Bachillerato

Colaboración con el Observatorio de Tecnología Educativa del INTEF. Graspable Math: una nueva manera de explorar y hacer matemáticas

Comparte MatemáTICas: 1,1,2,3,5,8,13,...

El pase de diapositivas requiere JavaScript.

En esta entrada tengo el gusto de compartir artículo elaborado para el Observatorio de Tecnología Educativa del INTEF, un espacio de referencia en torno a la innovación digital en el aula.

Está dedicado a Graspable Math, una herramienta joven, aún poco extendida en España y en el contexto iberoamericano, con mucha potencialidad didáctica para el aula de matemáticas y con la que he trabajado de manera intensiva el último año.

 

ARTÍCULO EN EL OBSERVATORIO

Se trata de  “Graspable Math: una nueva manera de explorar y hacer matemáticas”. Está escrito por Luis Miguel Iglesias Albarrán, profesor de enseñanza secundaria en la especialidad de Matemáticas y Director del IES San Antonio en Bollullos Par del Condado (Huelva).

Graspable Math es una herramienta digital interactiva innovadora que permite una nueva manera de explorar y comprender, mediante la interacción (tocando y arrastrando números y símbolos), las relaciones matemáticas. Forma parte de un proyecto de investigación financiado por el Institute of Education Sciences (IES) dependiente del U.S. Department of Education.

Es una herramienta permite “aprender haciendo” (learning by doing) matemáticas, favoreciendo el aprendizaje autónomo de los estudiantes y permitiéndoles poner el foco en las estructuras matemáticas. El diseño de la herramienta ayuda a salvar el obstáculo de la notación formal, haciendo posible que el alumnado se centre en cómo funcionan. Les brinda, en este sentido, oportunidades para razonar y deducir de manera flexible sobre las tareas matemáticas.

Con Graspable Math se nos presenta, en definitiva, una nueva manera de explorar, enseñar y de hacer matemáticas.

Si quieres saber más sobre Grapable Math, puedes leer el artículo elaborado por Luis Miguel Iglesias Albarrán en el que, además, hace una valoración personal y ofrece recomendaciones para el empleo de esta herramienta.

Acceso al artículo “Graspable Math: una nueva manera de explorar y hacer matemáticas” en formatos PDF y web

 

Dejo a continuación más material por si quieres iniciarte en el uso de esta versátil herramienta.

PUBLICACIONES SOBRE GRASPABLE MATH

En este espacio he realizado distintas publicaciones al respecto:

 

LISTA DE VÍDEOS SOBRE GRASPABLE MATH

Comparto también lista con más de una treintena de vídeos sobre diferentes usos didácticos de esta herramienta.

 

Lista de vídeos en Youtube sobre Graspable Math (33 vídeos)

Te animo a usarla con tu alumnado, a compartirla con tus contactos y compañeros a través de la red y quedo a tu disposición para cualquier duda o comentario al respecto, en forma de comentario bajo esta entrada o en mis perfiles en redes sociales.

¡Ya me contarás cómo te ha ido con tus alumnos en clase! 🙂

MÁS CONTENDO MATEMÁTICO EN REDES SOCIALES

Comparte MatemáTICas: 1,1,2,3,5,8,13,...

Aprovechamiento de bancos de Recursos Educativos Abiertos (REA). Conversión de SCORM a .elp con eXeLearning

Comparte MatemáTICas: 1,1,2,3,5,8,13,...

En post anteriores hemos tratado el concepto de Transformación Digital Educativa (TDE) con Recursos Educativos Abiertos (REA). Bancos de REA institucionales de calidad.

En esta entrada comparto vídeo describiendo el proceso de descarga de un recurso del excelente repositorio CREA Andalucía y obtención de fuente .elp (eXe Learning Project) a partir de él.

