Altas Capacidades Intelectuales

Propuesta didáctica LingMáTICas. Fortaleciendo la competencia linguística: comunicación, representación y resolución de problemas matemáticos de decimales y fracciones elaborando cómics digitales

Comparte MatemáTICas: 1,1,2,3,5,8,13,...

Los lectores de este blog conocen bien mi predilección por vincular lengua y matemáticas. Ello me llevó hace más de una década a bautizarla. Es decir, a buscar un término, un palabro, con el que poder categorizarlas. Le llamé LingMáTICas.

Así, definí LingMáTICas como el conjunto de propuestas didácticas, contextos de aprendizaje, encaminados a fortalecer la competencia lingüística, en todos sus ámbitos, desde el aula de matemáticas, con ayuda de la tecnología (TIC).

Definición de LingMáTICas. Luis M. Iglesias

Son muchos los compañeros docentes que en estos momentos están inmersos en la elaboración del plan de trabajo para el tratamiento de la lectura en el aula de matemáticas en sus respectivos centros educativos, de manera especial en Andalucía, atendiendo a las INSTRUCCIONES DE 21 DE JUNIO DE 2023, DE LA VICECONSEJERÍA DE DESARROLLO EDUCATIVO Y FORMACIÓN PROFESIONAL, SOBRE EL TRATAMIENTO DE LA LECTURA PARA EL DESPLIEGUE DE LA COMPETENCIA EN COMUNICACIÓN LINGÜÍSTICA EN EDUCACIÓN PRIMARIA Y EDUCACIÓN SECUNDARIA OBLIGATORIA.

Con la idea de aportar mi granito de arena, para ayudar en la medida de lo posible, quiero compartir en esta entrada un trabajo de investigación-acción que llevé a cabo hace unos años por si fuera de utilidad. 

El mismo fue presentado en el Congreso Iberoamericano «La educación ante el nuevo entorno digital», a finales del 2019. Este Congreso fue un espacio donde se pretendía dar a conocer proyectos o experiencias relacionadas con cualquier área temática, pero con el denominador común del entorno digital en el que ya estamos inmersos.

Título 
Decimales y fracciones entre textos e imágenes: una experiencia de aprendizaje basada en la elaboración de cómics digitales. 

Autoría 

Resumen 
Esta investigación-acción tiene como objetivo la construcción de cómics matemáticos para facilitar el aprendizaje de fracciones y decimales. La justificación del uso del cómic radica en la motivación de los estudiantes por el uso de información visual, que al combinarla con el texto puede dar lugar a elementos de desarrollo de habilidades, creatividad y la lectura de contenido (Urbani, 1978, citado en Toh, 2009).  El soporte tecnológico se sostiene en una de las dimensiones de la competencia digital (Marqués, 2009), la dimensión del aprendizaje, expresada como transformación del contenido en adquisición del conocimiento. Además, el cómic se considera una herramienta con potencial para el aprendizaje de las matemáticas, por sus capacidades creativas y visuales (Cleaver, 2008) así como una posibilidad de mejora en la alfabetización de los estudiantes (Tilley, 2008).  

La investigación describe el proceso y resultados de una experiencia en el tercero de Enseñanza Secundaria Obligatoria, en Matemáticas orientadas a las enseñanzas académicas. El contenido a trabajar venía delimitado por el criterio de evaluación “utilizar las propiedades de los números racionales para operarlos, utilizando la forma de cálculo y notación adecuada, para resolver problemas de la vida cotidiana, y presentando los resultados con la precisión requerida” (RD. 1105/2014, p. 391). 

Nota:

En esa fecha estaba en vigor el currículo LOMCE por lo que es evidente que habría que hacer la traslación al currículo actual LOMLOE, RD 217/2022 – Decreto 102/203 de 9 de mayo – Orden 30 de mayo 2023 Currículo Secundaria Andalucía, aunque no es excesivamente complicado. De manera clara tiene vinculación con el Sentido numérico (en lo relativo a saberes básicos) y con los Criterios de Evaluación correspondientes de las Competencias Específicas relativas a la resolución de problemas [RESPRO] y a la comunicación y representación [COMREP] Y socioemocionales [SOCAFE].

