Primaria

Múltiplos de múltiplos y Puzles Yohakus interactivos en Mathigon

Comparte MatemáTICas: 1,1,2,3,5,8,13,...

En esta entrada comparto varios retos interactivos realizados con Mathigon. Al ver el tweet de DCDSBMath me encantaron y me lancé a adaptarlos al español con la herramienta Polypad.

Múltiplos de múltiplos

Puzles Yohaku

Consejo: Pulsar en el nombre para ir directamente a la web de Mathigon y visualizarlos correctamente a pantalla completa. Usar lupas (+/-) y pantalla completa para desplazarse si fuera necesario.

Espero que os gusten y os animéis a usarlas con vuestros alumnos y a compartirlas. ¡Que fluya la matemática en las redes! 🙂

Más contenido matemático en redes sociales

Comparte MatemáTICas: 1,1,2,3,5,8,13,...

Repite conmigo: 1/3 es mayor que 1/4. El contenido matemático de fracciones de primaria que hizo fallar una campaña publicitaria contra McDonald’s

Comparte MatemáTICas: 1,1,2,3,5,8,13,...

Aunque las comparaciones siempre son odiosas, creo que puedo afirmar sin temor a equivocarme que:

Si la COVID-19 es una pandemia que está teniendo consecuencias muy graves para la humanidad, el anumerismo y la falta de competencia matemática ha tenido, está teniendo y, a menos que luchemos con todas nuestras fuerzas desde las aulas, tendrá un impacto muy negativo y seguirá causando estragos en las sociedades.

Y no creamos que es cosa de ahora, intentemos buscar sus causas y culpar a los actuales planes de estudios, en la situación de España,… En absoluto tiene nada que ver. Como comento es un problema histórico, algo que viene de lejos. Este caso concreto que os traigo ocurrió en EEUU en los años 80 del siglo pasado.

Lo que ocurrió fue que:

La cadena A&W Restaurants lanzó, puso a la venta, una hamburguesa de 1/3 de libra para competir contra la exitosa hamburguesa de 1/4 de libra de McDonalds pero nadie la compraba porque creían que las hamburguesas de 1/3 eran más pequeñas que las de 1/4.

El error: considerar que como 3 es menor que 4, la fracción 1/3 es menor que 1/4.

Se repite e insiste una y otra vez en la importancia de contextualizar las matemáticas escolares, poniendo ejemplos de situaciones cercanas a la realidad cotidiana. Si no hacemos esto y nos centramos únicamente en explicar los contenidos teóricos y que los alumnos apliquen lo aprendido en fichas rutinarias de actividades descontextualizadas, estamos condenados a ver una y otra vez, este tipo de situaciones. En este caso lo que no funcionó fue una campaña publicitaria de una empresa. Hay muchas otras situaciones en que estos errores de contenidos matemáticos elementales pueden acabar costando mucho dinero o poner en peligro a las personas.

En el siguiente podcast de Historias de la economía (elEconomista) podrás conocer la historia completa:

La campaña contra McDonalds que fracasó porque los estadounidenses no entendían las fracciones

Comparto a continuación algunas representaciones de las fracciones implicadas realizadas con Mathigon:

El pase de diapositivas requiere JavaScript.

Para terminar, os comparto un extracto de elEconomista.es donde se muestra cómo la compañía ha aprendido y, viendo las dificultades de la población para las matemáticas, ha decidido darle la vuelta a la tortilla y promocionar la hamburguesa de 1/3 de libra, pero ahora ‘vendiéndola’ como de 3/9 de libra. Como la gente piensa que 1/4 es mayor que 1/3 porque 4 es mayor que 3, espera que la gente piense que 3/9 es mayor que 1/4 porque 9 es mayor que 4. ¡Qué cosas! 🙂

Hasta ahora, A&W había no había prestado atención a esta historia. Ojo, aunque fuera no nos suene mucho su nombre, estamos hablando de una cadena de restaurantes con más de 100 años de historia, que cuenta con más de 500 establecimientos en Estados Unidos, y que requiere de una inversión inicial de más de un millón de dólares en algunos casos para conseguir una franquicia.

