E.S.O.

Problemas matemáticos históricos en verso para celebrar el Día Mundial de la Poesía

Comparte MatemáTICas: 1,1,2,3,5,8,13,...

No todo iba a ser hablar del innombrable bicho. Como nos instaba Freddie Mercury (Queen) en su disco Innuendo, The Show Must Go On. Teniendo presente este espíritu me he animado a escribir una entrada en este día Día Mundial de la Poesía.

Celebración matemática para el Día Mundial de la Poesía (21 de marzo)

He querido sumarme a la celebración de esta efeméride fusionando la poesía con las matemáticas, en el marco de mi línea de trabajo LingMáTICas, proponiendo la resolución de algunos problemas de números y álgebra planteados de una manera singular. Para ello he elegido varios problemas matemáticos en verso recogidos en el libro Lilavati, obra de especial relevancia en la historia de las matemáticas.

Sobre el Lilavati

 

Bhaskara II (1114-1185), fue un matemático y astrónomo indio. Es conocido, entre otros motivos, por ser el creador de la fórmula cuadrática. Bhaskara escribió un libro al que llamó Lilavati, nombre de su hija a quien iba dedicado. Bhaskara mostró en esta obra que hasta los problemas matemáticos más complejos pueden ser presentados de una forma amena y divertida, e incluso en verso. Lilavati se puede clasificar entre los manuales de divulgación que utilizan como forma el diálogo. Un padre se dirige con ternura a su hija Lilavati para desentrañarle los secretos de la matemática a través de ejercicios en verso, llenos de evocadoras imágenes.

Selección de problemas (retos) en verso

A continuación os presento una selección de 4 problemas en verso recogidos en dicha obra. Debemos tener en cuenta la distancia entre un poema escrito en sánscrito y la correspondiente traducción en español. Es obvio que pierde el ritmo y la calidad del texto original, pero aún así tienen un encanto especial como verás a continuación.

Os invito a resolver los mismos y compartir las soluciones conmigo: mediante comentario en el blog al final de esta entrada, por correo electrónico o mediante alguno de mis perfiles en redes sociales.

Ya me contaréis qué os parece la propuesta y cómo os ha ido con ellas… 

Problema 1.

La quinta parte de un enjambre de abejas se posó en la flor de Kadamba,

la tercera parte en una flor de Silinda, 

el triple de la diferencia entre estos dos números

voló sobre una flor de Krutaja, 

y una abeja quedó sola en el aire, 

atraída por el perfume de un jazmín y de un padanus.

Dime, bella niña, 

cuál es el número de abejas que formaban el enjambre.

 

Problema 2. 

La raíz cuadrada de la mitad del número de abejas en un enjambre
ha volado hasta la planta de jazmín.
Ocho novenos del enjambre atrás quedaron.
Una abeja vuela junto a su compañero quien zumba dentro de la flor de loto;
en la noche, atraído por el dulce aroma de la flor, voló a su interior
¡y ahora está atrapado!
Dime, encantadora dama, el número de abejas que forman el enjambre.

 

Problema 3.

Érase un enamorado que en atención a su novia,
para su adorno y realce, compró algunas esmeraldas.
Un octavo tuvo a bien poner en una diadema.
Con tres séptimos del resto compuso una gargantilla.
Con la mitad del sobrante, arreglóse un brazalete.
De lo que quedó, tres cuartos engarzó en un cinturón
de vibrantes campanillas.
Y aún quedaron dieciséis muy preciosas esmeraldas
que esparció por sus cabellos.
Dime, niña, Lilavati,
cuántas piedras fue que el joven comprara para su amada.

 

Problema 4. 

Un cuarto de un dieciseisavo de un quinto de tres cuartos de dos tercios de un medio de un
dramma fue dado por un avaro a un mendigo en forma de limosna. Dime querida chiquilla, si
has aprendido bien el método fracciones compuestas, ¿cuántos varatakas dio el tacaño?
(1.280 varatakas equivalen a un dramma)

 

Más información

Reseña sobre versión adaptada al español, en la web de la RSME

https://www.rsme.es/2015/07/84-675-6189-0/

 

Más contenido matemático en redes sociales

Comparte MatemáTICas: 1,1,2,3,5,8,13,...