Los estudiantes construyen un cómic, utilizando una herramienta digital. Para el análisis de los resultados del conocimiento matemático expuesto se definen categorías que facilitan la identificación de cumplimiento de los estándares de aprendizaje. Estas categorías se construyen sustentadas en la investigación previa para el conocimiento matemático, desde la enseñanza y del aprendizaje de los números racionales. Las categorías que se utilizan son: el sentido dado a los algoritmos según su significado (que incluye la forma de utilizar los algoritmos y la resolución), la tipología del contexto que se utiliza para situar el objeto matemático, el rigor del lenguaje matemático, cómo se presentan los números (en forma decimal o fracción), y la reflexión final con los datos y resultados expuestos. 

Los resultados muestran distintos contextos que agrupamos como realistas y ficticios, donde estos últimos dan lugar a aquellos que dan sentido al objeto matemático y los que resultan forzados para introducir tanto el número como el algoritmo utilizado. Se utilizan distintos algoritmos, basados en suma y multiplicación; los cálculos implican usos como porcentaje, cálculo de las partes de un todo y equivalencia. En aquellas tareas que implican uso de algoritmos, los números base son fracciones en lugar de decimales. Encontramos tareas que finalizan de una manera reflexiva agrupando todos los datos utilizados a modo de recopilatorio para dar lugar a un ejercicio, y su solución. No aparecen demasiadas conversiones entre fracciones, y cuando lo hacen son para dar lugar a números que faciliten la interpretación de las partes de un todo. Los errores que aparecen surgen de cálculos encadenados entre fracciones, no siendo explícito si el cálculo es desde el paso anterior o desde el inicio, o cuando resultados dan lugar a números decimales y el contexto hubiese necesitado un número natural para su interpretación. 

Descarga del material

 

DESCARGAR: LingMáTICas. Comunicación, representación y resolución de problemas matemáticos mediante cómics digitales

Más contenido matemático en redes sociales

Comparte MatemáTICas: 1,1,2,3,5,8,13,...

Decimales y fracciones entre textos e imágenes: una experiencia de aprendizaje basada en la elaboración de cómics digitales. Comunicación en El Congreso Iberoamericano «La educación ante el nuevo entorno digital»

Comparte MatemáTICas: 1,1,2,3,5,8,13,...

El Congreso Iberoamericano «La educación ante el nuevo entorno digital» pretende ser un espacio donde cualquier docente pueda dar a conocer proyectos o experiencias relacionadas con cualquier área temática, pero con el denominador común del entorno digital en el que ya estamos inmersos. Se está desarrollando del 5 de noviembre al 15 de diciembre de 2019 en el Campus Virtual de Congresos de Formación IB.

A dicho evento online, el cual está resultando ser sumamente enriquecedor, hemos presentado la comunicación que indica el título de esta entrada, por si pudiera ser de utilidad y/o fuente de inspiración para nuevas propuestas didácticas.

Título 
Decimales y fracciones entre textos e imágenes: una experiencia de aprendizaje basada en la elaboración de cómics digitales. 

Autoría 

Resumen 
Esta investigación-acción tiene como objetivo la construcción de cómics matemáticos para facilitar el aprendizaje de fracciones y decimales. La justificación del uso del cómic radica en la motivación de los estudiantes por el uso de información visual, que al combinarla con el texto puede dar lugar a elementos de desarrollo de habilidades, creatividad y la lectura de contenido (Urbani, 1978, citado en Toh, 2009).  El soporte tecnológico se sostiene en una de las dimensiones de la competencia digital (Marqués, 2009), la dimensión del aprendizaje, expresada como transformación del contenido en adquisición del conocimiento. Además, el cómic se considera una herramienta con potencial para el aprendizaje de las matemáticas, por sus capacidades creativas y visuales (Cleaver, 2008) así como una posibilidad de mejora en la alfabetización de los estudiantes (Tilley, 2008).  