Pues bien, tras muchos años callando sobre esta anécdota, han decidido contarla y tratar de sacarle provecho. Han lanzado una campaña, en tono humorístico, basada en una hamburguesa de 3/9 de libra, jugando con los problemas de la gente para entender las matemáticas. Si creían que 4 es más que 3, ¡entonces 9 es aún mayor!

La compañía, tras una reestructuración en 2011, hoy sigue creciendo y expandiéndose. Y sus campañas alcanzan cierto éxito.

Ironías del destino, años después, ya en este siglo, McDonald’s lanzó su propia hamburguesa de un tercio de libra, la ‘Angus Third Pounder’, que ya no está disponible en sus restaurantes.

Más contenido matemático en redes sociales

Comparte MatemáTICas: 1,1,2,3,5,8,13,...

Proyecto MatesGG, Matemáticas con GeoGebra. Centenares de materiales seleccionados listos para usar en tu aula

Comparte MatemáTICas: 1,1,2,3,5,8,13,...

En esta entrada comparto información acerca de un atractivo y valioso proyecto para el aula de Matemáticas. Se trata de MatesGG, un proyecto de gran utilidad para el profesorado de matemáticas, el cual contiene una amplia selección de contenidos digitales de calidad listos para usar en nuestras clases de matemáticas. A partir de cada material se ha elaborado una guía didáctica. A continuación describo aspectos del mismo, el cual os animo a utilizar y a integrar desde ya en vuestra ‘maleta de recursos didácticos’.

Destacar además que todas los recursos seleccionados y las guías correspondientes elaboradas (386 hasta la fecha de esta publicación), son materiales en abierto, con licencia de autor CC BY SA, resaltando además como valor añadido que el trabajo ha sido desarrollado por compañeros especialistas en la materia.

Como consumidor y elaborador de recursos digitales con Geogebra desde hace unos cuantos años ya, amante y convencido de la bondad de los proyectos institucionales de Recursos Educativos Abiertos solo puedo mostrar mi agradecimiento y satisfacción al ver hecho realidad un proyecto como este. Vaya desde estas líneas, mi felicitación al Área de Recursos Educativos Digitales del INTEF y a la FESPM por idear y hacer posible este proyecto, así como a todos los compañeros que han trabajado y seguirán trabajando en la selección de recursos y en la elaboración de las guías.

Sobre el proyecto MatesGG

El proyecto “MatesGG” ha sido desarrollado por la Federación Española de Sociedades de Profesores de Matemáticas (FESPM) en colaboración con el Instituto Nacional de Tecnologías Educativas y de Formación del Profesorado (INTEF).

MatesGG, Matemáticas con GeoGebra, es un espacio en el que se pone a disposición del profesorado una selección de materiales elaborados con la herramienta GeoGebra a través de unas guías didácticas creadas con la herramienta de autor eXeLearning.

En estas guías, el profesorado encontrará información detallada sobre el recurso:

  • información curricular
  • propuestas de uso
  • material complementario
  • el archivo fuente de la guía (gracias al cual podremos editar, modificar y adaptar la guía a nuestras necesidades)
  • así como el propio recurso en modo interactivo.

Ejemplo: Aspecto de una de las guías didácticas, elaborada a partir del recurso Coordenadas cartesianas del usuario jefedo61

Introducción. Justificación del proyecto

La situación por la que la sociedad está pasando desde hace más de un año, y en concreto la escuela, que se ha encontrado con un cambio radical en el modelo de enseñanza que ha afectado a todos los niveles educativos, es lo que ha llevado a la Federación Española de Sociedades de Profesores de Matemáticas (FESPM) con el apoyo del Instituto Nacional de Tecnologías Educativas y de Formación del Profesorado (INTEF),  a plantearnos el ayudar al profesorado facilitándole los recursos necesarios y que además, estos sean de utilidad para el  alumnado y sus familias para afrontar esta situación.

Esta ayuda en forma de materiales no solo servirán para su uso en una enseñanza virtual sino también serán de utilidad para el aula, en el modelo presencial o en su caso en un modelo híbrido.

Los materiales que ponemos a disposición del profesorado están basados en el uso de la herramienta GeoGebra, debido a las posibilidades que ofrece, ya que consideramos que desde hace años este software se ha convertido en un recurso que podemos considerar imprescindible para cualquier docente que desee utilizar las TIC, a lo que ha contribuido en parte su sencillez en cuanto al aprendizaje y manejo, así como la cantidad de materiales creados y compartidos por los millones de usuarios.