Manteles algebraicos. Las igualdades notables se sientan a la mesa

Comparte MatemáTICas: 1,1,2,3,5,8,13,...
(2x+4)² = 4x² + 16x + 16 = 4(x + 2)²

Compartido en Twitter por Jonathan Hall

A continuación, la versión en azulejos algebraicos

(2x+4)² = 4x² + 16x + 16 = 4(x + 2)²

compartida por Ahbil Woldejohannes de la representación de la misma igualdad notable que mostraba Jonathan en la foto del mantel.

Estos ejemplos se suman a los trabajados en clase. 

Geometría y álgebra van de la mano. «Visualizar» el álgebra nos ayuda cantidad 🙂

Seguimos… 

Comparte MatemáTICas: 1,1,2,3,5,8,13,...

¡Feliz 2020!, sin cambio de década de siglo

Comparte MatemáTICas: 1,1,2,3,5,8,13,...

Ante todo, feliz año 2020 a todos y a todas las lectoras de este blog.

El pasado 30 de diciembre, un pelín cansado de escuchar/leer todo tipo de comentarios (en la calle, en redes sociales y en los informativos de los distintos medios de comunicación), y sin ánimo alguno de polemizar, publiqué el siguiente tuit:

Pero, ya ves… el debate estaba implícito 🙂 y se ha generado un hilo de discusión muy divertido, con enfoques igualmente interesantes.

Yo, lo tengo claro. Y tú… ¿qué opinas? Tu opinión me interesa, como comentario en el blog o en Twitter.

Comparte MatemáTICas: 1,1,2,3,5,8,13,...

Decimales y fracciones entre textos e imágenes: una experiencia de aprendizaje basada en la elaboración de cómics digitales. Comunicación en El Congreso Iberoamericano «La educación ante el nuevo entorno digital»

Comparte MatemáTICas: 1,1,2,3,5,8,13,...

El Congreso Iberoamericano «La educación ante el nuevo entorno digital» pretende ser un espacio donde cualquier docente pueda dar a conocer proyectos o experiencias relacionadas con cualquier área temática, pero con el denominador común del entorno digital en el que ya estamos inmersos. Se está desarrollando del 5 de noviembre al 15 de diciembre de 2019 en el Campus Virtual de Congresos de Formación IB.

A dicho evento online, el cual está resultando ser sumamente enriquecedor, hemos presentado la comunicación que indica el título de esta entrada, por si pudiera ser de utilidad y/o fuente de inspiración para nuevas propuestas didácticas.

Título 
Decimales y fracciones entre textos e imágenes: una experiencia de aprendizaje basada en la elaboración de cómics digitales. 

Autoría 

Resumen 
Esta investigación-acción tiene como objetivo la construcción de cómics matemáticos para facilitar el aprendizaje de fracciones y decimales. La justificación del uso del cómic radica en la motivación de los estudiantes por el uso de información visual, que al combinarla con el texto puede dar lugar a elementos de desarrollo de habilidades, creatividad y la lectura de contenido (Urbani, 1978, citado en Toh, 2009).  El soporte tecnológico se sostiene en una de las dimensiones de la competencia digital (Marqués, 2009), la dimensión del aprendizaje, expresada como transformación del contenido en adquisición del conocimiento. Además, el cómic se considera una herramienta con potencial para el aprendizaje de las matemáticas, por sus capacidades creativas y visuales (Cleaver, 2008) así como una posibilidad de mejora en la alfabetización de los estudiantes (Tilley, 2008).  

La investigación describe el proceso y resultados de una experiencia en el tercero de Enseñanza Secundaria Obligatoria, en Matemáticas orientadas a las enseñanzas académicas. El contenido a trabajar viene delimitado por el criterio de evaluación “utilizar las propiedades de los números racionales para operarlos, utilizando la forma de cálculo y notación adecuada, para resolver problemas de la vida cotidiana, y presentando los resultados con la precisión requerida” (RD. 1105/2014, p. 391).  

