Enseñanza de las Matemáticas

Proyecto MAPS – Caminos matemáticos al pensamiento computacional

Comparte MatemáTICas: 1,1,2,3,5,8,13,...

En esta entrada comparto información sobre este interesante proyecto de investigación educativa, abierto a centros de Andalucía, Aragón y Cataluña, en el que los centros educativos pueden inscribirse hasta el próximo 20 de mayo. 

¿Qué es MAPS – Caminos matemáticos al pensamiento computacional?

MAPS – Caminos matemáticos al pensamiento computacional es un proyecto de investigación educativa sobre el programa de enseñanza de las matemáticas basado en las bases de numeración Exploding Dots. MAPS llevdará a cabo  evaluación de impacto de Exploding Dots sobre el desarrollo del pensamiento computacional del alumnado, estudiando el efecto de trabajar en profundidad los fundamentos aritméticos sobre el fortalecimiento de las distintas componentes de este pensamiento. 

Asimismo, analizaremos los efectos que tiene el empleo de manipulativos virtuales para la descomposición y posicionamiento numérico sobre la ansiedad, la motivación y la capacidad de disfrutar de la actividad matemática de los alumnos de 1º de ESO.

El método de estudio es un RCT, prueba de control aleatorio (Randomized Control Trial), que consiste en tomar una muestra, en nuestro caso 80 centros educativos de Andalucía, Aragón y Cataluña, y de manera aleatoria pero controlada crear 2 grupos semejantes de 40 centros cada uno. El control sirve para que los dos grupos de 40 sean parecidos en cuanto a sus características relevantes (titularidad, urbano/rural, etc). 

El programa se pone en marcha solo en un grupo, el de implementación, y los resultados se comparan con el grupo de control en una prueba final que se hace a todos. Previamente a empezar, y para tener una base de medida, se hace una prueba inicial a los estudiantes de los dos grupos.  

CALENDARIO

#1. Noviembre 2022 – 20 de mayo 2023: Información del proceso a centros interesados. Firma del Memorándum de Entendimiento con centros participantes.

#2. Mayo – Junio 2023: Proceso de aleatorización. Formación docente presencial en Aragón, Andalucía y Cataluña.

 #3. Septiembre-Diciembre 2023: Implementación en aula.

 #4. Abril 2024: Informe de los resultados de la investigación.

¿A qué nos comprometemos como centro educativo?

Debido al tamaño de la muestra y a que los centros educativos se adscriben voluntariamente al programa, es necesario plantear que haya un grupo de control aleatorio para conocer la factibilidad de la investigación y poder realizar el procedimiento de validación de los resultados. El centro se compromete a participar independientemente de haber sido elegido grupo de implementación o grupo de control. En ambos casos el alumnado hará una prueba Pre-test y una post-test sobre pensamiento computacional, que consiste en la resolución de pequeños retos.  

¿Qué beneficios tenemos como centro educativo?

  • Formación gratuita sobre Exploding Dots, un enfoque innovador para el aprendizaje de la aritmética (En Andalucía a concretar ciudad, Barcelona y Zaragoza) a finales de este curso.
  • Materiales didácticos para su implementación.
  • Acreditación como centro investigador.
  • Los docentes participantes podrán formar parte de las siguientes convocatorias de HelloMath! de EduCaixa.
  • Cada escuela contará con una partida económica de 500 € en concepto de gastos derivados en la organización en el centro. 

FORMACIÓN GRATUITA 

  • La formación es gratuita y corre a cargo del equipo del MMACA (Museo de Matemáticas de Cataluña). Se hará de forma presencial.
  • Deberían asistir los profesores que vayan a llevar al aula la metodología el próximo curso.
  • El coste del alojamiento y desplazamiento, en el caso de proceder de otra ubicación geográfica, para la formación será cubierto por EduCaixa, por ser de carácter obligado para la participación en el proyecto.
  • Para los grupos de control, la formación será después de la evaluación postest, en el segundo trimestre del próximo curso.

