.net
Recomiento seguir las diferentes publicaciones y evolución del proyecto.

ALGUNAS FOTOS

El pase de diapositivas requiere JavaScript.

Más contenido matemático en redes sociales

Comparte MatemáTICas: 1,1,2,3,5,8,13,...

Primer Concurso de Arte Polypad de Mathigon

Comparte MatemáTICas: 1,1,2,3,5,8,13,...

Como miembro del Educator Advisory Group de Mathigon, me complace comunicaros y animaros a participar con vuestro alumnado en el Primer Concurso de Arte Polypad de Mathigon (1st Annual Polypad Art Contest)

Personas de todo el mundo han utilizado Polypad para crear bellas obras de arte, rompecabezas interactivos o interesantes visualizaciones de ideas matemáticas. ¡Queremos ver lo que usted o sus estudiantes pueden hacer!

Todos los estudiantes de hasta 18 años están invitados a enviar sus mejores creaciones con Polypad antes del 26 de mayo de 2022. Las creaciones podrían ser obras de arte, juegos, rompecabezas o cualquier otra cosa que se les ocurra hacer con Polypad. Los ganadores se anunciarán el 17 de junio de 2022.

Formulario de envío 

¿Quién puede participar?

Cualquier estudiante de hasta 18 años de cualquier lugar del mundo puede participar y los ganadores serán seleccionados en tres categorías:

  • Hasta 11 años
  • 12 a 14 años
  • 15 a 18 años

Cada estudiante solo puede presentar un lienzo Polypad.

Para estudiantes menores de 15 años, el formulario de envío debe ser completado por un padre o tutor.

Para participar, se debe enviar el enlace a un lienzo de Polypad utilizando el siguiente formulario de envío. Para ello, se debe crear previamente una cuenta gratuita de Mathigon para guardar su trabajo. Este vídeo muestra a los maestros cómo comenzar.

¿Cuáles son los premios?

Se otorgarán premios a los 10 mejores trabajos en cada una de las tres categorías:

  • 1er lugar: 500 $ en efectivo o tarjeta de regalo
  • 2do lugar: 250 $ en efectivo o tarjeta de regalo
  • 3er lugar: 100 $ en efectivo o tarjeta de regalo
  • Los 10 mejores trabajos por categoría también recibirán una caja de regalos de Mathigon.

Entre el jurado del concurso figura el fundador de Mathigon, Philipp Legner, el director de contenido de Mathigon, David Poras, la anfitriona de Math Teacher Lounge, Bethany Lockhart Johnson, la directora de currículo de Amplify, Kristin Gray, y el director académico de Amplify, STEM, Jason Zimba.

Primeros pasos e inspiración

¿No has trabajado nunca con Polypad? Echa un vistazo a sus tutoriales, guías de usuario y grabaciones de seminarios web en mathigon.org/pd . La página del tutorial de geometría proporciona una descripción general de muchos mosaicos que pueden ser útiles para crear arte, y este seminario web realizado recientemente sobre Rompecabezas, juegos y arte puede servirte de inspiración ofreciéndote algunas ideas. Aquí hay algunos ejemplos más:

Términos y condiciones del concurso

Estos son los términos y condiciones del concurso. En caso de duda o consulta debes enviar un correo electrónico a su*****@******on.org

Convocatoria oficial en inglés en la web de Mathigon

Comparte MatemáTICas: 1,1,2,3,5,8,13,...

Zona Clic, colección con más de 500 recursos interactivos de Matemáticas JClic con tecnología HTML5

Comparte MatemáTICas: 1,1,2,3,5,8,13,...

En esta entrada comparto una colección de más de 500 recursos digitales interactivos de matemáticas elaborados con JClic, listos para usar en el aula, con proyector, PDI o en ordenador, desde una plataforma educativa o blog, o en dispositivo móvil desde cualquier lugar. Esto es posible gracias a la exportación a HTML5 que realizó de todos sus proyectos la Xarxa Telemàtica Educativa de Catalunya · Departament d’Educació de la Generalitat de Catalunya. 

El 9 de marzo de 2017 los applets JClic dejaron de utilizar la tecnología Java Plugin para pasar a funcionar con un nuevo motor HTML5 denominado JClic.js. El cambio es debido a que los principales navegadores web han dejado de soportar los applets Java (el último en hacerlo fue Firefox, a partir de la versión 52).