Pasos
  1. Acceso a CREA Andalucía
  2. Localización y selección del REA a descargar
  3. Descarga del REA en formato SCORM 2004 desde el nodo andaluz de Agrega (Agrega Andalucía)
  4. Apertura del fichero .zip (descargado en el paso 3) en eXeLearning
  5. Modificación en eXeLearning
  6. Guardado como fichero fuente en formato .elp (eXe Learning Project)
  7. Ejemplo de exportación en formato carpeta autocontenida (para trabajar con el REA en pendrive, subir a un repositorio, trabajar en local en un ordenador…)

Vídeo

Comparte MatemáTICas: 1,1,2,3,5,8,13,...

Graspable Math y Geogebra; aliadas extraordinarias para enseñar y aprender matemáticas en contextos presenciales discontinuos. 5 tareas resueltas en vídeos sobre funciones lineales, afines, paralelismo y ecuaciones de la recta

Comparte MatemáTICas: 1,1,2,3,5,8,13,...

Los lectores asiduos de este rincón virtual matemático conocen sobradamente mi predilección por estas dos poderosas herramientas digitales. En mi opinión, indispensables ambas para la enseñanza y el aprendizaje de la matemática en el siglo XXI, siendo especialmente útiles en los contextos de enseñanza-aprendizaje semipresencial y a distancia especialmente extendidos con motivo de la COVID-19.

Aprovecho estas líneas para invitarte a visitar las distintas publicaciones sobre propuestas didácticas para trabajar en el aula y los materiales que he compartido sobre ambas en los últimos años:

Pues bien, si juntamos ambas, el resultado no puede ser catalogado de otro modo que excelente.

Como muestra de ello comparto en esta entrada 5 tareas resueltas paso a paso, en otros tantos vídeos, con ayuda de Geogebra y Graspable Math. 

Estos materiales los desarrollé para mis estudiantes de Matemáticas de 3º de ESO (14-15 años) para trabajar en modalidad online durante el cierre de los centros educativos españoles, periodo de la suspensión de la actividad docente presencial (marzo-junio 2020), con motivo de la COVID-19.

Espero te animes a usar los vídeos con tu alumnado si los consideras de utilidad.

 

Vídeos

1. Funciones lineales. Pertenencia a recta. Ecuación de la recta Geométrico – Graspable Math & Geogebra

 

2. Funciones lineales. Pertenencia a recta. Ecuación de la recta. Geometría Analítica. Graspable Math

 

3. Funciones afines. Ecuación de la recta. Recta paralela pasando por un punto – Graspable Math & Geogebra

 

4. Funciones lineales – Paralelismo – Significado de m y n en la ecuación explícita – Graspable Math & Geogebra

 

5. Funciones afines. Ecuación de la recta. Recta paralela pasando por un punto – Graspable Math & Geogebra

Más contenido matemático en redes sociales

Comparte MatemáTICas: 1,1,2,3,5,8,13,...

Tarea Open Middle sobre logaritmos (cambio de base) elaborada en Graspable Math y en Scratch

Comparte MatemáTICas: 1,1,2,3,5,8,13,...

Comenzamos la semana con esta entrada donde comparto los materiales de una propuesta didáctica para trabajar los logaritmos (teorema del cambio de base).

Se trata de una tarea de tipo Open Middle, traducida al español y adaptada a partir de la original en inglés del profesor Bryan Anderson. La he implementado en dos herramientas que en mi opinión presentan un potencial didáctico increible y a las que soy adicto; Graspable Math y Scratch.

Para ayudarte a implementar esta propuesta con tus estudiantes incluyo:

  1. Enunciado de la tarea en Graspable Math
  2. Tarea interactiva. Logaritmos OM realizada en Graspable Math
  3. Tarea interactiva. Logaritmos OM realizada en Scratch

Espero te animes a usar la propuesta con tu alumnado y os resulte atractiva y de utilidad.

Ya me contarás cómo te ha ido.

¡Ánimo!

 

Propuesta didáctica

 

1. Enunciado de la tarea en Graspable Math

 

2. Tarea interactiva. Logaritmos OM, realizada en Graspable Math.

 

3. Tarea interactiva. Logaritmos OM realizada en Scratch

Enlace a Logaritmos OM en Scratch

 

Esta entrada participa en la Edición 11.6: Conjeturas del Carnaval de Matemáticas, que en esta ocasión organiza Gaussianos.