¿CÓMO INSCRIBIRSE? Y MÁS INFORMACIÓN

  • Este es el formulario para a rellenar para inscribirse (HASTA EL 20 DE MAYO DE 2023): https://yj1podbqtws.typeform.com/expdots
  • Además, es necesario firmar la última hoja del Memorándum de Entendimiento que enviamos cuando los centros quieran entrar en el proyecto.
  • Se puede consultar la información en más profundidad en la web del proyecto
  • Aquí el díptico y el cartel.

Grabación de la presentación que se hizo en Barcelona, el pasado 9 de febrero, con la Master Class de James Tanton.

 

Más contenido matemático en redes sociales

 
Comparte MatemáTICas: 1,1,2,3,5,8,13,...

Álgebra de sucesos con Desmos. Sentido Estocástico. Animación

Comparte MatemáTICas: 1,1,2,3,5,8,13,...

En esta entrada comparto un gif animado sobre el álgebra de sucesos, obtenido a partir de un applet interactivo que elaboré hace algún tiempo con Desmos.

Concreción curricular

· Competencias específicas: Conexiones intra-matemáticas (CE5) y Representación (CE7)

· Saberes Básicos: Sentido estocástico 

Descripción

Animación

Álgebra de sucesos. Realizado con Demos por Luis M. Iglesias bajo licencia CC BY SA 4.0

Álgebra de sucesos. Realizado con Desmos por Luis M. Iglesias bajo licencia CC BY SA 4.0

Más contenido matemático en redes sociales

Comparte MatemáTICas: 1,1,2,3,5,8,13,...

Suma de números enteros de distinto signo con el cubo de ceros de Polypad · Mathigon

Comparte MatemáTICas: 1,1,2,3,5,8,13,...

Tras una larga e intensa jornada de final de trimestre, al llegar a casa a última hora de la tarde, he acompañado a mi pequeña (12 años) en su estudio abordando el primer acercamiento a los enteros.

Tras la comprensión de situaciones de la vida cotidiana expresadas con enteros, representación en la recta real, orden y suma de números enteros del mismo signo, ha estado practicando la suma de enteros de distinto signo.

Para aterrizar en este tipo de sumas, le he mostrado algunas ejemplificaciones que he elaborado para ella usando la funcionalidad «cubo o cubeta de ceros» de Polypad · Mathigon.

Os dejo el lienzo que he elaborado, con un ejemplo resuelto y otro por hacer, y una animación, de unos dos minutos, donde muestro el proceso seguido.

Espero sea de utilidad para vuestro trabajo a pie de aula y para acompañar a vuestros aprendices en el desarrollo del sentido numérico.

Animación. Ejemplo resuelto paso a paso usando el cubo de ceros

Canva Polypad · Mathigon

Polypad · Mathigon – Suma enteros de distinto signo

Más contenido matemático en redes sociales

Comparte MatemáTICas: 1,1,2,3,5,8,13,...

(Vídeo) Ponencia en el XXVI Congreso Nacional de Matemática Educativa de Guatemala. Menú de degustación de herramientas digitales para enseñar y aprender matemática en un contexto post pandémico

Comparte MatemáTICas: 1,1,2,3,5,8,13,...

El pase de diapositivas requiere JavaScript.

La tarde del pasado viernes, 25 de noviembre, tuve el gusto y el honor de participar en el XXVI Congreso Nacional de Matemática Educativa, un evento organizado por la Unidad de Modelación Matemática e Investigación, de la Facultad de Ingeniería de la Universidad de San Carlos de Guatemala, que se proyecta hacia la sociedad guatemalteca en apoyo a la mejora de la calidad educativa de matemática.

El evento ha contado con la participación de 60 ponentes, de Guatemala, México, Colombia, Panamá, Paraguay, El Salvador, Venezuela y España, de forma virtual, con talleres, foros, conferencias y grupos de reflexión acerca de la enseñanza y aprendizaje de esta materia en todos los niveles educativos, y con la participación de más de 500 docentes.