Los estudiantes construyen un cómic, utilizando una herramienta digital. Para el análisis de los resultados del conocimiento matemático expuesto se definen categorías que facilitan la identificación de cumplimiento de los estándares de aprendizaje. Estas categorías se construyen sustentadas en la investigación previa para el conocimiento matemático, desde la enseñanza y del aprendizaje de los números racionales. Las categorías que se utilizan son: el sentido dado a los algoritmos según su significado (que incluye la forma de utilizar los algoritmos y la resolución), la tipología del contexto que se utiliza para situar el objeto matemático, el rigor del lenguaje matemático, cómo se presentan los números (en forma decimal o fracción), y la reflexión final con los datos y resultados expuestos. 

Los resultados muestran distintos contextos que agrupamos como realistas y ficticios, donde estos últimos dan lugar a aquellos que dan sentido al objeto matemático y los que resultan forzados para introducir tanto el número como el algoritmo utilizado. Se utilizan distintos algoritmos, basados en suma y multiplicación; los cálculos implican usos como porcentaje, cálculo de las partes de un todo y equivalencia. En aquellas tareas que implican uso de algoritmos, los números base son fracciones en lugar de decimales. Encontramos tareas que finalizan de una manera reflexiva agrupando todos los datos utilizados a modo de recopilatorio para dar lugar a un ejercicio, y su solución. No aparecen demasiadas conversiones entre fracciones, y cuando lo hacen son para dar lugar a números que faciliten la interpretación de las partes de un todo. Los errores que aparecen surgen de cálculos encadenados entre fracciones, no siendo explícito si el cálculo es desde el paso anterior o desde el inicio, o cuando resultados dan lugar a números decimales y el contexto hubiese necesitado un número natural para su interpretación. 

Vídeo

 

https://congresoib.com/969joaquin-asenjo-perez/videos/video/302-decimales-y-fracciones-entre-textos-e-imagenes-una-experiencia-de-aprendizaje-basada-en-la

Esperando que os haya gustado esta investigación-acción en el campo de la Educación Matemática, queremos agradecer a Formación IB, a la UNED y a todas las personas que han apoyado y hecho posible este evento, de una u otra manera.

Comparte MatemáTICas: 1,1,2,3,5,8,13,...

Diagrama de barras con Scratch #Scratch3

Comparte MatemáTICas: 1,1,2,3,5,8,13,...

Si hace algunos meses compartía Encuesta: Betis-Sevilla. Propuesta didáctica #STEM para trabajar con la placa micro:bit #microbitedu y Scratch 3.0 #Scratch3, aplicación que muestra cómo realizar un sistema de encuesta integrando la placa programable micro:bit y la nueva versión de Scratch (Scratch 3.0), en esta entrada comparto pequeño programa que muestra como representar un diagrama de barras con Scratch, concretamente representa la serie histórica de la datos con la evolución de la población mundial.

Propuesta didáctica y modo de funcionamiento

La que hoy comparto es una propuesta didáctica para trabajar la representación de gráficos tan frecuentes en Estadística, como los diagramas de barras, con Scratch 3.0.

Para adaptarlo, basta modificar el escenario (nombres de los ejes de coordenadas) así como modificar las listas de datos a representar, pudiendo ser adaptada a otros contextos.

Para su elaboración he usado los bloques de Scratch 3.0: Movimiento, Apariencia, Eventos, Control y Variables, así como la extensión Lápiz.

Vídeo demostración

 

¿Quieres probarla?

Diagrama de barras. Evolución población mundial

Comparte MatemáTICas: 1,1,2,3,5,8,13,...

Trabajando la competencia comunicativa en el aula de matemáticas, con especial énfasis en la oralidad, a través de la lectura de novelas juveniles de divulgación matemática, integrando las TIC #PLC #ANL #LingMáTICas

Comparte MatemáTICas: 1,1,2,3,5,8,13,...

Introducción

Una vez concluido el curso escolar 2018/2019, en estos primeros días del caluroso julio en los que andamos inmersos en la preparación del siguiente curso, casi sin solución de continuidad, rondan por nuestra cabeza, flashes, de los diferentes momentos y experiencias de aula, de las distintas propuestas didácticas de enseñanza aprendizaje implementadas en el aula a lo largo del curso escolar.