 

Más contenido matemático en redes sociales

Comparte MatemáTICas: 1,1,2,3,5,8,13,...

Tarea rica elaborada y resuelta con Graspable Math para trabajar las expresiones algebraicas con 2 variables

Comparte MatemáTICas: 1,1,2,3,5,8,13,...

En esta entrada comparto los materiales de una propuesta didáctica para trabajar las expresiones algebraicas con 2 variables.

Para ayudarte a implementar esta propuesta con tus estudiantes incluyo:

  1. Enunciado de la tarea
  2. Incomparable. Expresiones algebraicas con 2 variables realizado en Graspable Math.
  3. Vídeo con la resolución de la tarea usando Graspable Math.

Espero te animes a usar la propuesta con tu alumnado y os resulte atractiva y de utilidad.

Ya me contarás cómo te ha ido.

¡Ánimo!

 

Propuesta didáctica

 

1.Enunciado de la tarea

 

 

2. Tarea: Incomparable. Expresiones algebraicas con 2 variables realizada en Graspable Math.

 

3. Vídeo con la resolución de la tarea usando Graspable Math.

 

MÁS CONTENIDO MATEMÁTICO EN REDES SOCIALES

Comparte MatemáTICas: 1,1,2,3,5,8,13,...

Laberinto de ecuaciones de primer y segundo grado con Graspable Math. Propuesta didáctica con plantilla editable y vídeos de ayuda

Comparte MatemáTICas: 1,1,2,3,5,8,13,...

En esta entrada comparto los materiales de una propuesta didáctica para trabajar las ecuaciones de primer y segundo grado (cuadráticas) que diseñé y llevé a cabo con mi alumnado de Matemáticas de 3º de ESO (14-15 años) en modalidad online durante el cierre de los centros educativos españoles, periodo de la suspensión de la actividad docente presencial (marzo-junio 2020), con motivo de la COVID-19.

Para ayudarte a implementar esta propuesta con tus estudiantes incluyo:

  1. Plantilla en formato editable (.docx)
  2. Plantilla en formato imprimible (.pdf)
  3. Vídeo de ayuda para los estudiantes para que puedan cumplimentar la plantilla en formato digital para escribir las ecuaciones y su resolución.
  4. Vídeo con la resolución de un laberinto de ecuaciones de primer grado realizado en Graspable Math.
  5. Laberinto de ecuaciones de primer grado sencillas. Método de las transformaciones algebraicas realizado en Graspable Math.

Espero te animes a usar la propuesta con tu alumnado y os resulte atractiva y de utilidad.

Ya me contarás cómo te ha ido.

¡Ánimo!

 

Propuesta didáctica

 

1.Plantilla en formato editable (.docx)

Plantilla – Laberinto de ecuaciones de primer y segundo grado

 

2. Plantilla en formato imprimible (.pdf)

Plantilla – Laberinto de ecuaciones de primer y segundo grado

 

3. Vídeo de ayuda para los estudiantes para que puedan cumplimentar la plantilla en formato digital para escribir las ecuaciones y su resolución. 

 

4. Vídeo con la resolución de un laberinto de ecuaciones de primer grado realizado en Graspable Math.

 

5. Laberinto de ecuaciones de primer grado sencillas. Método de las transformaciones algebraicas realizado en Graspable Math.

 

 

MÁS CONTENIDO MATEMÁTICO EN REDES SOCIALES

Comparte MatemáTICas: 1,1,2,3,5,8,13,...

Tareas Open Middle relacionadas con la suma y la resta elaboradas con Graspable Math

Comparte MatemáTICas: 1,1,2,3,5,8,13,...

En esta entrada te propongo 4 tareas de tipo Open Middle, relacionadas con la suma y la resta, que he elaborado con ayuda de Graspable Math.

Puedes dejar las soluciones que encuentres haciendo comentarios a esta entrada.
¡Ánimo!

1. Tarea OM – Resta (I)

 

2. Tarea OM – Resta (II)

 

3. Tarea OM – Suma (I)

 

4. Tarea OM – Suma y Resta (I)

 

¿Qué es una tarea de tipo Open Middle (OM)?

