Experimentación DidácTICa

Propuesta didáctica: Inteligencia artificial con LearningML. Modelo numérico. Matemáticas; puntos, coordenadas y cuadrantes

Comparte MatemáTICas: 1,1,2,3,5,8,13,...
En esta entrada comparto una propuesta didáctica para introducir la Inteligencia Artificial (IA) en el aula de Matemáticas. En ella planteo un escenario de aprendizaje automático basado en un modelo numérico implementado con la herramienta LearningML.

Propuesta didáctica: ¿A qué cuadrante pertenece?

Lo que he querido movilizar con esta propuesta es la capacidad de la herramienta para aprender únicamente a partir de los datos, sin ser programada de manera explícita, a ubicar puntos, a partir de sus coordenadas, en el cuadrante que les corresponda.
Para ello, he seguido la siguiente secuencia:
  • En LearningML creo un modelo numérico basado en datos de dos columnas.
  • A continuación creo 4 categorías, correspondientes a los distintos cuadrantes del plano cartesiano.
  • Alimento el modelo con datos, en este caso concreto he usado una docena para cada una de las categorías.
  • Entreno el modelo para que aprenda a reconocer los números y busque patrones.
  • Una vez que finaliza el entrenamiento pasamos a ponerlo a prueba.

Captura de pantalla. Apariencia del modelo numérico implementado en LearningML

  • Además de ello, una vez que he considerado que el funcionamiento es óptimo, he elaborado un programa en Scratch asociado al modelo que nos permita trabajar en un entorno más visual.

Captura de pantalla. Aspecto del programa implementado en Scratch asociado al modelo numérico implementado en LearningML

Vídeo con explicación paso a paso y simulación de la propuesta didáctica: ¿A qué cuadrante pertenece?

Si te resultó interesante la propuesta, me alegraría leer tu comentario, opinión, sugerencia, así como si quieres compartir  la entrada para que la conozcan otros colegas a los que creas les puede ser útil.

El proyecto «Fostering Artificial Intelligence at School« (FAIaS)

Esta propuesta didáctica se enmarca en el ámbito del proyecto FAIaS. El aprendizaje automático es una de las ramas de la IA que permite que una máquina aprenda mecánicamente a partir del procesamiento de datos.
El vínculo entre la IA y la educación comprende tres ámbitos:
  • aprender con la IA, utilizando las herramientas de IA en las aulas
  • aprender sobre la IA, sus tecnologías y sus técnicas), y,
  • prepararse para la IA, permitiendo que todos los ciudadanos comprendan la repercusión potencial de la IA en nuestras vidas
Estos vínculos establecidos por la UNESCO se ponen de manifiesto y son concretados a través de la puesta en marcha de proyectos específicos.Se cree que la inteligencia artificial (IA) es un factor clave de la cuarta revolución industrial que transformará la economía y reinventará la naturaleza de nuestro trabajo. Estaremos cada vez más apoyados e interactuaremos con tecnología impulsada por Inteligencia Artificial. Esto exige una educación que nos prepare para este futuro.
Uno de los proyectos pioneros y más relevantes en el panorama educativo español y europeo es «Fostering Artificial Intelligence at School» (FAIaS). FAIaS tiene la intención de perfeccionar las habilidades, tanto cognitivas como blandas, necesarias para comprender, construir o interactuar con la Inteligencia Artificial. Por lo tanto, consideramos la IA, no en el sentido estricto y puramente tecnológico, sino en el sentido amplio, ya que afecta muchas partes diferentes de nuestras vidas. Por lo tanto, optamos decididamente por un enfoque interdisciplinario e inclusivo que se centre no solo en las actividades STEM, sino que involucre todas las materias escolares y cubra una amplia gama de aspectos, incluidos los éticos, filosóficos, económicos, legales e históricos. Creemos que abordar un tema desde diferentes perspectivas profundiza la comprensión y crea cohesión entre los alumnos en un campo intrínsecamente interdisciplinario como la Inteligencia Artificial.

Más contenido matemático en redes sociales

Comparte MatemáTICas: 1,1,2,3,5,8,13,...

El problema viral del corte del sandwich, por elrubius @Rubiu5. Ricas y variadas estrategias de resolver un problema usando distintos saberes

Comparte MatemáTICas: 1,1,2,3,5,8,13,...

Os comparto este tweet viral de elrubius (@Rubiu5) que, más allá de comentarios sin sentido, divertidos y jocosos; así como soluciones correctas y erróneas, nos muestran variadas e interesantes maneras de abordar este problema cotidiano.