Quiero expresar mi agradecimiento a todos los miembros del Comité Organizador del Congreso, y de manera especial a la Dra. Mayra Castillo y al Dr. Julio Ricardo Castillo por todo el apoyo que me han dado. Comparto a continuación el enlace al evento en Facebook donde se encuentra en el vídeo de mi ponencia «Menú de degustación de herramientas digitales para enseñar y aprender matemática en un contexto post pandémico» donde, durante algo más de dos horas, reflexioné, compartí e interactué con los profesores participantes, realizando actividades matemáticas, simulando una situación real de clase a distancia con 4 herramientas digitales que en mi opinión son el póker de ases de las herramientas digitales para enseñar y aprender matemáticas en cualquier tipo de entorno; presencial, híbridos/blended/semipresencial y a distancia. Hablo de Geogebra Notas, Desmos, Graspable Math y Mathigon.

Espero que el vídeo sea de utilidad para tu trabajo diario en el aula de matemáticas. Quedo a la espera de tus comentarios 😉

Menú de degustación de herramientas digitales para enseñar y aprender matemática en un contexto post pandémico

XXVI Congreso Nacional de Matemática Educativa de Guatemala

Comparte MatemáTICas: 1,1,2,3,5,8,13,...

Ejercicios interactivos para trabajar el sentido algebraico. Producto de polinomios usando el modelo de áreas elaborado con Desmos

Comparte MatemáTICas: 1,1,2,3,5,8,13,...

En esta entrada comparto una batería compuesta por 10 ejercicios interactivos, elaborados con Desmos, para trabajar el producto de polinomios (binomios, igualdades notables y polinomios hasta grado 4) usando el modelo de áreas.

Espero que resulten de utilidad y le saques mucho partido. Déjame tu comentario, ¡tu opinión me interesa! 😉

Concreción curricular

· Competencias específicas: Conexiones intra-matemáticas (CE5) y Representación (CE7)

· Saberes Básicos: Expresiones algebraicas (sentido algebraico) – Área de figuras planas rectángulos (sentido de la medida y sentido espacial)

Descripción

Ejercicios de práctica de la propiedad distributiva de expresiones algebraicas. Producto de polinomios apoyado en un modelo gráfico de áreas.

  • Producto de binomios (Ej1 y Ej2)
  • Producto de binomios. Identidades notables (Ej3, Ej4 y Ej5)
  • Producto de polinomios (Ej6, Ej7, Ej8, Ej9 y Ej10)

Obra derivada elaborada por Luis Miguel Iglesias Albarrán · MatemáTICas: 1,1,2,3,5,8,13,… a partir de la obra original de Daniel Wekselgreene. Traducido al español, modificado y generados nuevos ejercicios.

Demo

Acceso a las actividades Desmos

Pulsar en Continuar sin iniciar sesión, introducir nombre y comenzar…

Pulsar para acceder a los ejercicios de práctica en Desmos

¿Cómo usar este recurso? Se puede acceder a https://student.desmos.com/join/bhwa7j?lang=es y proyectar en clase o compartir el enlace con los estudiantes, por correo electrónico u otro servicio de mensajería, enlazando desde una plataforma educativa o anotándolo en la pizarra.

Más contenido matemático en redes sociales

Comparte MatemáTICas: 1,1,2,3,5,8,13,...

Ciencia de datos + Inteligencia Artificial. Generando fórmulas de hoja de cálculo (Excel, Google,…) con un bot (IA) mediante lenguaje natural

Comparte MatemáTICas: 1,1,2,3,5,8,13,...
¿Qué pensarías si te hubieran dicho hace unos años que con instrucciones en lenguaje natural podríamos generar fórmulas para trabajar con datos en hojas de cálculo?
Pues bien, lo que parecería ciencia ficción hace algún tiempo, gracias al avance imparable de la Inteligencia Artificial, es ya una realidad al alcance de todos.
Gracias a bots (Inteligencia Artificial) como el que os muestro en el siguiente vídeo, podemos generar, a partir de instrucciones sencillas, las fórmulas que debemos introducir en una hoja de cálculo para realizar determinadas funciones. Todo ello, sin necesidad de buscar en la ayuda de la herramienta que estemos usando (Excel, Spreadsheet de Google,…).