El nombre “Open Middle” puede sonar como un nombre extraño para un tipo de problemas matemáticos. Sin embargo, hace referencia a un tipo de problema muy particular que se debe fomentar en el aula de matemáticas. Como habrás podido apreciar en las tareas anteriores, la mayoría de tareas OM presentan las siguiente características:

  • un “comienzo cerrado”: lo que significa que todos los alumnos comienzan con el mismo problema inicial.
  • un “final cerrado”: lo que significa que todos los alumnos terminan con el mismo resultado.
  • un “medio abierto”: lo que significa que hay múltiples maneras de acercarse a -y en última instancia, de resolver- el problema.

Los problemas de tipo “Open Middle” suelen requerir una carga cognitiva mayor que la mayoría de los problemas que evalúa solo la comprensión procedimental y conceptual. Además, trabajan con los contenidos del currículo y proveen a los estudiantes oportunidades para discutir su pensamiento, favoreciendo la fluidez, el razonamiento y la expresión oral/escrita.

Algunas características adicionales de los problemas de tipo “Open Middle” son:

  • Generalmente tienen múltiples maneras de ser resueltos en contraposición a los problemas en los que a uno se le pide que aplique un método específico para su resolución.
  • Pueden ser optimizados de manera tal que sea fácil encontrar un resultado, pero resulte más desafiante encontrar el resultado óptimo.
  • Pueden parecer de naturaleza simple y procedimental pero resultan siendo más desafiantes y complejos cuando uno comienza a resolverlos.
  • Generalmente no son tan complejos como una tarea contextualizada que puede requerir un contexto previo para ser completadas.

Los artífices y creadores originales de este tipo de tareas son Nanette Johnson y Robert Kaplinsky.

MÁS CONTENIDO MATEMÁTICO EN REDES SOCIALES

Comparte MatemáTICas: 1,1,2,3,5,8,13,...

2 retos: resolución y construcción de criptogramas numéricos aditivos

Comparte MatemáTICas: 1,1,2,3,5,8,13,...

Criptograma Ilustraciones Stock, Vectores, Y Clipart – (881 Ilustraciones Stock)

 

En esta entrada te propongo resolver 2 criptogramas numéricos aditivos. A continuación te explicaré un poco qué es un criptograma, un poco de historia sobre este concepto y algunas reglas para resolverlos.

1. ¿Qué es un criptograma?

Un criptograma es un fragmento de mensaje cifrado, y cuyo significado es ininteligible hasta que es descifrado. Generalmente, el contenido del mensaje inteligible es modificado siguiendo un determinado patrón, de manera que sólo es posible comprender el significado original tras conocer o descubrir el patrón seguido en el cifrado.

Por lo general, el cifrado utilizado para cifrar el texto es lo suficientemente simple como para que el criptograma pueda resolverse manualmente. El cifrado más utilizado en estos casos es el llamado cifrado por sustitución, en el que cada letra es remplazada por una diferente o por un número.

En sus inicios fue concebido para aplicaciones más serias, pero en la actualidad es utilizado por lo general como entretenimiento en revistas y diarios.

2. Un poco de historia sobre los criptogramas

Los criptogramas no fueron originalmente creados para propósitos de entretenimiento, sino para el cifrado de secretos militares o privados.

El primer uso de criptogramas para propósitos de entretenimiento sucedió durante la Edad Media por unos monjes que preparaban juegos de ingenio. Un manuscrito encontrado en Bamberg establecen que los visitantes irlandeses a la corte de Merfyn Frych ap Gwriad (muerto en el año 844), rey de Gwynedd en Gales recibieron unos criptogramas, los cuales sólo podían resolverse transponiendo las letras del alfabeto latino al griego. Alrededor del siglo trece, el monje inglés Roger Bacon escribió un libro en el cual listó siete métodos de cifrado, y estableció que

Un hombre está loco si para escribir un secreto, elige una forma que pueda ser conocida por el vulgo.