El problema es el siguiente:

He tomado algunas respuestas, con diferentes y variados acercamientos, haciendo uso de diferentes estrategias y saberes (contenidos) para resolverlo.

  1. Análitico (integrales),
  2. Cálculo de área (rectángulo y triángulo)
  3. Área y perímetro
  4. Cálculo de áreas de forma manipulativa, por descomposición y recomposición, usando las propiedades de la medida.

1. Un acercamiento usando integrales (Alon @alonsozazo)

2. Caso particular, área de rectángulos y triángulos (Justine@Im_Justnx)

3. Área y perímetro… y ‘sensación de más grande’ (Kimel @Kimel_Kobol)

4. Áreas, descomposición y recomposición (? @aressatxn)

Como se observa en esta selección de ejemplos que he realizado, aunque os animo a seguir el hilo de respuestas para analizar otras, se puede resolver un problema de múltiples maneras y movilizando saberes (contenidos) de los distintos sentidos matemáticos (bloques de contenidos).

Gracias, elrubius (@Rubiu5), por viralizar las matemáticas y propiciar este rico escenario de aprendizaje 😉

Comparte MatemáTICas: 1,1,2,3,5,8,13,...

Reto matemático terrorífico para la noche de Halloween – Graspable Math

Comparte MatemáTICas: 1,1,2,3,5,8,13,...

En esta entrada os propongo un reto terrorífico para la noche de Halloween, basado en un modelo de áreas.

¿Cómo lo ves? ¿Eres capaz de resolverla?

¿Truco o trato? 🙂

Tarea interactiva. Reto matemático terrorífico para la noche de Halloween, realizada en Graspable Math

Pulsa aquí para completar el reto en GMA y dejar registrada tu respuesta (First Name: Tu nombre – Last Initial: Inicial de tu apellido)

Más contenido matemático en redes sociales

Comparte MatemáTICas: 1,1,2,3,5,8,13,...

Colaboración con el Observatorio de Tecnología Educativa del INTEF. Graspable Math: una nueva manera de explorar y hacer matemáticas

Comparte MatemáTICas: 1,1,2,3,5,8,13,...

El pase de diapositivas requiere JavaScript.

En esta entrada tengo el gusto de compartir artículo elaborado para el Observatorio de Tecnología Educativa del INTEF, un espacio de referencia en torno a la innovación digital en el aula.

Está dedicado a Graspable Math, una herramienta joven, aún poco extendida en España y en el contexto iberoamericano, con mucha potencialidad didáctica para el aula de matemáticas y con la que he trabajado de manera intensiva el último año.

 

ARTÍCULO EN EL OBSERVATORIO

Se trata de  “Graspable Math: una nueva manera de explorar y hacer matemáticas”. Está escrito por Luis Miguel Iglesias Albarrán, profesor de enseñanza secundaria en la especialidad de Matemáticas y Director del IES San Antonio en Bollullos Par del Condado (Huelva).

Graspable Math es una herramienta digital interactiva innovadora que permite una nueva manera de explorar y comprender, mediante la interacción (tocando y arrastrando números y símbolos), las relaciones matemáticas. Forma parte de un proyecto de investigación financiado por el Institute of Education Sciences (IES) dependiente del U.S. Department of Education.

Es una herramienta permite “aprender haciendo” (learning by doing) matemáticas, favoreciendo el aprendizaje autónomo de los estudiantes y permitiéndoles poner el foco en las estructuras matemáticas. El diseño de la herramienta ayuda a salvar el obstáculo de la notación formal, haciendo posible que el alumnado se centre en cómo funcionan. Les brinda, en este sentido, oportunidades para razonar y deducir de manera flexible sobre las tareas matemáticas.

Con Graspable Math se nos presenta, en definitiva, una nueva manera de explorar, enseñar y de hacer matemáticas.

Si quieres saber más sobre Grapable Math, puedes leer el artículo elaborado por Luis Miguel Iglesias Albarrán en el que, además, hace una valoración personal y ofrece recomendaciones para el empleo de esta herramienta.

Acceso al artículo “Graspable Math: una nueva manera de explorar y hacer matemáticas” en formatos PDF y web

 

Dejo a continuación más material por si quieres iniciarte en el uso de esta versátil herramienta.