La investigación describe el proceso y resultados de una experiencia en el tercero de Enseñanza Secundaria Obligatoria, en Matemáticas orientadas a las enseñanzas académicas. El contenido a trabajar viene delimitado por el criterio de evaluación “utilizar las propiedades de los números racionales para operarlos, utilizando la forma de cálculo y notación adecuada, para resolver problemas de la vida cotidiana, y presentando los resultados con la precisión requerida” (RD. 1105/2014, p. 391).  

Los estudiantes construyen un cómic, utilizando una herramienta digital. Para el análisis de los resultados del conocimiento matemático expuesto se definen categorías que facilitan la identificación de cumplimiento de los estándares de aprendizaje. Estas categorías se construyen sustentadas en la investigación previa para el conocimiento matemático, desde la enseñanza y del aprendizaje de los números racionales. Las categorías que se utilizan son: el sentido dado a los algoritmos según su significado (que incluye la forma de utilizar los algoritmos y la resolución), la tipología del contexto que se utiliza para situar el objeto matemático, el rigor del lenguaje matemático, cómo se presentan los números (en forma decimal o fracción), y la reflexión final con los datos y resultados expuestos. 

Los resultados muestran distintos contextos que agrupamos como realistas y ficticios, donde estos últimos dan lugar a aquellos que dan sentido al objeto matemático y los que resultan forzados para introducir tanto el número como el algoritmo utilizado. Se utilizan distintos algoritmos, basados en suma y multiplicación; los cálculos implican usos como porcentaje, cálculo de las partes de un todo y equivalencia. En aquellas tareas que implican uso de algoritmos, los números base son fracciones en lugar de decimales. Encontramos tareas que finalizan de una manera reflexiva agrupando todos los datos utilizados a modo de recopilatorio para dar lugar a un ejercicio, y su solución. No aparecen demasiadas conversiones entre fracciones, y cuando lo hacen son para dar lugar a números que faciliten la interpretación de las partes de un todo. Los errores que aparecen surgen de cálculos encadenados entre fracciones, no siendo explícito si el cálculo es desde el paso anterior o desde el inicio, o cuando resultados dan lugar a números decimales y el contexto hubiese necesitado un número natural para su interpretación. 

Vídeo

 

https://congresoib.com/969joaquin-asenjo-perez/videos/video/302-decimales-y-fracciones-entre-textos-e-imagenes-una-experiencia-de-aprendizaje-basada-en-la

Esperando que os haya gustado esta investigación-acción en el campo de la Educación Matemática, queremos agradecer a Formación IB, a la UNED y a todas las personas que han apoyado y hecho posible este evento, de una u otra manera.

Comparte MatemáTICas: 1,1,2,3,5,8,13,...

Taller: ¡Tocar las mates! ¡Matemáticas en la vida diaria! y Exposición: La Mujer en la Ciencia en la Noche de los investigadores de Huelva #NIGHTSpain

Comparte MatemáTICas: 1,1,2,3,5,8,13,...

Por séptimo año consecutivo y al mismo tiempo que en otras 250 ciudades europeas, te invitamos a descubrir el lado más humano de la investigación a través de un contacto directo y de la conversación con los propios expertos y expertas. Es La Noche Europea de los Investigadores, que tomará nuevamente la calle el próximo 28 de septiembre en las ocho capitales andaluzas.

La edición de 2017 contó con la participación de 250 ciudades de 29 países europeos con el objetivo de acercar la ciencia y a las personas que investigan al público en general, demostrar de una forma práctica y lúdica la relación entre investigación y vida cotidiana, y divulgar los estudios científicos entre los jóvenes. 