En el siglo XIX, Edgar Allan Poe ayudó a popularizar los criptogramas, mediante la publicación de muchos artículos en revistas y diarios.

Los criptogramas numéricos son operaciones de cálculo en las cuales se han sustituido las cifras por letras u otros símbolos de manera que se propone encontrar que valor corresponde a cada letra, teniendo en cuenta, claro, que una misma letra no puede representar dos valores numéricos diferentes. Su resolución, a menudo, exige muchas hipótesis y largos cálculos que implican grandes riesgos de confusión.

3. Algunas reglas o pistas

Para resolverlos pueden serte de utilidad tener en cuenta lo siguiente:

  • Los números están en base diez, a menos que se especifique lo contrario.
  • Cada letra o símbolo representa un único número (entre 0 y 9).
  • El primer dígito de un número no puede ser el cero.

4. Reto I. Resuelve los siguientes criptogramas aditivos

Te propongo dos criptogramas para que practiques. Son aditivos porque en sus enunciados aparecen sumas.

Criptograma aditivo (I) · MatemáTICas: 1,1,2,3,5,8,13,…
Criptograma aditivo (II) · MatemáTICas: 1,1,2,3,5,8,13,…

5. Reto II. Construye tus propios criptogramas aditivos

Pon a prueba tu creatividad, construye tu propio criptograma y déjalo como comentario en este blog o remítela por correo electrónico a lu***********@***il.com.

 

MÁS CONTENIDO MATEMÁTICO EN REDES SOCIALES

Comparte MatemáTICas: 1,1,2,3,5,8,13,...

Transformación Digital Educativa (TDE) con Recursos Educativos Abiertos (REA). Bancos de REA institucionales de calidad

Comparte MatemáTICas: 1,1,2,3,5,8,13,...

En un curso escolar tan complejo y digital como el que estamos viviendo con motivo de la COVID-19, los Recursos Educativos Abiertos (REA) se antojan cruciales.

En esta entrada rescato sendos artículos que escribí hace meses para el Blog #TDE, editado por el Servicio de Innovación Educativa de la Dirección General de Formación del Profesorado e Innovación Educativa de la Consejería de Educación y Deporte de la Junta de Andalucía, en los que:

  • Se introduce el concepto de REA y su importancia para el proceso de Transformación Digital Educativa (TDE)
  • Se recopilan algunos bancos de recursos institucionales de calidad para la Transformación Digital Educativa (TDE) con Recursos Educativos Abiertos (REA).

¿REA? ¿Qué es eso?

Recursos Educacionais Abiertos (REA) de Jonathasmello  – CC BY 3.0

El término REA (OER en inglés), Recurso Educativo Abierto (Open Educational Resource en inglés), no es una nueva moda educativa. Se trata de un concepto que promueve la democratización del conocimiento y el acceso al mismo, que cuenta con casi dos décadas de existencia.

Pixel de manfredsteger – CC0

La Declaración de París de 2012 sobre Recursos Educativos Abiertos (REA) de la UNESCO resalta que el término Recursos Educativos Abiertos (REA) fue acuñado en el Foro de 2002 de la UNESCO sobre las Incidencias de los Programas Educativos Informáticos Abiertos (Open Courseware), y que designa a materiales de enseñanza, aprendizaje e investigación en cualquier soporte, digital o de otro tipo, que sean de dominio público o que hayan sido publicados con una licencia abierta que permita el acceso gratuito a esos materiales, así como su uso, adaptación y redistribución por otros sin ninguna restricción o con restricciones limitadas. Las licencias abiertas se fundan en el marco existente de los derechos de propiedad intelectual, tal como vienen definidos en los correspondientes acuerdos internacionales, y respetan la autoría de la obra, y recomienda a los Estados a, en la medida de sus posibilidades y competencias:

  1. Fomentar el conocimiento y el uso de los recursos educativos abiertos.
  2. Crear entornos propicios para el uso de las tecnologías de la información y la comunicación (TIC).
  3. Reforzar la formulación de estrategias y políticas sobre recursos educativos abiertos.
  4. Promover el conocimiento y la utilización de licencias abiertas.
  5. Apoyar el aumento de capacidades para el desarrollo sostenible de materiales de aprendizaje de calidad.
  6. Impulsar alianzas estratégicas en favor de los recursos educativos abiertos.
  7. Promover la elaboración y adaptación de recursos educativos abiertos en una variedad de idiomas y de contextos culturales.
  8. Alentar la investigación sobre los recursos educativos abiertos
  9. Facilitar la búsqueda, la recuperación y el intercambio de recursos educativos abiertos.
  10. Promover el uso de licencias abiertas para los materiales educativos financiados con fondos públicos.