Una de estas experiencias es la que ha motivado la redacción de este post, la cual espero sirva de ayuda e inspiración para otros compañeros/as docentes, interesados en trabajar la competencia comunicativa, desde Áreas No Lingüísticas (ANL), en este caso desde el Área de Matemáticas.

Justificación/Motivación

Si la incorporación de tareas comunicativas se podría ver como un hecho consumado en el ámbito de las Áreas Lingüísticas (AL), aún queda un camino importante por recorrer en las actuaciones encuadradas dentro de las denominadas Áreas No Lingüísticas (ANL).

Tomando como punto de partida mi concepción del aprendizaje como un todo integrado, funcional y utilitario e interconectado (interdisciplinar), más allá del aprendizaje aislado basado en el modelo de compartimentos estancos (materias), considero que en un contexto digital y de alfabetización audiovisual como el que nos encontramos, bien entrado el siglo XXI, y en la línea en la que vengo trabajando desde hace años en aulas matemáticas de Secundaria y Bachillerato andaluzas, conectando Lengua, Matemáticas y TIC en el aula (buscar LingMáTICas en la web o artículo en Educación 3.0, primavera de 2012), consideré interesante poner en marcha una propuesta para trabajar la competencia comunicativa:

  • con especial énfasis en la oralidad
  • a través de la lectura de novelas juveniles de divulgación matemática
  • integrando las TIC

La propuesta de intervención diseñada e implementada demandaba un papel eminentemente activo para mis aprendices, fomentando la comprensión y fluidez lectora, la capacidad de  síntesis, la oralidad y la creatividad, haciendo uso de dispositivos móviles para elaboración de productos multimedia (artefactos digitales como podcasts, pósters digitales…), trabajando así en altas dosis la competencia comunicativa.

Descripción de la propuesta de intervención

A continuación comparto presentación conteniendo: descripción, tareas, instrumentos y enlaces a alguno de los productos elaborados por los alumnos durante el desarrollo de la propuesta que he desarrollado para trabajar la oralidad, conjuntamente con el plan lector, en Matemáticas Orientadas a las Enseñanzas Académicas (3º de ESO). La propuesta queda enmarcada en el desarrollo del año 2 del Proyecto Lingüístico de Centro (PLC), en el que participamos desde el IES San Antonio de Bollullos Par del Condado.

 

  • Propuesta didáctica orientada al fortalecimiento de la competencia comunicativa, usando las TIC, desde un Área No Lingüística (ANL) como Matemáticas, con especial énfasis en la oralidad, a través del plan lector (líneas preferentes de actuación establecidas en el PLC de nuestro centro para el presente curso escolar).
  • Ha sido desarrollada con dos grupos de 3º de ESO en la asignatura Matemáticas Orientadas a las Enseñanzas Académicas.

 

https://tinyurl.com/oralidad-plc-lmia-1819

Espero resulte de utilidad el material compartido. Si crees que puede servir a algún compañero/a, no dudes en compartirla en tus redes sociales. Ya me contaréis que os parece, mediante comentarios debajo de esta entrada,  por correo-e o a través de las redes sociales. 

Por último, aprovecho la ocasión para desearos a todos/as los/as amigos/as visitantes/as de este blog, un feliz verano

Comparte MatemáTICas: 1,1,2,3,5,8,13,...

Encuesta: Betis-Sevilla. Propuesta didáctica #STEM para trabajar con la placa micro:bit #microbitedu y Scratch 3.0 #Scratch3

Comparte MatemáTICas: 1,1,2,3,5,8,13,...

Si hace algún tiempo compartía Estadística con #Scratch. Creación de un diagrama de sectores aplicación que muestra cómo representar un diagrama de sectores con Scratch, hoy comparto una aplicación que muestra cómo realizar un sistema de encuesta integrando la placa programable micro:bit y la nueva versión de Scratch, Scratch 3.0, lanzada oficialmente el pasado día 2 de enero de 2019.