 

  • ¿Qué te ha parecido?

Alucinante, ¿verdad?

  • ¿Llegará el día en que a través de nuestra voz o describiendo con nuestras palabras lo que queremos hacer, podamos trabajar con la hoja de cálculo sin necesidad de introducir ni tan siquiera la fórmula generada?

En mi opinión, sería genial y un gran avance en la convergencia entre dos mundos que me apasionan; la Ciencia de Datos y la Inteligencia Artificial. Concretamente, dentro de unos días tendré la oportunidad de impartir formación para docentes sobre esta temática en el CaixaForum Sevilla en el marco del Programa HelloMath! Atrévete con la creatividad matemática. El taller formativo lleva por título: Integración de la Ciencia de Datos y la IA en la escuela y, en el mismo, trabajaremos este y otros aspectos relacionados con el Pensamiento Computacional en el aula de Matemáticas, el Aprendizaje Automático,… ¡Ya lo estoy disfrutando! 🙂

Más información:

Más contenido matemático en redes sociales

Comparte MatemáTICas: 1,1,2,3,5,8,13,...

Instrumento para la evaluación competencial. Diana de evaluación y metacognición con Geogebra

Comparte MatemáTICas: 1,1,2,3,5,8,13,...

A estas alturas, como docentes de matemáticas, es de sobra conocido el potencial didáctico de la herramienta Geogebra. El límite a lo que podamos hacer con ella depende, no de la herramienta en sí, sino más bien de nuestra creatividad y de nuestra capacidad técnica.

En esta entrada os presento un uso de Geogebra un tanto diferente al habitual. En este caso la he usado para elaborar un instrumento de evaluación, concretamente una diana de aprendizaje o diana de evaluación y metacognición. La misma la elaboré en el marco del Proyecto REA/DUA Andalucía, proyecto bellísimo y superpotente de creación de Recursos Educativos Abiertos (REA) según los principios del Diseño Universal de Aprendizaje (DUA), en el que tengo la fortuna de participar desde el rol de Coordinador Técnico, junto a más de 200 compañeros y compañeras docentes de Andalucía. Si aún no lo conoces te animo a visitarlo, explorar y compartir las más de 250 situaciones de aprendizaje disponibles, adaptadas al nuevo marco curricular derivado de la implantación de la LOMLOE, con licencia Creative Commons.

Vídeo: Diana de evaluación y metacognición con Geogebra

Diana de aprendizaje de evaluación y metacognición

A continuación os dejo un fragmento de un excelente post publicado por Ingrid Mosquera en el sitio web del Máster Universitario en Formación del Profesorado de Secundaria de la UNIR (https://www.unir.net/educacion/revista/dianas-de-aprendizaje-que-son-y-para-que-sirven/). Recomiendo su lectura completa, además de otros posts de la serie relacionados con las dianas digitales.

¿Qué es una diana de evaluación?

Se puede decir que es un sistema visual, rápido y sencillo de llevar a cabo un aprendizaje participativo. Una participación que puede darse en todos los estadios de su empleo, desde la propia elaboración de la misma hasta el debate sobre los resultados obtenidos. Suele definirse como una posible representación gráfica de una evaluación que nos conducirá a la reflexión a partir de una única imagen que aglutina diferentes informaciones. Es el visual thinking de las evaluaciones, por usar terminología actual.

El dibujo o la plantilla de una diana consiste en círculos concéntricos que, de dentro hacia fuera, indican el nivel de cumplimiento o de adaptación a cada uno de los ítems incluidos. Alrededor del círculo más amplio tendremos los nombres de los ítems y para cubrir la diana iremos indicando el número que corresponde en cada uno de ellos. Así, al final, uniendo los puntos, obtendremos lo que se viene denominando como mapa de evaluación.