Como podemos comprobar, además, los Recursos Educativos Abiertos están totalmente alineados con el Objetivo 4 para la Educación de Calidad de la Agenda 2030 de la ONU, lo que conocemos más popularmente como los Objetivos de Desarrollo Sostenible (ODS), otro de los ejes prioritarios del Programa PRODIG para el curso actual.

De Organización de las Naciones Unidas – http://www.un.org/sustainabledevelopment/es/summit/, Dominio público, Enlace

 

Acceso a los artículos en el blog #TDE

¿REA? ¿qué es eso? Transformación Digital Educativa (TDE) con Recursos Educativos Abiertos (REA)

 

Bancos de recursos institucionales de calidad para la Transformación Digital Educativa (TDE) con Recursos Educativos Abiertos (REA)

 

MÁS CONTENIDO MATEMÁTICO EN REDES SOCIALES

Comparte MatemáTICas: 1,1,2,3,5,8,13,...

I Concurso de Monólogos Matemáticos, MaThales Jaén 2020

Comparte MatemáTICas: 1,1,2,3,5,8,13,...

La Sociedad Andaluza de Educación Matemática THALES y la Federación Española de Profesores de Matemáticas convoca el I Concurso de Monólogos MatemáticosMaThales Jaén 2020. Se trata de un certamen de índole nacional de monólogos matemáticos cuyo objetivo es fomentar la comunicación de la ciencia a través de nuevas vías de acercamiento a la sociedad, involucrando a todos los que de un modo u otro trabajan en este ámbito, con el fin encontrar nuevas voces de la ciencia en todo el mundo.

Esta edición también pretende contribuir a la celebración del Día Internacional de las Matemáticas (14 de marzo) que para 2021 ha establecido como lema «Matemáticas para un mundo mejor«.

La presentación de los vídeos se realizará a través de un formulario de participación disponible en la página web del concurso:

https://thales.cica.es/jaen/?q=mathales

El I Concurso de Monólogos Matemáticos es un certamen de índole nacional de monólogos científicos cuyo objetivo es fomentar la comunicación de la ciencia a través de nuevas vías de acercamiento a la sociedad, involucrando a todos los que de un modo u otro trabajan en este ámbito, con el fin encontrar nuevas voces de la ciencia en todo el mundo.

Este concurso está diseñado para inspirar y motivar a los que se dedican a la ciencia y la tecnología a participar activamente en la divulgación de sus áreas de trabajo a través de un formato innovador en este ámbito, el monólogo, en contacto directo con el público.

Esta primera edición cuyas normas se desarrollan a continuación es una iniciativa conjunta de la Sociedad Andaluza de Educación Matemática THALES y la Federación Española de Profesores de Matemáticas y cuentan con la subvención y el apoyo de la Diputación de Jaén.

Actividad subvencionada por: CONVENIO DE COLABORACIÓN ENTRE LA DIPUTACIÓN PROVINCIAL DE JAÉN Y LA SOCIEDAD ANDALUZA DE EDUCACIÓN MATEMÁTICAS THALES, PARA LA REALIZACIÓN DE UN PROGRAMA DE ACTIVIDADES DE DIVULGACIÓN CIENTÍFICA EN LA PROVINCIA DE JAÉN 2020.

Para más detalle, se adjuntan las bases del concurso:

MÁS CONTENIDO MATEMÁTICO EN REDES SOCIALES

Comparte MatemáTICas: 1,1,2,3,5,8,13,...
WP2Social Auto Publish Powered By : XYZScripts.com