PUBLICACIONES SOBRE GRASPABLE MATH

En este espacio he realizado distintas publicaciones al respecto:

 

LISTA DE VÍDEOS SOBRE GRASPABLE MATH

Comparto también lista con más de una treintena de vídeos sobre diferentes usos didácticos de esta herramienta.

 

Lista de vídeos en Youtube sobre Graspable Math (33 vídeos)

Te animo a usarla con tu alumnado, a compartirla con tus contactos y compañeros a través de la red y quedo a tu disposición para cualquier duda o comentario al respecto, en forma de comentario bajo esta entrada o en mis perfiles en redes sociales.

¡Ya me contarás cómo te ha ido con tus alumnos en clase! 🙂

MÁS CONTENDO MATEMÁTICO EN REDES SOCIALES

Comparte MatemáTICas: 1,1,2,3,5,8,13,...

Propuesta didáctica: retos con la App _neuronal by #moviLMáTICas. Reto matemático de proporcionalidad resuelto en vídeo #mlearning

Comparte MatemáTICas: 1,1,2,3,5,8,13,...

El pase de diapositivas requiere JavaScript.

  • Introducción a la actividad

Se describe en el vídeo, paso a paso, y se resuelve un reto de manera íntegra, para aprender contenidos matemáticos en este contexto lúdico y gamificado con dispositivos móviles #mlearning.

Se requiere App gratuita para dispositivos Android descargada e instalada. Accesible en la Play Store en la dirección: https://play.google.com/store/apps/details?id=appinventor.ai_luismiglesias.moviLMaTICas_neuronal

 

  •  ¿Cómo presentar la actividad?

¿Cuántos neuropuntos serás capaz de conseguir? Juega, gana y comparte tus resultados.

Diviértete resolviendo retos matemáticos sencillos, en familia o en el aula, para entrenar tus neuronas.

 

  •  ¿Cómo desarrollar la actividad?

Descargar la App, resolver los retos, en familia o en el aula, y compartir los resultados, mediante publicaciones con capturas de pantalla mostrando la puntuación en vuestra plataforma educativa o en RRSS, a través del botón de Twitter incorporando en la propia App o mediante capturas de pantalla en otras redes sociales.

 

  • Vídeo: Resolución, paso a paso, de reto matemático de proporcionalidad, reparto proporcional directo, con la App _neuronal by #moviLMáTICas 

 

 

 

Comparte MatemáTICas: 1,1,2,3,5,8,13,...

Graspable Math y Geogebra; aliadas extraordinarias para enseñar y aprender matemáticas en contextos presenciales discontinuos. 5 tareas resueltas en vídeos sobre funciones lineales, afines, paralelismo y ecuaciones de la recta

Comparte MatemáTICas: 1,1,2,3,5,8,13,...

Los lectores asiduos de este rincón virtual matemático conocen sobradamente mi predilección por estas dos poderosas herramientas digitales. En mi opinión, indispensables ambas para la enseñanza y el aprendizaje de la matemática en el siglo XXI, siendo especialmente útiles en los contextos de enseñanza-aprendizaje semipresencial y a distancia especialmente extendidos con motivo de la COVID-19.

Aprovecho estas líneas para invitarte a visitar las distintas publicaciones sobre propuestas didácticas para trabajar en el aula y los materiales que he compartido sobre ambas en los últimos años:

Pues bien, si juntamos ambas, el resultado no puede ser catalogado de otro modo que excelente.

Como muestra de ello comparto en esta entrada 5 tareas resueltas paso a paso, en otros tantos vídeos, con ayuda de Geogebra y Graspable Math. 

Estos materiales los desarrollé para mis estudiantes de Matemáticas de 3º de ESO (14-15 años) para trabajar en modalidad online durante el cierre de los centros educativos españoles, periodo de la suspensión de la actividad docente presencial (marzo-junio 2020), con motivo de la COVID-19.

Espero te animes a usar los vídeos con tu alumnado si los consideras de utilidad.

 

Vídeos

1. Funciones lineales. Pertenencia a recta. Ecuación de la recta Geométrico – Graspable Math & Geogebra

 

2. Funciones lineales. Pertenencia a recta. Ecuación de la recta. Geometría Analítica. Graspable Math

 

3. Funciones afines. Ecuación de la recta. Recta paralela pasando por un punto – Graspable Math & Geogebra

 

4. Funciones lineales – Paralelismo – Significado de m y n en la ecuación explícita – Graspable Math & Geogebra

 

5. Funciones afines. Ecuación de la recta. Recta paralela pasando por un punto – Graspable Math & Geogebra

Más contenido matemático en redes sociales

Comparte MatemáTICas: 1,1,2,3,5,8,13,...