 

¿QUÉ TENEMOS PREPARADO EN 2018? 

Taller: ¡Tocar las mates! ¡Matemáticas en la vida diaria! y Exposición: La Mujer en la Ciencia

 

¿CUÁNDO Y DÓNDE?

28/09/2018, a partir de las 18:30, en el Bulevar central de la Avenida de Andalucía. Av. Andalucía, 19, 21005 Huelva, España.

 

PARTICIPAN
Universidad de Huelva, Consejería de Educación, CEIP Federico García Lorca, IES Rafael Reyes de Cartaya, IES Estuaria, Academia Iberoamericana de La Rábida, Consejería de Educación de la Junta de Andalucía
 
Profesores:
Sixto Romero Sánchez, Luis Miguel Iglesias Albarrán, Rocío Benítez Cambra, José Romero Sánchez, Estela Villalba, Gema Domínguez Ponce, Patricia Díaz Rosa y Miguel Polvorinos Gento.
Alumnos colaboradores de la UHU:
Javier Ruiz Gómez, Enrique Alexander Höhle Carrasco, Raquel Muñoz Arias, Raquel González Hierro, Celia Sánchez Pérez, José Luis Leandro Castro y Enrique Palomar Morillo.
 
INTRODUCCIÓN A LA ACTIVIDAD
 
Uno de los aspectos más conocidos de la utilidad práctica de las matemáticas es su gran capacidad para la modelización de fenómenos naturales, ya que el estudio de estos modelos permite entender mejor, explicar, e incluso predecir su comportamiento. Por ejemplo, encontramos las matemáticas cuando nos dicen la predicción meteorológica. En al caso del numero áureo que se encuentra en muchas esculturas, construcciones de catedrales, en las plantas, en los animales, etc., también decimos que se relaciona mucho las matemáticas con la naturaleza.
Esta actividad, EN LA MODALIDAD DE TALLER, está dirigida al público en general, a todas las personas sea cual sea su edad. Todos y todas pueden disfrutar intentando resolver los “retos” que se les proponen. La actividad, tocar las Mates! matemáticas en la vida diaria!, como su nombre indica se va a realizar en un sitio abierto y de paso, en contacto con personas de todas las edades haciendo realidad la frase Juega con las MATES, tocándolas. Los diferentes juegos, que presentaremos, se distribuyen en distintas mesas. Junto a ellas se situarán paneles con textos explicativos de cada uno de los juegos. Sobre las mesas se situarán fichas explicativas o situaciones modelo. Los profesores y profesoras que estarán junto a las mesas, asesorarán y animarán a todas las personas que se acerquen a participar: darán pistas, plantearán situaciones previas o más sencillas, propondrán nuevas situaciones, etc. ¡Cada persona podrá jugar o resolver la situación que prefiera!
FINALIDADES DE LA ACTIVIDAD

– Divulgar, popularizar y fomentar el placer por las Matemáticas, desarrollando una actitud positiva hacia las mismas.

– Contribuir a la mejora del aprendizaje de las Matemáticas.

– Promover conductas de colaboración y respeto entre personas con diferentes edades y formación.

– Estimular la imaginación, la capacidad de decisión, el pensamiento divergente y la habilidad para enfrentarse a nuevas situaciones y resolver problemas imprevistos.

– Animar a utilizar maneras saludables de ocupar sus ratos de ocio.

– Propiciar la participación de alumnos, profesores y ciudadanos en actividades matemáticas.

– Favorecer en la comunidad una reflexión que posibilite el aprecio que las matemáticas, sin duda, se merecen como instrumento de comprensión del mundo actual.

– Favorecer el razonamiento ante situaciones problemáticas.