Un clásico, muy de moda, de gran ayuda para nuestros alumnos, un amplio y completo banco de recursos con los que nuestros alumnos pueden reforzar los aprendizajes y la consolidación de los contenidos de manera autónoma.

Comó localizar un recurso

Al acceder a la zonaClic

Pulsamos en buscar actividades

y accederemos al repositorio 

En dicho repositorio podemos Buscar actividades por:

Si colocamos en Área curricular Matemáticas encontramos, a día de hoy, 505 proyectos. Cada proyecto se compone de diferentes actividades.

Otro aspecto destacable es el carácter abierto de estos recursos. Todos los proyectos cuentas con licencia Creative Commons BY-NC-SA.

Cómo utilizar uno de los recursos

Al realizar la búsqueda en el repositorio y pulsar sobre el recurso aparece una ficha detallada del mismo:

Al pulsar en el icono Compartir que figura en la parte inferior del pie, nos ofrece: la url para acceder a la ficha o compartir en redes sociales o plataforma como Google Classroom, el código iframe para insertar en un blog como este, concretamente es el que he usado para insertarlo tal y como ves más adelante, o el código para incorporarlo a una plataforma Moodle.

<iframe width="800" height="600" frameborder="0" allowFullScreen="true" src="https://clic.xtec.cat/projects/ocaeso/jclic.js/index.html"></iframe>

El juego de la oca para la ESO

Más contenido matemático en redes sociales

Comparte MatemáTICas: 1,1,2,3,5,8,13,...

Profundizando en la comprensión de la relación entre los coeficientes de una ecuación de segundo grado y sus raíces. Ejercicios resueltos en vídeo con Graspable Math

Comparte MatemáTICas: 1,1,2,3,5,8,13,...

En esta entrada comparto tres vídeos en los que muestro cómo profundizar en la comprensión de la relación entre los coeficientes de una ecuación de segundo grado y sus raíces. En demasiadas ocasiones solemos abordar en clase la explicación de un concepto o contenido matemático y, a renglón seguido, pasamos a la aplicación práctica reiterada con una batería de ejercicios tipo, sin profundizar en la comprensión del concepto.

Lo que propongo con estos tres vídeos es desplazar un poco el ejercicio típico rutinario: «Resuelve la ecuación de segundo grado …» «Halla las soluciones de la ecuación de segundo grado …» por otros que ahondan en la estructura de la ecuación y que nos permite obtener sus soluciones a partir de los coeficientes y, viceversa, obtener la expresión algebraica a partir de sus soluciones, ahondando y permitiendo ver la conexión existente.

Todos ellos han sido elaborados usando la herramienta digital interactiva Graspable Math, de las que ya os he hablado en anteriores entradas en este blog. Una herramienta ideal para acercar el lenguaje algebraico a nuestro alumnado, la cual nos facilita sobremanera a  docentes y estudiantes la escritura en lenguaje científico. Además de todo ello, se antoja como una aliada extraordinaria en entornos de enseñanza semipresencial, distancia o híbrido en el momento tan complejo que nos ha tocado vivir con motivo de la COVID.

Demostración: Relación entre coeficientes de una ecuación de 2º grado y sus raíces

Ejercicio. Comprobar relación entre los coeficientes y las raíces de una ecuación de 2ºgrado

Ejercicio. Hallar coeficiente usando relación coeficientes-raíces en ecuación de 2º grado

Podrás encontrar estos vídeos y muchos más en mi canal de Youtube MatemáTICas: 1,1,2,3,5,8,13,…  Si te ayudaron, y crees que pueden ayudar a estudiantes y profesores, suscríbete y comparte.

 

Más contenido matemático en redes sociales

Comparte MatemáTICas: 1,1,2,3,5,8,13,...

Vídeo de la Conferencia de Clausura del II Congreso Iberoamericano de Docentes: Recursos Educativos Abiertos para la transformación digital educativa y los ODS #CongresoIB

Comparte MatemáTICas: 1,1,2,3,5,8,13,...

Conferencia de Clausura II Congreso IB – Recursos Educativos Abiertos para la transformación digital educativa y los ODS

Comparto vídeo de la Conferencia: Recursos Educativos Abiertos para la transformación digital educativa y los ODS que tuve el gusto de impartir el pasado viernes, 16 de julio, en la Clausura del II Congreso Iberoamericano de Docentes #CongresoIB.