Tarea Open Middle sobre logaritmos (cambio de base) elaborada en Graspable Math y en Scratch

Comparte MatemáTICas: 1,1,2,3,5,8,13,...

Comenzamos la semana con esta entrada donde comparto los materiales de una propuesta didáctica para trabajar los logaritmos (teorema del cambio de base).

Se trata de una tarea de tipo Open Middle, traducida al español y adaptada a partir de la original en inglés del profesor Bryan Anderson. La he implementado en dos herramientas que en mi opinión presentan un potencial didáctico increible y a las que soy adicto; Graspable Math y Scratch.

Para ayudarte a implementar esta propuesta con tus estudiantes incluyo:

  1. Enunciado de la tarea en Graspable Math
  2. Tarea interactiva. Logaritmos OM realizada en Graspable Math
  3. Tarea interactiva. Logaritmos OM realizada en Scratch

Espero te animes a usar la propuesta con tu alumnado y os resulte atractiva y de utilidad.

Ya me contarás cómo te ha ido.

¡Ánimo!

 

Propuesta didáctica

 

1. Enunciado de la tarea en Graspable Math

 

2. Tarea interactiva. Logaritmos OM, realizada en Graspable Math.

 

3. Tarea interactiva. Logaritmos OM realizada en Scratch

Enlace a Logaritmos OM en Scratch

 

Esta entrada participa en la Edición 11.6: Conjeturas del Carnaval de Matemáticas, que en esta ocasión organiza Gaussianos.

 

Más contenido matemático en redes sociales

Comparte MatemáTICas: 1,1,2,3,5,8,13,...

11 Recursos Educativos Abiertos Interactivos (…de Matemáticas) elaborados con H5P. Un menú de degustación para el aprendizaje del álgebra

Comparte MatemáTICas: 1,1,2,3,5,8,13,...

Los lectores habituales de este blog conocen el gusto, más bien adicción :-), que tengo por los Recursos Educativos Abiertos (REA)

El rol de docente como elaborador de contenidos digitales educativos ofrece autonomía, enriquece nuestras clases y nos permite desarrollar una atención educativa más personalizada para nuestros alumnos. Aunque en mi opinión, consumida la quinta parte del siglo XXI, esto no debería ser suficiente. Lo ideal sería llegar a promover ambientes de aprendizaje donde sean los propios alumnos los productores de contenidos.

Create and share with H5P 

En la línea de la atención personalizada, usando el símil gastronómico, he preparado un menú de degustación (compuesto por 11 platos) para el aprendizaje del álgebra. Para su elaboración he utilizado la herramienta H5P, software libre, con un potencial increíble en el ámbito educativo debido a su excelente integración con los principales servicios CMS y LMS como WordPress (es el caso de este post), Moodle, Blackboard, Canvas, Brightspace y Drupal.

No es el objetivo de esta entrada describir el funcionamiento de H5P. Para ello recomiendo, entre otros, el excelente post, que escribiera la compañera y amiga de CEDEC, Lola Alberdi, titulado ¿Qué puede hacer H5p por mis alumnos?

 

¿Qué es H5P?

H5P es una plataforma de creación de contenidos interactivos, gratuita y abierta, con todas las ventajas que proporciona el software libre en educación, ampliando las posibilidades de aprendizaje de nuestros alumnos. H5P permite realizar alrededor de 35 tipos diferentes de contenidos interactivos, y es:

  • multiplataforma (funciona el Linux, Windows, IOS),
  • de código abierto y por lo tanto sostenible en el tiempo, asegurando la perdurabilidad de nuestras creaciones,
  • con libertad para usar, copiar, modificar y distribuir el software,
  • optimiza recursos, reduciendo el costos de equipos,
  • crea alumnos libres, no dependientes de un producto concreto ya que se enseña a trabajar con una tecnología.

H5P está realizado mayormente con código JavaScript con el objetivo de integrarlo con nuevas plataformas por lo que, además de realizar actividades y contenidos interactivos en la misma plataforma de H5p, podemos integrarlo con un plugin en nuestro Moodle, WordPress o Drupal. En caso de que tengamos alguna duda, es útil resaltar que cuenta con un foro de usuario bastante ágil y eficiente. En definitiva, la herramienta capacita a todos para crear, compartir y reutilizar contenido interactivo con facilidad.