La gran cantidad de materiales existentes elaborados con GeoGebra, es una ventaja para cualquier usuario, pero también una dificultad ya que requiere de un tiempo de búsqueda y selección del material apropiado que no siempre resulta fácil y rápido, por lo que, para solventar estas dificultades, seleccionamos materiales ya existentes, contrastando su utilidad y posibilidades didácticas, elaborando una guía de uso para facilitar que el profesorado pueda llevarlos y utilizarlos en su aula con ejemplos y recomendaciones de cómo hacerlo.

La selección de recursos y guías creadas abarcarán todos los contenidos del currículum de matemáticas en los niveles educativos de Educación Infantil, Educación Primaria, Educación Secundaria Obligatoria y Bachillerato.

 

¿Cómo localizo y uso material para mi aula?

Es muy sencillo. Basta acceder al sitio web de MatesGG https://intef.es/recursos-educativos/recursos-para-el-aprendizaje-en-linea/matesgg/ y hacer uso de los filtros ubicados en la parte lateral izquierda de la página.

A través de un sencillo y ágil buscador, se pueden localizar recursos que abarcan diferentes contenidos curriculares del área de Matemáticas y que corresponden con los diversos niveles educativos de Educación Infantil, Educación Primaria, Educación Secundaria Obligatoria y Bachillerato.

Ejemplo: Uso del buscador, filtrando para realizar una búsqueda de recursos relacionados con el bloque de Funciones para la Educación Secundaria Obligatoria (ESO)

Más contenido matemático en redes sociales

Comparte MatemáTICas: 1,1,2,3,5,8,13,...

Colaboración con el Observatorio de Tecnología Educativa del INTEF. Graspable Math: una nueva manera de explorar y hacer matemáticas

Comparte MatemáTICas: 1,1,2,3,5,8,13,...

El pase de diapositivas requiere JavaScript.

En esta entrada tengo el gusto de compartir artículo elaborado para el Observatorio de Tecnología Educativa del INTEF, un espacio de referencia en torno a la innovación digital en el aula.

Está dedicado a Graspable Math, una herramienta joven, aún poco extendida en España y en el contexto iberoamericano, con mucha potencialidad didáctica para el aula de matemáticas y con la que he trabajado de manera intensiva el último año.

 

ARTÍCULO EN EL OBSERVATORIO

Se trata de  “Graspable Math: una nueva manera de explorar y hacer matemáticas”. Está escrito por Luis Miguel Iglesias Albarrán, profesor de enseñanza secundaria en la especialidad de Matemáticas y Director del IES San Antonio en Bollullos Par del Condado (Huelva).

Graspable Math es una herramienta digital interactiva innovadora que permite una nueva manera de explorar y comprender, mediante la interacción (tocando y arrastrando números y símbolos), las relaciones matemáticas. Forma parte de un proyecto de investigación financiado por el Institute of Education Sciences (IES) dependiente del U.S. Department of Education.

Es una herramienta permite “aprender haciendo” (learning by doing) matemáticas, favoreciendo el aprendizaje autónomo de los estudiantes y permitiéndoles poner el foco en las estructuras matemáticas. El diseño de la herramienta ayuda a salvar el obstáculo de la notación formal, haciendo posible que el alumnado se centre en cómo funcionan. Les brinda, en este sentido, oportunidades para razonar y deducir de manera flexible sobre las tareas matemáticas.

Con Graspable Math se nos presenta, en definitiva, una nueva manera de explorar, enseñar y de hacer matemáticas.

Si quieres saber más sobre Grapable Math, puedes leer el artículo elaborado por Luis Miguel Iglesias Albarrán en el que, además, hace una valoración personal y ofrece recomendaciones para el empleo de esta herramienta.

Acceso al artículo “Graspable Math: una nueva manera de explorar y hacer matemáticas” en formatos PDF y web

 

Dejo a continuación más material por si quieres iniciarte en el uso de esta versátil herramienta.

PUBLICACIONES SOBRE GRASPABLE MATH

En este espacio he realizado distintas publicaciones al respecto:

 

LISTA DE VÍDEOS SOBRE GRASPABLE MATH

Comparto también lista con más de una treintena de vídeos sobre diferentes usos didácticos de esta herramienta.