Aquí podemos ver un ejemplo sencillo en el que únicamente una persona participa, reflexionando sobre sus propias capacidades lingüísticas:

autoevaluacion

Dianas de evaluación y metacognición

La diana puede servir para autoevaluarse, para coevaluar a otros compañeros, para valorar el trabajo en grupo o para que los estudiantes puedan calificarnos como docentes. A menudo suelen emplearse para evaluar las actitudes y la participación del alumnado. Dependiendo del objetivo último para la que se elabore, muchos de los puntos presentados en la enumeración anterior vendrán determinados de antemano.

 

Como elemento de autoevaluación, las dianas contribuirán al desarrollo de la metacognición de nuestros alumnos. Igualmente, una autoevaluación, como la presentada en la imagen previa, puede ser comparada con la coevaluación y autoevaluación de otros compañeros, o con la propia evaluación del docente. De esta manera, de un solo vistazo, se podrá abrir un interesante debate en el que los alumnos podrán reflexionar acerca de las percepciones que tienen sobre su propio aprendizaje.

 Diana de evaluación y metacognición en Geogebra.org


Acceso a la diana de evaluación en Geogebra.org

 

Espero que sea de utilidad para ti y para tus estudiantes y le saquéis mucho partido en el aula.

Más contenido matemático en redes sociales

Comparte MatemáTICas: 1,1,2,3,5,8,13,...

Programa HelloMath! de EduCaixa. Atrévete con la creatividad matemática. Pensamiento computacional en el aula de Matemáticas

Comparte MatemáTICas: 1,1,2,3,5,8,13,...
En esta entrada comparto información sobre un nuevo programa para trabajar el pensamiento computacional en el aula de Matemáticas. Se trata de HelloMath! Tendré la suerte de ser uno de los 18 miembros del equipo de formadores, distribuidos en 4 equipos, correspondientes a otras tantas sedes: Barcelona, Madrid, Sevilla y Zaragoza.

Con el programa HelloMath! trabajarás el pensamiento computacional en clase de matemáticas y podrás compartir con tu alumnado el gusto por resolver problemas. El 22 de septiembre, a las 18.30 h, te invitamos al acto de presentación del programa. ¡Apúntate a la cuarta edición!

El equipo completo de formadores es el siguiente:

  • Nodo Barcelona: Anton Aubanell, Raül Fernández, Belén Garrido, Guido Ramellini, Arnau Sánchez y Eulàlia Tramuns
  • Nodo Zaragoza: Mónica Arnal, Pablo Beltrán-Pellicer, Núria Begué y Sergio Martínez-Juste
  • Nodo Madrid: Fernando Blasco, Jorge Calvo, Jose Ángel Murcia y Belén Palop
  • Nodo Sevillla: Francisco Javier Álvarez, Juan Manuel Dodero, Luis Miguel Iglesias y Álvaro Molina

¿Cuál es la propuesta?

Con el desarrollo tecnológico de la sociedad, las habilidades de pensamiento lógico, abstracto, creativo y computacional son cada vez más transversales y necesarias. Sin embargo, las pruebas diagnósticas indican una clara necesidad de mejora en los resultados de matemáticas. Es por eso que necesitamos explorar caminos de mejora en la manera de entender, enseñar y aprender las matemáticas mediante una integración más amplia y profunda con la informática.

El programa HelloMath! propone realizar esta mejora con la ayuda de la investigación de los docentes, que trabajan identificando los elementos clave del pensamiento computacional en su práctica diaria de matemáticas. Propone un método repleto de actividades ricas y estimulantes para desarrollar las competencias matemáticas e informáticas del alumnado.