Aprovecho estas líneas para agradecer a Formación IB y a la Universidad Politécnica de Madrid, organizadores del Congreso, por haberme dado la oportunidad de clausurar tan importante y necesario espacio para la reflexión y el desarrollo profesional docente en el contexto iberoamericano. Felicidades y a por el tercer #CongresoIB.

En el mismo traté la conexión entre tres temáticas que me apasionan y que, en mi opinión, son nucleares y básicas, actores principales, de la Escuela que se nos viene, especialmente tras la crisis sanitaria provocada por la COVID-19.

Son:

  • Objetivos de Desarrollo Sostenible (ODS)
  • Transformación Digital Educativa (TDE)y,
  • Recursos Educativos Abiertos (REA).

¿Compartes mi opinión? Espero que te guste la conferencia y sea de utilidad. Quedo a la espera de tus comentarios.

II CONGRESO IBEROAMERICANO DE DOCENTES 2021

DOCENTES FRENTE A LA PANDEMIA (Congreso Virtual). Del 5 al 16 de julio de 2021.

La imposición de la nueva normalidad ha sido un punto de inflexión en el proceso educativo. Algunos de los mejores expertos de Iberoamérica exponen sus ideas y experiencias para ayudar a todos los docentes a mejorar su eficiencia en los próximos años.

Tuve la fortuna de disfrutar del I Congreso celebrado de manera presencial en la bella ciudad de Algeciras. Escribí sobre ello en Emoción, aprendizaje, formación reglada y redes horizontales docentes. Mini-crónica de mi paso por el I Congreso Iberoamericano de Docentes. Sin duda alguna, una excelente experiencia que os animo a disfrutar, aunque en esta ocasión a causa de la COVID-19 deba celebrarse en la modalidad virtual. 

EVENTO DE PRESENTACIÓN DEL II CONGRESO IB

Vídeo del Taller: Herramientas para un nuevo tiempo en la enseñanza y el aprendizaje de la matemática – II Congreso Iberoamericano de Docentes #CongresoIB

Comparte MatemáTICas: 1,1,2,3,5,8,13,...

Vídeo del Taller: Herramientas para un nuevo tiempo en la enseñanza y el aprendizaje de la matemática – II Congreso Iberoamericano de Docentes #CongresoIB

Comparte MatemáTICas: 1,1,2,3,5,8,13,...

Taller: Herramientas para un nuevo tiempo en la enseñanza y el aprendizaje de la matemática

Comparto vídeo del Taller: Herramientas para un nuevo tiempo en la enseñanza y el aprendizaje de la matemática que impartí el pasado jueves, 15 de julio, en el marco del II Congreso Iberoamericano de Docentes #CongresoIB.

En el mismo traté, sin poder profundizar en exceso debido al tiempo disponible, 4 herramientas que en mi opinión, como docente a pie de aula, investigador de la didáctica matemática y creador de contenidos educativos digitales, considero que:

  • forman parte de una nueva generación de herramientas digitales,
  • aportan un gran valor añadido y,
  • enriquecen sobremanera las clases de matemáticas y los aprendizajes de los estudiantes.

Soy usuario de las 4 y forman parte de mi “caja de herramientas”.

Estoy hablando de Geogebra Notas, Desmos Activities, Graspable Math Activities y Mathigon.

Sin duda alguna, estas herramientas digitales innovadoras han abierto un nuevo tiempo en la enseñanza y el aprendizaje de las matemáticas.

¿Compartes mi opinión? Espero que te guste el taller. Quedo a la espera de tus comentarios.

II CONGRESO IBEROAMERICANO DE DOCENTES 2021

DOCENTES FRENTE A LA PANDEMIA (Congreso Virtual). Del 5 al 16 de julio de 2021.

La imposición de la nueva normalidad ha sido un punto de inflexión en el proceso educativo. Algunos de los mejores expertos de Iberoamérica exponen sus ideas y experiencias para ayudar a todos los docentes a mejorar su eficiencia en los próximos años.

Tuve la fortuna de disfrutar del I Congreso celebrado de manera presencial en la bella ciudad de Algeciras. Escribí sobre ello en Emoción, aprendizaje, formación reglada y redes horizontales docentes. Mini-crónica de mi paso por el I Congreso Iberoamericano de Docentes. Sin duda alguna, una excelente experiencia que os animo a disfrutar, aunque en esta ocasión a causa de la COVID-19 deba celebrarse en la modalidad virtual. 