 

Lista de vídeos en Youtube sobre Graspable Math (33 vídeos)

Te animo a usarla con tu alumnado, a compartirla con tus contactos y compañeros a través de la red y quedo a tu disposición para cualquier duda o comentario al respecto, en forma de comentario bajo esta entrada o en mis perfiles en redes sociales.

¡Ya me contarás cómo te ha ido con tus alumnos en clase! 🙂

MÁS CONTENDO MATEMÁTICO EN REDES SOCIALES

Comparte MatemáTICas: 1,1,2,3,5,8,13,...

Aprovechamiento de bancos de Recursos Educativos Abiertos (REA). Conversión de SCORM a .elp con eXeLearning

Comparte MatemáTICas: 1,1,2,3,5,8,13,...

En post anteriores hemos tratado el concepto de Transformación Digital Educativa (TDE) con Recursos Educativos Abiertos (REA). Bancos de REA institucionales de calidad.

En esta entrada comparto vídeo describiendo el proceso de descarga de un recurso del excelente repositorio CREA Andalucía y obtención de fuente .elp (eXe Learning Project) a partir de él.

Pasos
  1. Acceso a CREA Andalucía
  2. Localización y selección del REA a descargar
  3. Descarga del REA en formato SCORM 2004 desde el nodo andaluz de Agrega (Agrega Andalucía)
  4. Apertura del fichero .zip (descargado en el paso 3) en eXeLearning
  5. Modificación en eXeLearning
  6. Guardado como fichero fuente en formato .elp (eXe Learning Project)
  7. Ejemplo de exportación en formato carpeta autocontenida (para trabajar con el REA en pendrive, subir a un repositorio, trabajar en local en un ordenador…)

Vídeo

Comparte MatemáTICas: 1,1,2,3,5,8,13,...

Propuesta didáctica: retos con la App _neuronal by #moviLMáTICas. Reto matemático de proporcionalidad resuelto en vídeo #mlearning

Comparte MatemáTICas: 1,1,2,3,5,8,13,...

El pase de diapositivas requiere JavaScript.

  • Introducción a la actividad

Se describe en el vídeo, paso a paso, y se resuelve un reto de manera íntegra, para aprender contenidos matemáticos en este contexto lúdico y gamificado con dispositivos móviles #mlearning.

Se requiere App gratuita para dispositivos Android descargada e instalada. Accesible en la Play Store en la dirección: https://play.google.com/store/apps/details?id=appinventor.ai_luismiglesias.moviLMaTICas_neuronal

 

  •  ¿Cómo presentar la actividad?

¿Cuántos neuropuntos serás capaz de conseguir? Juega, gana y comparte tus resultados.

Diviértete resolviendo retos matemáticos sencillos, en familia o en el aula, para entrenar tus neuronas.

 

  •  ¿Cómo desarrollar la actividad?

Descargar la App, resolver los retos, en familia o en el aula, y compartir los resultados, mediante publicaciones con capturas de pantalla mostrando la puntuación en vuestra plataforma educativa o en RRSS, a través del botón de Twitter incorporando en la propia App o mediante capturas de pantalla en otras redes sociales.

 

  • Vídeo: Resolución, paso a paso, de reto matemático de proporcionalidad, reparto proporcional directo, con la App _neuronal by #moviLMáTICas 

 

 

 

Comparte MatemáTICas: 1,1,2,3,5,8,13,...

Concurso ¿Quién quiere ser millonario? #Quiz #Matemáticas

Comparte MatemáTICas: 1,1,2,3,5,8,13,...
¿Estas buscando plan familiar para las tardes en familia? ¿Quieres una propuesta atractiva y entretenida para trabajar en el aula?
En esta entrada te propongo uno. Y va de mates divertidas 😜.
Proyecta el siguiente vídeo en la Pizarra Digital de tu aula, en un ordenador o en la Smart TV 📺, pasa un rato divertido y averigua quien es el millonario matemático de tu familia 🏡 o de tu clase.
¡Consigue neuropuntos para alimentar tus neuronas 🧠!
¡Ya me comentas cómo te ha ido! 🤯
Comparte MatemáTICas: 1,1,2,3,5,8,13,...