El resultado es un conjunto de actividades ricas y estimulantes que fortalece las competencias matemáticas e informáticas del alumnado y su confianza, creatividad y capacidad para desarrollarse en un mundo construido sobre las tecnologías de la información. Está reconocido por el Instituto Nacional de Tecnologías Educativas y de Formación del Profesorado (INTEF) del Ministerio de Educación y formación profesional.

¿En qué consiste el programa?

Se trata de un ciclo formativo anual para docentes de matemáticas de 5º y 6º de Primaria y 1º y 2º de ESO. Sigue una modalidad híbrida: con sesiones presenciales en nuestros centros CaixaForum y en el Museo de la Ciencia CosmoCaixa; y acompañamiento online durante la fase de implementación. Empezaremos el curso con un acto de presentación abierto a todos los interesados, que se celebrará el día 22, a las 18.30 h, en streaming.

El grupo de formadores de HelloMath! Atrévete con la creatividad matemática es un grupo de expertos en matemáticas, didáctica de las matemáticas y didáctica de la informática.

Ponentes y sedes de la formación

  • Sede de Barcelona. Museo de la Ciencia CosmoCaixa 

Si tu centro es de Barcelona y alrededores, puedes consultar aquí el equipo de formadores que te acompañará y el calendario que seguirás en la formación de HelloMath! 

  • Sede de Zaragoza. CaixaForum Zaragoza

Si tu centro es de Zaragoza, puedes consultar aquí el equipo de formadores que te acompañará y el calendario que seguirás en la formación de HelloMath! 

  • Sede de Madrid. CaixaForum Madrid

Si tu centro es de Madrid, puedes consultar aquí el equipo de formadores que te acompañará y el calendario que seguirás en la formación de HelloMath! 

  • Sede de Sevilla. CaixaForum Sevillla
Si tu centro es de Sevilla, puedes consultar aquí el equipo de formadores que te acompañará y el calendario que seguirás en la formación de HelloMath!

Si tienes cualquier duda o consulta, puedes escribirnos a hellomath@educaixa.org.

Materiales y descargas y toda la información sobre HelloMath0

Aquí encontrarás materiales de interés sobre el programa.

Inscripción

Si quieres asistir a las sesiones, rellena el siguiente formulario:

Más contenido matemático en redes sociales

Comparte MatemáTICas: 1,1,2,3,5,8,13,...

Propuesta didáctica: Inteligencia artificial con LearningML. Modelo numérico. Botánicos en la escuela; clasificación de iris

Comparte MatemáTICas: 1,1,2,3,5,8,13,...
En esta entrada comparto una nueva propuesta didáctica para introducir la Inteligencia Artificial (IA) en el aula. En ella planteo un escenario de aprendizaje automático basado en un modelo numérico implementado con la herramienta LearningML. Se trata de una propuesta con enfoque STEM, que desarrolla Competencias Específicas de las materias Matemáticas y Biología y en el trabajo por ámbitos, entre ellos el ámbito científico y tecnológico de los programas de diversificación curricular.

Propuesta didáctica: Especies de iris.

Lo que he querido movilizar con esta propuesta es la capacidad de la herramienta para aprender únicamente a partir de los datos, sin ser programada de manera explícita, a clasificar iris, a partir de algunas medidas de sus sépalos y pétalos, con la especie que mejor se identifique.
Para ello, he seguido la siguiente secuencia:
  • En LearningML creo un modelo numérico basado en datos de 4 columnas.
  • A continuación creo 3 categorías, correspondientes a los tres tipos de especies.
  • Alimento el modelo con datos, en este caso concreto he usado cincuenta para cada una de las categorías.
  • Entreno el modelo para que aprenda a reconocer los números y busque patrones.
  • Una vez que finaliza el entrenamiento pasamos a ponerlo a prueba.

Captura de pantalla. Apariencia del modelo numérico implementado en LearningML

  • Además de ello, una vez que he considerado que el funcionamiento es óptimo, he elaborado un programa en Scratch asociado al modelo que nos permita trabajar en un entorno más visual.