EVENTO DE PRESENTACIÓN DEL II CONGRESO IB

Comparte MatemáTICas: 1,1,2,3,5,8,13,...

Colaboración con el Observatorio de Tecnología Educativa del INTEF. Graspable Math: una nueva manera de explorar y hacer matemáticas

Comparte MatemáTICas: 1,1,2,3,5,8,13,...

El pase de diapositivas requiere JavaScript.

En esta entrada tengo el gusto de compartir artículo elaborado para el Observatorio de Tecnología Educativa del INTEF, un espacio de referencia en torno a la innovación digital en el aula.

Está dedicado a Graspable Math, una herramienta joven, aún poco extendida en España y en el contexto iberoamericano, con mucha potencialidad didáctica para el aula de matemáticas y con la que he trabajado de manera intensiva el último año.

 

ARTÍCULO EN EL OBSERVATORIO

Se trata de  “Graspable Math: una nueva manera de explorar y hacer matemáticas”. Está escrito por Luis Miguel Iglesias Albarrán, profesor de enseñanza secundaria en la especialidad de Matemáticas y Director del IES San Antonio en Bollullos Par del Condado (Huelva).

Graspable Math es una herramienta digital interactiva innovadora que permite una nueva manera de explorar y comprender, mediante la interacción (tocando y arrastrando números y símbolos), las relaciones matemáticas. Forma parte de un proyecto de investigación financiado por el Institute of Education Sciences (IES) dependiente del U.S. Department of Education.

Es una herramienta permite “aprender haciendo” (learning by doing) matemáticas, favoreciendo el aprendizaje autónomo de los estudiantes y permitiéndoles poner el foco en las estructuras matemáticas. El diseño de la herramienta ayuda a salvar el obstáculo de la notación formal, haciendo posible que el alumnado se centre en cómo funcionan. Les brinda, en este sentido, oportunidades para razonar y deducir de manera flexible sobre las tareas matemáticas.

Con Graspable Math se nos presenta, en definitiva, una nueva manera de explorar, enseñar y de hacer matemáticas.

Si quieres saber más sobre Grapable Math, puedes leer el artículo elaborado por Luis Miguel Iglesias Albarrán en el que, además, hace una valoración personal y ofrece recomendaciones para el empleo de esta herramienta.

Acceso al artículo “Graspable Math: una nueva manera de explorar y hacer matemáticas” en formatos PDF y web

 

Dejo a continuación más material por si quieres iniciarte en el uso de esta versátil herramienta.

PUBLICACIONES SOBRE GRASPABLE MATH

En este espacio he realizado distintas publicaciones al respecto:

 

LISTA DE VÍDEOS SOBRE GRASPABLE MATH

Comparto también lista con más de una treintena de vídeos sobre diferentes usos didácticos de esta herramienta.

 

Lista de vídeos en Youtube sobre Graspable Math (33 vídeos)

Te animo a usarla con tu alumnado, a compartirla con tus contactos y compañeros a través de la red y quedo a tu disposición para cualquier duda o comentario al respecto, en forma de comentario bajo esta entrada o en mis perfiles en redes sociales.

¡Ya me contarás cómo te ha ido con tus alumnos en clase! 🙂

MÁS CONTENDO MATEMÁTICO EN REDES SOCIALES

Comparte MatemáTICas: 1,1,2,3,5,8,13,...

Propuesta didáctica: retos con la App _neuronal by #moviLMáTICas. Reto matemático de proporcionalidad resuelto en vídeo #mlearning

Comparte MatemáTICas: 1,1,2,3,5,8,13,...

El pase de diapositivas requiere JavaScript.

  • Introducción a la actividad

Se describe en el vídeo, paso a paso, y se resuelve un reto de manera íntegra, para aprender contenidos matemáticos en este contexto lúdico y gamificado con dispositivos móviles #mlearning.

Se requiere App gratuita para dispositivos Android descargada e instalada. Accesible en la Play Store en la dirección: https://play.google.com/store/apps/details?id=appinventor.ai_luismiglesias.moviLMaTICas_neuronal

 

  •  ¿Cómo presentar la actividad?