Laberinto de ecuaciones de primer y segundo grado con Graspable Math. Propuesta didáctica con plantilla editable y vídeos de ayuda

Comparte MatemáTICas: 1,1,2,3,5,8,13,...

En esta entrada comparto los materiales de una propuesta didáctica para trabajar las ecuaciones de primer y segundo grado (cuadráticas) que diseñé y llevé a cabo con mi alumnado de Matemáticas de 3º de ESO (14-15 años) en modalidad online durante el cierre de los centros educativos españoles, periodo de la suspensión de la actividad docente presencial (marzo-junio 2020), con motivo de la COVID-19.

Para ayudarte a implementar esta propuesta con tus estudiantes incluyo:

  1. Plantilla en formato editable (.docx)
  2. Plantilla en formato imprimible (.pdf)
  3. Vídeo de ayuda para los estudiantes para que puedan cumplimentar la plantilla en formato digital para escribir las ecuaciones y su resolución.
  4. Vídeo con la resolución de un laberinto de ecuaciones de primer grado realizado en Graspable Math.
  5. Laberinto de ecuaciones de primer grado sencillas. Método de las transformaciones algebraicas realizado en Graspable Math.

Espero te animes a usar la propuesta con tu alumnado y os resulte atractiva y de utilidad.

Ya me contarás cómo te ha ido.

¡Ánimo!

 

Propuesta didáctica

 

1.Plantilla en formato editable (.docx)

Plantilla – Laberinto de ecuaciones de primer y segundo grado

 

2. Plantilla en formato imprimible (.pdf)

Plantilla – Laberinto de ecuaciones de primer y segundo grado

 

3. Vídeo de ayuda para los estudiantes para que puedan cumplimentar la plantilla en formato digital para escribir las ecuaciones y su resolución. 

 

4. Vídeo con la resolución de un laberinto de ecuaciones de primer grado realizado en Graspable Math.

 

5. Laberinto de ecuaciones de primer grado sencillas. Método de las transformaciones algebraicas realizado en Graspable Math.

 

 

MÁS CONTENIDO MATEMÁTICO EN REDES SOCIALES

Comparte MatemáTICas: 1,1,2,3,5,8,13,...

Tareas Open Middle relacionadas con la suma y la resta elaboradas con Graspable Math

Comparte MatemáTICas: 1,1,2,3,5,8,13,...

En esta entrada te propongo 4 tareas de tipo Open Middle, relacionadas con la suma y la resta, que he elaborado con ayuda de Graspable Math.

Puedes dejar las soluciones que encuentres haciendo comentarios a esta entrada.
¡Ánimo!

1. Tarea OM – Resta (I)

 

2. Tarea OM – Resta (II)

 

3. Tarea OM – Suma (I)

 

4. Tarea OM – Suma y Resta (I)

 

¿Qué es una tarea de tipo Open Middle (OM)?

El nombre “Open Middle” puede sonar como un nombre extraño para un tipo de problemas matemáticos. Sin embargo, hace referencia a un tipo de problema muy particular que se debe fomentar en el aula de matemáticas. Como habrás podido apreciar en las tareas anteriores, la mayoría de tareas OM presentan las siguiente características:

  • un “comienzo cerrado”: lo que significa que todos los alumnos comienzan con el mismo problema inicial.
  • un “final cerrado”: lo que significa que todos los alumnos terminan con el mismo resultado.
  • un “medio abierto”: lo que significa que hay múltiples maneras de acercarse a -y en última instancia, de resolver- el problema.

Los problemas de tipo “Open Middle” suelen requerir una carga cognitiva mayor que la mayoría de los problemas que evalúa solo la comprensión procedimental y conceptual. Además, trabajan con los contenidos del currículo y proveen a los estudiantes oportunidades para discutir su pensamiento, favoreciendo la fluidez, el razonamiento y la expresión oral/escrita.

Algunas características adicionales de los problemas de tipo “Open Middle” son:

  • Generalmente tienen múltiples maneras de ser resueltos en contraposición a los problemas en los que a uno se le pide que aplique un método específico para su resolución.
  • Pueden ser optimizados de manera tal que sea fácil encontrar un resultado, pero resulte más desafiante encontrar el resultado óptimo.
  • Pueden parecer de naturaleza simple y procedimental pero resultan siendo más desafiantes y complejos cuando uno comienza a resolverlos.
  • Generalmente no son tan complejos como una tarea contextualizada que puede requerir un contexto previo para ser completadas.