Captura de pantalla. Aspecto del programa implementado en Scratch asociado al modelo numérico implementado en LearningML

Vídeo con explicación paso a paso y simulación de la propuesta didáctica: Especies de iris.

Si te resultó interesante la propuesta, me alegraría leer tu comentario, opinión, sugerencia, así como si quieres compartir  la entrada para que la conozcan otros colegas a los que creas les puede ser útil.

El proyecto «Fostering Artificial Intelligence at School« (FAIaS)

Esta propuesta didáctica se enmarca en el ámbito del proyecto FAIaS. El aprendizaje automático es una de las ramas de la IA que permite que una máquina aprenda mecánicamente a partir del procesamiento de datos.
El vínculo entre la IA y la educación comprende tres ámbitos:
  • aprender con la IA, utilizando las herramientas de IA en las aulas
  • aprender sobre la IA, sus tecnologías y sus técnicas), y,
  • prepararse para la IA, permitiendo que todos los ciudadanos comprendan la repercusión potencial de la IA en nuestras vidas
Estos vínculos establecidos por la UNESCO se ponen de manifiesto y son concretados a través de la puesta en marcha de proyectos específicos.Se cree que la inteligencia artificial (IA) es un factor clave de la cuarta revolución industrial que transformará la economía y reinventará la naturaleza de nuestro trabajo. Estaremos cada vez más apoyados e interactuaremos con tecnología impulsada por Inteligencia Artificial. Esto exige una educación que nos prepare para este futuro.
Uno de los proyectos pioneros y más relevantes en el panorama educativo español y europeo es «Fostering Artificial Intelligence at School» (FAIaS). FAIaS tiene la intención de perfeccionar las habilidades, tanto cognitivas como blandas, necesarias para comprender, construir o interactuar con la Inteligencia Artificial. Por lo tanto, consideramos la IA, no en el sentido estricto y puramente tecnológico, sino en el sentido amplio, ya que afecta muchas partes diferentes de nuestras vidas. Por lo tanto, optamos decididamente por un enfoque interdisciplinario e inclusivo que se centre no solo en las actividades STEM, sino que involucre todas las materias escolares y cubra una amplia gama de aspectos, incluidos los éticos, filosóficos, económicos, legales e históricos. Creemos que abordar un tema desde diferentes perspectivas profundiza la comprensión y crea cohesión entre los alumnos en un campo intrínsecamente interdisciplinario como la Inteligencia Artificial.

Más contenido matemático en redes sociales

Comparte MatemáTICas: 1,1,2,3,5,8,13,...

Libro Aportaciones al desarrollo del currículo desde la investigación en educación matemática

Comparte MatemáTICas: 1,1,2,3,5,8,13,...

Comparto en esta entrada una completísima obra, elaborada por compañeros investigadores de la SOCIEDAD ESPAÑOLA DE INVESTIGACIÓN EN EDUCACIÓN MATEMÁTICA (www.seiem.es), que será de gran valor desde una doble vertiente: la implementación en el aula y la formación del profesorado sobre el nuevo currículo de matemáticas derivado de la implantación de la LOMLOE.

Aportaciones al desarrollo del currículo desde la investigación en educación matemática

Los editores de la obra son: Lorenzo J. Blanco Nieto, Nuria Climent Rodríguez, María Teresa González Astudillo, Antonio Moreno Verdejo, Gloria Sánchez-Matamoros García, Carlos de Castro Hernández y Clara Jiménez Gestal.

El trabajo se ha realizado con la participación de 70 profesionales, docentes e investigadores en educación matemática, pertenecientes a 23 universidades.