¿Cuántos neuropuntos serás capaz de conseguir? Juega, gana y comparte tus resultados.

Diviértete resolviendo retos matemáticos sencillos, en familia o en el aula, para entrenar tus neuronas.

 

  •  ¿Cómo desarrollar la actividad?

Descargar la App, resolver los retos, en familia o en el aula, y compartir los resultados, mediante publicaciones con capturas de pantalla mostrando la puntuación en vuestra plataforma educativa o en RRSS, a través del botón de Twitter incorporando en la propia App o mediante capturas de pantalla en otras redes sociales.

 

  • Vídeo: Resolución, paso a paso, de reto matemático de proporcionalidad, reparto proporcional directo, con la App _neuronal by #moviLMáTICas 

 

 

 

Comparte MatemáTICas: 1,1,2,3,5,8,13,...

Artículo en monográfico Dialogia – O (Re)inventar da Educação em Tempos de Pandemia. El aprendizaje del álgebra en Educación Secundaria: las estrategias metacognitivas desde la tecnología digital

Comparte MatemáTICas: 1,1,2,3,5,8,13,...
Se trata de una investigación realizada con mis directoras de Tesis, las doctoras Isabel Pascual y Blanca Arteaga, sobre el aprendizaje del álgebra en Educación Secundaria, usando las estrategias metacognitivas desde la tecnología digital. Aprovecho estas líneas para agradecer todo su conocimiento y el apoyo que me están brindando desde el primer instante de este viaje académico.

Dialogia – Dossiê: O (Re)inventar da Educação em Tempos de Pandemia [La (re) invención de la educación en tiempos de pandemia]

El número 36 de la Revista Dialogia ha publicado el monográfico “La (Re) invención de la educación en tiempos de pandemia” donde se recogen investigaciones que presentan como temáticas los diferentes matices y procesos de adaptación / transformación de la Educación Básica y Superior que, entre otros cambios, se reestructuraron en el entorno en línea, inesperadamente. En cierta medida, dicha migración aceleró la (re) invención de prácticas pedagógicas, dando un nuevo significado a los viejos espacios y creando nuevos lugares para el aprendizaje y la enseñanza. Esta nueva situación ha generado numerosos desafíos a la Educación, en su conjunto, afectando, en particular, a docentes, estudiantes, directivos y familiares, a la vez que brinda un despertar al énfasis y expansión de la educación en línea en el país y el mundo.

En este sentido, el monográfico temático de esta edición de Dialogia cubre diferentes aspectos, innovaciones y desafíos que se plantean a la Educación en tiempos de Pandemia. Se trata de pensar y problematizar, en este contexto, las diferentes formas y contenidos de la nueva organización pedagógica en el entorno online y fuera de él. Entre otros procesos, este nuevo marco socioeconómico y cultural viene provocando cambios en diferentes frentes, involucrando recursos humanos, didácticos, tecnológicos, estrategias educativas, acceso social, formación docente, llevando al foco analítico los avances y dificultades encontradas en esta coyuntura nacional y global. tan particular en la trayectoria histórica de la humanidad.

Más información: aquí.

 

Artículo: El aprendizaje del álgebra en Educación Secundaria: las estrategias metacognitivas desde la tecnología digital

Resumen

La situación de aprendizaje en las escuelas españolas cambió cuando se decretó el estado de alarma en el mes de marzo de 2020, cerrando las escuelas de una forma brusca. Este artículo muestra la adaptación a un medio de aprendizaje íntegramente digital, llevada a cabo en un instituto de Educación Secundaria, en el sur de España. El trabajo se desarrolla en un aula de Matemáticas con estudiantes de 14-15 años, que aprenden conceptos de álgebra. Para ello, se utilizan materiales diversos que facilitan el aprendizaje autónomo y la comunicación docente-estudiante. Los instrumentos de evaluación utilizados son dos plantillas para la resolución de problemas sustentadas en estrategias metacognitivas. Los resultados muestran que los estudiantes han superado los criterios de evaluación marcados para este bloque de contenido, a la vez que el diseño ha facilitado unos niveles de retroalimentación óptima durante todo el proceso de enseñanza-aprendizaje.