 

CONTENIDO

Se presentan diferentes juegos, entre los que se encuentran:

-Rompecabezas planos: – Tangram (puzzle chino)
-Poliminós: Pentaminós
-Hexamantes
-Rompecabezas espaciales: – El cubo soma
-Policubos
-Juegos de tablero: Tres en raya aúreo, circuito algebraico, …
-Solitarios: Torres de Hanoi, pirámide de bolas, …
-Demostración de teoremas: Pitágoras
-Pesca de números
-Juegos topológicos
-Poliedros regulares (Omnipoliedro)
-Otros…

 

VÍDEO 

 

¡Os esperamos el próximo 28 de septiembre, para disfrutar juntos de una tarde estupenda, haciendo, tocando, manipulando,… construyendo Matemáticas en la Calle!

 

Actualización del post (29/09/2018)

 

Comparte MatemáTICas: 1,1,2,3,5,8,13,...

Destreza de orden superior: Evaluación. Bloom en el aula de matemáticas

Comparte MatemáTICas: 1,1,2,3,5,8,13,...

Antes de mostrar el caso, del cual sólo mostraré una imagen, recordemos aspectos clave sobre La taxonomía de Bloom los cuales resume de manera clara Wikipedia.

La taxonomía de Bloom es jerárquica, esto significa que asume que el aprendizaje a niveles superiores depende de la adquisición del conocimiento y habilidades de ciertos niveles inferiores.

Hay tres dimensiones en la taxonomía de objetivos de la educación propuesta por Benjamin Bloom:

  • Dimensión afectiva
  • Dimensión psicomotora
  • Dimensión cognitiva

Dimensión afectiva

El modo como la gente reacciona emocionalmente, su habilidad para sentir el dolor o la alegría de otro ser viviente. Los objetivos afectivos apuntan típicamente a la conciencia y crecimiento en actitud, emoción y sentimientos.

Hay cinco niveles en el dominio afectivo. Mencionando los procesos de orden inferiores a los superiores, son:

  • Recepción – Sin este nivel no puede haber aprendizaje.
  • Respuesta – El estudiante participa activamente en el proceso de aprendizaje, no sólo atiende a estímulos, el estudiante también reacciona de algún modo.
  • Valoración – El estudiante asigna un valor a un objeto, fenómeno o e información.
  • Organización – Los estudiantes pueden agrupar diferentes valores, informaciones e ideas y acomodarlas dentro de su propio esquema; comparando, relacionando y elaborando lo que han aprendido.
  • Caracterización – El estudiante cuenta con un valor particular o creencia que ahora ejerce influencia en su comportamiento de modo que se torna una característica.

Es importante tener en cuenta que si el estudiante no está motivado, el interés por aprender es muy bajo.

Dimensión psicomotora

La pericia para manipular físicamente una herramienta o instrumento con la mano o un martillo. Los objetivos del dominio psicomotor generalmente apuntan en el cambio desarrollado en la conducta o habilidades.

Comprende los siguientes niveles: – Percepción – Disposición – Mecanismo – Respuesta compleja – Adaptación – Creación

Dimensión cognitiva

Es la habilidad para pensar sobre los objetos de estudio. Los objetivos del dominio cognitivo giran en torno del conocimiento y la comprensión de cualquier tema dado.

Hay seis niveles en la taxonomía propuesta por Benjamín Bloom y colaboradores. En orden ascendente son los siguientes:

Conocimiento
Muestra el recuerdo de conocimiento previamente aprendidos por medio de hechos evocables, términos, conceptos básicos y respuestas
  • Conocimiento de terminología o hechos específicos
  • Conocimiento de los modos y medios para tratar con convenciones, tendencias y secuencias específicas, clasificaciones y categorías, criterios, metodología.
  • Conocimiento de los universales y abstracciones en un campo: principios y generalizaciones, teorías y estructuras
Comprensión
Entendimiento demostrativo de hechos e ideas por medio de la organización, la comparación, la traducción, la interpretación, las descripciones.
  • Traducción
  • Interpretación
  • Extrapolación
Aplicación
Uso de conocimiento nuevo. Resolver problemas en nuevas situaciones aplicando el conocimiento adquirido, hechos, técnicas y reglas en un modo diferente
Análisis
Examen y discriminación de la información identificando motivos o causas. Hacer inferencias y encontrar evidencia para fundamentar generalizaciones
  • Análisis de los elementos
  • Análisis de las relaciones
  • Análisis de los principios de organización
Síntesis
Compilación de información de diferentes modos combinando elementos en un patrón nuevo o proponiendo soluciones alternativas
  • Elaboración de comunicación unívoca
  • Elaboración de un plan o conjunto de operaciones propuestas
  • Derivación de un conjunto de relaciones abstractas
Evaluación
Presentación y defensa de opiniones juzgando la información, la validez de ideas o la calidad de una obra en relación con un conjunto de criterios
  • Juicios en términos de evidencia interna
  • Juicios en términos de criterios externos

 

A continuación nos centramos en el nivel cognitivo, concretamente en la Evaluación. Orden superior por excelencia en la Taxonomía de Bloom y compartiendo escalón superior en el modelo SAMR con Crear.

 

Experiencia de aula

Todos los docentes, a la hora de planificar las actividades, sea siguiendo un determinado material didáctico elaborado o usando el nuestro propio, debemos tener presentes la citada Taxonomía.

De una manera u otra comenzamos explicando determinados conceptos que el alumnado va trabajando hasta alcanzar la comprensión de los mismos. Pasamos posteriormente a su aplicación en determinados ejercicios, usándolos para resolver problemas,… y así deberíamos seguir para conseguir un aprendizaje pleno, significativo y funcional por parte de nuestros aprendices.

Lo que ocurre es que en demasiadas ocasiones, más de las que debiera ocurrir, apenas pasamos del nivel de Aplicación. Esto es, nos quedamos a mitad de camino.

Tengo que decir, que lo que más satisfacción me ofrece como docente es elaborar propuestas, proponerles retos, miniTAREAS o tareas de envergadura que involucren el trabajo con destrezas de orden superior.

Disfruto viéndolos Aplicar, Analizar, Sintetizar, Coevaluando el trabajo de otros compañero/as, proponer otras vías de solución y creando sus propias tareas. Hoy mismo he recopilado y disfrutado en clase con una tarea de Creación que publicaré, si saco unos minutos libres, en los próximos días.

El caso propuesto es una actividad cuyo enunciado es el siguiente:

«Determina los errores que se han cometido en la resolución de esta operación y corrígelos:

(-3) · (-5) : [ (-6) + (+3) ] = (-15) · (-9) = +135

Se trata de que adopten el papel de profes, cuando debemos evaluar una tarea corregir una prueba escrita, y que encuentren los errores, para luego evaluarlo con la puntuación adecuada en función de la tipología de los errores cometidos.

Os animo a trabajar actividades de este tipo en el aula. Dan mucho juego y sacan a las claras muchos detalles para después incidir en ellos.

Para finalizar os dejo con una imagen de dicha actividad, corregida y perfectamente explicada en la PDI por Hugo, alumno de 1º de ESO A, cuya corrección entendería cualquier persona por anumérica que sea. ¡Es una gozada verlo trabajar a diario y actividades como estas le vienen como anillo al dedo!.

Trabajando actividades de este tipo, como se suele decir de forma coloquial, <<matamos dos pájaros de un tiro>>:

  • Atendemos a la diversidad, en este caso por arriba que también lo merecen.
  • Sus clarísimas explicaciones y el debate posterior, ayudan a consolidar aprendizajes al resto de compañero/as.

Proponer, dejar hacer, mirarlos a los ojos, escuchar atentamente cada una de sus reflexiones. Es su turno. Metodologías activas centradas en el estudiante como motor del cambio educativa, potencias del nuevo paradigma de la educación del siglo XXI: aprender activo, crítico y reflexivo.

Seguimos… ¡disfrutando!

Seguimos… ¡aprendiendo!