El documento presentado es una aportación, desde la investigación en educación matemática realizada en el seno de la SOCIEDAD ESPAÑOLA DE INVESTIGACIÓN EN EDUCACIÓN MATEMÁTICA (www.selem.es), al desarrollo de la nueva propuesta curricular y sobre la formación del profesorado de matemáticas. Su contenido refleja tanto cuestiones generales sobre la educación matemática como concretas de los diferentes organizadores del currículo (como sobre los objetivos, contenidos, metodología y evaluación, asumiendo la perspectiva adoptada en relación a las competencias generales y especificas, y otros elementos derivados de la interacción entre aspectos cognitivos, afectivos, socio-culturales y valores propios de la sociedad actual). Deseamos que los temas tratados pue- dan ser útiles al profesorado en su actividad profesional, tanto para generar actividades de aula como para poder avanzar en su formación personal como profesores de matemáticas.

Portada libro

Índice de la obra
La SEIEM ante los retos de la educación matemática
en todos los niveles educativos …………………………………………………………………… 7
Parte 1. El currículum de matemáticas………………………………………………………. 14
Introducción……………………………………………………………………………………………………….. 15
Reflexiones curriculares desde la historia de la educación matemática
en la segunda mitad del siglo XX ……………………………………………………………………. 17
Consideraciones acerca de la enseñanza y aprendizaje
de las Matemáticas……………………………………………………………………………………………. 37
Sentido matemático Escolar…………………………………………………………………………….. 55
La evaluación en Matemáticas………………………………………………………………………… 80
Parte 2. Las matemáticas en los niveles escolares………………………………….. 104
Introducción……………………………………………………………………………………………………….. 105
Matemáticas en la Educación Infantil …………………………………………………………….. 107
Matemáticas en la Educación Primaria…………………………………………………………… 148
Matemáticas en la Educación Secundaria Obligatoria ………………………………… 172
Matemáticas en el Bachillerato ……………………………………………………………………….. 199
Matemáticas en la Universidad……………………………………………………………………….. 224
Matemáticas en la Formación Profesional …………………………………………………….. 260
Las Matemáticas en la educación de personas adultas……………………………….. 285
Pensemos en unas matemáticas para todo el alumnado……………………………. 322
6 índice
Parte 3. Cuestiones transversales en la enseñanza y
aprendizaje de las matemáticas………………………………………………………………….. 348
Introducción……………………………………………………………………………………………………….. 349
Tensiones y prácticas inclusivas en la enseñanza de las matemáticas……… 352
Desarrollar las competencias de resolución de problemas
y modelización para aprender matemáticas…………………………………………………. 373
Entornos tecnológicos para el desarrollo del pensamiento
computacional y de la competencia en resolución de problemas……………. 399
Recursos didácticos para el aula de Matemáticas………………………………………… 425
Matemáticas transversales……………………………………………………………………………….. 453
Parte 4. Formación y desarrollo profesional del profesorado
de matemáticas………………………………………………………………………………………………… 480
Introducción……………………………………………………………………………………………………….. 482
Parte A. Formación Inicial…………………………………………………………………………………. 485
A.1. Interpretar el pensamiento matemático de los estudiantes
para decidir sobre la enseñanza ……………………………………………………………………… 485
A.2. Oportunidades de aprendizaje y tareas matemáticas escolares………… 498
A.3. Criterios de idoneidad didáctica para orientar el rediseño
de la planificación e implementación de secuencias didácticas……………….. 506
Parte B. Acceso a la Formación docente. ……………………………………………………….. 515
Parte C. Desarrollo profesional………………………………………………………………………… 516
C.1. Desarrollo profesional en el contexto de investigaciones
colaborativas………………………………………………………………………………………………………. 517
C.2. Uso combinado de Lesson Study y los Criterios de
Idoneidad Didáctica………………………………………………………………………………………….. 522
Parte D. Cuestiones transversales: Dominio Afectivo…………………………………… 523
Descarga

La obra, publicada por la Editorial de la Universidad de Granada, puede descargarse de manera gratuita desde su página web.

Editorial Universidad de Granada. Acceso a la descarga en formato PDF

Más contenido matemático en redes sociales

Comparte MatemáTICas: 1,1,2,3,5,8,13,...
WP2Social Auto Publish Powered By : XYZScripts.com