 

Pixabay by geralt

 

Menú de degustación para el aprendizaje del álgebra. 11 recursos interactivos elaborados con H5P

Asociación de conceptos
 
Sopa de letras
 
Rellenar huecos. Procedimiento de resolución de ecuaciones de primer grado
 
Quiz. Autoevaluación
 
Razonamiento algebraico. Lenguaje algebraico respuesta abierta, libre.
 
6 Test de resolución de ecuaciones de primer grado. Cada uno contiene 10 actividades aleatorias con 6 posibles respuestas.

Test de ecuaciones nivel I

 

Test de ecuaciones nivel II

 

Test de ecuaciones nivel III

 

Test de ecuaciones nivel I (con fracciones)

 

Test de ecuaciones nivel II (con fracciones)

 

Test de ecuaciones nivel III (con fracciones)

 

Más contenido matemático en redes sociales

Comparte MatemáTICas: 1,1,2,3,5,8,13,...

Tarea rica elaborada y resuelta con Graspable Math para trabajar las expresiones algebraicas con 2 variables

Comparte MatemáTICas: 1,1,2,3,5,8,13,...

En esta entrada comparto los materiales de una propuesta didáctica para trabajar las expresiones algebraicas con 2 variables.

Para ayudarte a implementar esta propuesta con tus estudiantes incluyo:

  1. Enunciado de la tarea
  2. Incomparable. Expresiones algebraicas con 2 variables realizado en Graspable Math.
  3. Vídeo con la resolución de la tarea usando Graspable Math.

Espero te animes a usar la propuesta con tu alumnado y os resulte atractiva y de utilidad.

Ya me contarás cómo te ha ido.

¡Ánimo!

 

Propuesta didáctica

 

1.Enunciado de la tarea

 

 

2. Tarea: Incomparable. Expresiones algebraicas con 2 variables realizada en Graspable Math.

 

3. Vídeo con la resolución de la tarea usando Graspable Math.

 

MÁS CONTENIDO MATEMÁTICO EN REDES SOCIALES

Comparte MatemáTICas: 1,1,2,3,5,8,13,...

Laberinto de ecuaciones de primer y segundo grado con Graspable Math. Propuesta didáctica con plantilla editable y vídeos de ayuda

Comparte MatemáTICas: 1,1,2,3,5,8,13,...

En esta entrada comparto los materiales de una propuesta didáctica para trabajar las ecuaciones de primer y segundo grado (cuadráticas) que diseñé y llevé a cabo con mi alumnado de Matemáticas de 3º de ESO (14-15 años) en modalidad online durante el cierre de los centros educativos españoles, periodo de la suspensión de la actividad docente presencial (marzo-junio 2020), con motivo de la COVID-19.

Para ayudarte a implementar esta propuesta con tus estudiantes incluyo:

  1. Plantilla en formato editable (.docx)
  2. Plantilla en formato imprimible (.pdf)
  3. Vídeo de ayuda para los estudiantes para que puedan cumplimentar la plantilla en formato digital para escribir las ecuaciones y su resolución.
  4. Vídeo con la resolución de un laberinto de ecuaciones de primer grado realizado en Graspable Math.
  5. Laberinto de ecuaciones de primer grado sencillas. Método de las transformaciones algebraicas realizado en Graspable Math.

Espero te animes a usar la propuesta con tu alumnado y os resulte atractiva y de utilidad.

Ya me contarás cómo te ha ido.

¡Ánimo!

 

Propuesta didáctica

 

1.Plantilla en formato editable (.docx)

Plantilla – Laberinto de ecuaciones de primer y segundo grado

 

2. Plantilla en formato imprimible (.pdf)

Plantilla – Laberinto de ecuaciones de primer y segundo grado

 

3. Vídeo de ayuda para los estudiantes para que puedan cumplimentar la plantilla en formato digital para escribir las ecuaciones y su resolución. 

 

4. Vídeo con la resolución de un laberinto de ecuaciones de primer grado realizado en Graspable Math.

 

5. Laberinto de ecuaciones de primer grado sencillas. Método de las transformaciones algebraicas realizado en Graspable Math.

 

 

MÁS CONTENIDO MATEMÁTICO EN REDES SOCIALES

Comparte MatemáTICas: 1,1,2,3,5,8,13,...
WP2Social Auto Publish Powered By : XYZScripts.com