Palabras clave

Aprendizaje del algebra; Aprendizaje en línea; COVID-19; Enseñanza virtual; Metacognición; Formación matemática en secundaria

Texto completo

PDF (ESPAÑOL (ESPAÑA))

 

Índice completo del número 36 de la revista Dialogia

Número 36 (2020): septiembre / diciembre

Índice

Editorial

Rosiley Aparecida Teixeira, Adriana Aparecida de Lima Terçariol, Daniela Melaré Vieira Barros, Jason Ferreira Mafra
1-2

Entrevista

Rosiley Aparecida Teixeira, Adriana Aparecida de Lima Terçariol
3-6

Monográfico La (re) invención de la educación en tiempos de pandemia

Lisandra da Trindade Alfaro, Caroline Tavares de Souza Clesar, Lucia Maria Martins Giraffa
7-21
Leer Raquel Almeida, Carla Spagnolo
22-34
Tárcila Lorrane Fernandes de Souza Soares, Ícaro Silva de Santana, Maria Luiza Caires Comper
35-48
Luis Miguel Iglesias Albarrán, Isabel Pascual Gómez, Blanca Arteaga-Martínez
49-72
Andréia Martins, Agata Laisa Laremberg Alves Cavalcanti, Anne Caroline Soares Dourado
73-85
Marcos Godoi, Larissa Beraldo Kawashima, Luciane de Almeida Gomes
86-101
Juliana Pedroso Bruns, Rita Buzzi Rausch
102-115
Fernanda Carla Da Silva Costa, Viviane Lima Martins
116-127
Joao Ferreira Sobrinho Junior, Cristina de Cássia Pereira Moraes
128-148
Jordana da Silva Corrêa, Neiva Afonso Oliveira
149-161
Regiane Caldeira, Stephanni G. Silva Sudré, Gabriel José Pereira
162-175
Fernando José de Almeida, Maria da Graça Moreira Silva, Maria Elizabeth Bianconcini de Almeida
176-192
Jacks Richard de Paulo, Stela Maris Mendes Siqueira Araújo, Priscila Daniele de Oliveira
193-204
Brenda Iolanda Silva do Nascimento, Iago Vilaça de Carvalho, Fernanda Antunes Gomes da Costa
205-219
Michel Douglas Pachiega, Débora Raquel da Costa Milani
220-234
Luciana Longuini da Silva, Kellen Jacobsen Follador
235-251
Raquel Mignoni de Oliveira, Ygor Corrêa
252-268
Jane Helen Gomes de Lima, Gislane Sávio, Graziela Pavei Peruch Rosso
269-282
Eniel de Espírito Santo, Tatiana Polliana Pinto de Lima
283-297
Ana Carolina Oliveira Silva, Shirliane de Araújo Sousa, Jones Baroni Ferreira de Menezes
298-315
Filipa Seabra, Luísa Aires, António Teixeira
316-334
Wanderleya Nara Gonçalves Costa
335-347
Alexandre José de Carvalho Silva, Sayonara Ribeiro Marcelino Cruz, Warlley Ferreira Sahb
348-366
Ana Nobre, Ana Mouraz
367-381
Carla Cristie de França Silva, Lêda Gonçalves de Freitas
382-395
Fernanda Araujo Coutinho Campos, Rute Pereira
396-410
Jucelia Cruz, Elisabeth dos Santos Tavares, Michel Costa
411-427

Artículos

Anaide Maria Alves da Paz, Maria de Fátima Gomes da Silva
428-440
Anselmo Calzolari, Éverton Madaleno Batisteti, Roseli Rodrigues de Mello
441-457
Elizabete Pereira Barbosa, Luciana Freitas de Oliveira Almeida
458-469
Linda Carter Souza da Silva, Luiz Gomes da Silva Filho
470-483
Givanildo da Silva, Alex Vieira da Silva, Inalda Maria dos Santos
484-501
Marinalva Lopes Ribeiro, Taiara de Lima Silva Sales
502-517
Ana Paula de Almeida Guimarães, Lenie Machado, Gabriela Reyes Ormeno
518-531
Jorge França de Farias Júnior
532-549
Telma Temoteo dos Santos
550-567
Rosemary Roggero, Adriana Zanini da Silva
568-580
Milena da Silva Langhanz, Lorena Almeida Gill
581-594
Maria Daiane da Silva Monteiro, Suely Alves da Silva
595-609

Dialogía

Comparte MatemáTICas: 1,1,2,3,5,8,13,...
WP2Social Auto Publish Powered By : XYZScripts.com