Los artífices y creadores originales de este tipo de tareas son Nanette Johnson y Robert Kaplinsky.

MÁS CONTENIDO MATEMÁTICO EN REDES SOCIALES

Comparte MatemáTICas: 1,1,2,3,5,8,13,...

2 retos: resolución y construcción de criptogramas numéricos aditivos

Comparte MatemáTICas: 1,1,2,3,5,8,13,...

Criptograma Ilustraciones Stock, Vectores, Y Clipart – (881 Ilustraciones Stock)

 

En esta entrada te propongo resolver 2 criptogramas numéricos aditivos. A continuación te explicaré un poco qué es un criptograma, un poco de historia sobre este concepto y algunas reglas para resolverlos.

1. ¿Qué es un criptograma?

Un criptograma es un fragmento de mensaje cifrado, y cuyo significado es ininteligible hasta que es descifrado. Generalmente, el contenido del mensaje inteligible es modificado siguiendo un determinado patrón, de manera que sólo es posible comprender el significado original tras conocer o descubrir el patrón seguido en el cifrado.

Por lo general, el cifrado utilizado para cifrar el texto es lo suficientemente simple como para que el criptograma pueda resolverse manualmente. El cifrado más utilizado en estos casos es el llamado cifrado por sustitución, en el que cada letra es remplazada por una diferente o por un número.

En sus inicios fue concebido para aplicaciones más serias, pero en la actualidad es utilizado por lo general como entretenimiento en revistas y diarios.

2. Un poco de historia sobre los criptogramas

Los criptogramas no fueron originalmente creados para propósitos de entretenimiento, sino para el cifrado de secretos militares o privados.

El primer uso de criptogramas para propósitos de entretenimiento sucedió durante la Edad Media por unos monjes que preparaban juegos de ingenio. Un manuscrito encontrado en Bamberg establecen que los visitantes irlandeses a la corte de Merfyn Frych ap Gwriad (muerto en el año 844), rey de Gwynedd en Gales recibieron unos criptogramas, los cuales sólo podían resolverse transponiendo las letras del alfabeto latino al griego. Alrededor del siglo trece, el monje inglés Roger Bacon escribió un libro en el cual listó siete métodos de cifrado, y estableció que

Un hombre está loco si para escribir un secreto, elige una forma que pueda ser conocida por el vulgo.

En el siglo XIX, Edgar Allan Poe ayudó a popularizar los criptogramas, mediante la publicación de muchos artículos en revistas y diarios.

Los criptogramas numéricos son operaciones de cálculo en las cuales se han sustituido las cifras por letras u otros símbolos de manera que se propone encontrar que valor corresponde a cada letra, teniendo en cuenta, claro, que una misma letra no puede representar dos valores numéricos diferentes. Su resolución, a menudo, exige muchas hipótesis y largos cálculos que implican grandes riesgos de confusión.

3. Algunas reglas o pistas

Para resolverlos pueden serte de utilidad tener en cuenta lo siguiente:

  • Los números están en base diez, a menos que se especifique lo contrario.
  • Cada letra o símbolo representa un único número (entre 0 y 9).
  • El primer dígito de un número no puede ser el cero.

4. Reto I. Resuelve los siguientes criptogramas aditivos

Te propongo dos criptogramas para que practiques. Son aditivos porque en sus enunciados aparecen sumas.

Criptograma aditivo (I) · MatemáTICas: 1,1,2,3,5,8,13,…
Criptograma aditivo (II) · MatemáTICas: 1,1,2,3,5,8,13,…

5. Reto II. Construye tus propios criptogramas aditivos

Pon a prueba tu creatividad, construye tu propio criptograma y déjalo como comentario en este blog o remítela por correo electrónico a lu***********@***il.com.

 

MÁS CONTENIDO MATEMÁTICO EN REDES SOCIALES

Comparte MatemáTICas: 1,1,2,3,5,8,13,...
WP2Social Auto Publish Powered By : XYZScripts.com