Propuesta didáctica y modo de funcionamiento

La que hoy comparto es una propuesta didáctica con enfoque STEM para trabajar con la placa micro:bit y Scratch 3.0

Se trata de una encuesta para elegir el equipo favorito, en este caso entre Real Betis Balompié y Sevilla Fútbol Club

La misma, puede ser adaptada a otros contextos, con las modificaciones correspondientes, desde preguntas Verdadero/Falso, clasificación en grupos/categorías, …

Para su elaboración he usado todos los bloques de Scratch 3.0: Movimiento, Apariencia, Sonido, Eventos, Control, Sensores y Variables, así como las extensiones: Lápiz, Música y micro:bit.

Es la última extensión la que permite la interacción con la placa programable de su mismo nombre, la cual nos abre un mar de posibilidades para trabajar el enfoque STEM desde el aula de Matemáticas, mi materia, y desde cualquier otra; sin límites, donde nos lleve nuestra imaginación y creatividad en nuestro doble rol: como docentes (a la hora de presentar propuestas a nuestros estudiantes en entornos mediados por TIC) y como aprendices (al diseñar y programar nosotros mismos las distintas propuestas).

Debo reconocer que me he divertido mucho diseñando, programando y probando la misma con mi hijo y sus compañeros/as de clase que hoy nos acompañaban en casa preparando un trabajo para la clase de Francés. 

Vídeo demostración

 

¿Quieres probarla?

Nota: Es necesario disponer de una placa micro:bit conectada con Scratch vía Bluetooth. Si aún no dispones de ella, puedes verla funcionando en el vídeo de demostración anterior. 

Encuesta: Betis – Sevilla #Scratch3 + #microbit on Scratch 

Comparte MatemáTICas: 1,1,2,3,5,8,13,...

Animación interactiva: medidas y escalas. ¡Qué grandes/pequeños somos!

Comparte MatemáTICas: 1,1,2,3,5,8,13,...

Animación interactiva, compartida en Twitter por @ZonePhysics basada en Google Earth/Maps, sobre medidas y escalas. 

https://twitter.com/i/status/1082245445475356677
Comparte MatemáTICas: 1,1,2,3,5,8,13,...

El origen de los números #Podcast #LingMáTICas

Comparte MatemáTICas: 1,1,2,3,5,8,13,...
Verba volant – NEUDC RNE

Comparto en esta entrada el podcast correspondiente a la sección Verba Volant que nos trae cada sábado el profesor Emilio del Río en uno de mis programas radiofónicos favoritos, No es un día cualquiera, un clásico de las ondas del cual suelo disfrutar cada fin de semana en RNE, presentado por Pepa Fernández.

Minutos 2:30 al 16:00 aproximadamente

Quien me conoce, y los lectores habituales de este blog, saben de mi gusto y de la importancia que otorgo en el proceso de Enseñanza-Aprendizaje a la vinculación entre la Lengua y las Matemáticas; lo que denominé en llamar en su día como LingMáTICas.

Conocer el origen y la evolución de las palabras es otro aspecto fundamental para la construcción y comprensión del lenguaje matemático. El audio que os comparto es fácil de seguir y nos muestra aspectos interesantes del origen de los números, así como otros más lúdicos y algunas curiosidades que tal vez no conocías.

Espero que disfruten de él como yo lo hice, motivo por el cual he considerarlo interesante compartirlo en este espacio.

¡Feliz 2019 y que sigamos disfrutando de las Matemáticas!

Comparte MatemáTICas: 1,1,2,3,5,8,13,...

miniTAREA: Chocolatina fraccionaria

Comparte MatemáTICas: 1,1,2,3,5,8,13,...

miniTAREA. Observa la siguiente chocolatina y, pasados unos minutos, comenta aquellos aspectos matemáticos que te hayan llamado la atención y/o comprobado.

La misma ha aparecido en casa a la hora del postre, tras el almuerzo, al traerla nuestro hijo del colegio junto a otros pequeños regalos de su participación con su grupo-clase en «El amigo invisible».

Pero es muy curiosa, ¿verdad? ¿Conoces algún caso similar presentación de otra chocolatina? Bueno, piensa y nos cuentas.

 

Comparte MatemáTICas: 1,1,2,3,5,8,13,...
WP2Social Auto Publish Powered By : XYZScripts.com