Seguimos… ¡compartiendo!

20160115_101159

Comparte MatemáTICas: 1,1,2,3,5,8,13,...

Gestión del talento a través del estímulo matemático en la Noche de los investigadores de Huelva #ERN15

Comparte MatemáTICas: 1,1,2,3,5,8,13,...

Bajo el eslogan de “Mujeres y hombres que hacen ciencia para ti”, investigadores e instituciones científicas, lideradas por la Fundación Descubre, tomarán las plazas y calles de 350 ciudades europeas, invitándonos a descubrir el lado más humano de la investigación a través de un contacto directo y de la conversación con los propios expertos y expertas.

Por cuarto año consecutivo y al mismo tiempo que en otras 350 ciudades europeas, te invitamos a descubrir el lado más humano de la investigación a través de un contacto directo y de la conversación con los propios expertos y expertas. Es La Noche Europea de los Investigadores, que tomará nuevamente la calle el próximo 25 de septiembre en las ocho capitales andaluzas.

logo_header

La edición de 2014 contó con la participación de 350 ciudades de 32 países europeos con el objetivo de acercar la ciencia y a las personas que investigan al público en general, demostrar de una forma práctica y lúdica la relación entre investigación y vida cotidiana, y divulgar los estudios científicos entre los jóvenes.

 

Matemáticas en #ERN15 Huelva

Evidentemente, las Matemáticas debían estar presentes en esta cita. Así que, el próximo 25 de septiembre lo/as investigadore/as estaremos en la Plaza de Las Monjas desde las 19:30h a las 21:30h.

 

Bajo la dirección del amigo y colega Sixto Romero, como investigador anfitrión, y junto con los compañero/as de la SAEM Thales de Huelva, Pepe Romero, Isabel Salas y Rocío Benítez hemos trabajado duro pero muy a gusto para elaborar una interesante batería de propuestas con el objeto de mostrar la belleza de la matemática y destacar la importancia de nuestra querida ciencia en nuestra vida diaria.

 

ERN15-Huelva

 

Llevaremos a cabo dos actividades, ambas organizadas por la Universidad de Huelva, que son:

  • Microencuentro dedicado a la Gestión del talento a través del estímulo matemático

La actividad consistirá en la presentación de unas actividades entorno a la resolución de problemas que sirvan como herramientas hacia la modelización matemática. Se trabajará con algunas pautas sobre determinados conceptos que, casi nunca, un alumno de secundaria y bachillerato, accedería a ellos en una enseñanza reglada.

  • Taller Matemáticas en la Calle

Las matemáticas pueden ser divertidas, y así lo demuestra este taller en el que toda la familia podrá aprender matemáticas mediante juegos.

 

Hemos preparado nuestro propio logo matemático, la espiral investigadora :-), que estará presente en nuestro stand en la Plaza de las Monjas de Huelva.

 

Noche investigadores-15-logo-mat

 

¡¡Espero verte por allí y que disfrutes de una magnífica tarde de viernes disfrutando de la ciencia!!.

 

Más información:

La Noche Europea de los Investigadores, Fundación Descubre

La Noche Europea de los Investigadores en Huelva

 

Actualizado (Fotografías):

Hasta hoy no ha podido ser… ‪#‎nodalavidaparamás‬ pero quería compartir algunas fotografías tomadas el pasado viernes en La Plaza de las Monjas de Huelva durante la celebración de las Noche Europea de los Investigadores, donde tuve la suerte de disfrutar divulgando algunos secretos de nuestra querida ciencia matemática en una tarde espléndida y ante un numeroso público de todas las edades que mostraba, y de qué manera, su curiosidad por la ciencia en los distintos stands presentes.

Nuestro grupo de trabajo matemático compuesto por los queridos amigos Isa Salas, Pepe Romero, Sixto Romero Sánchez, Rocío Benítez, y yo mismo, trabajamos duro las semanas previas al evento pero muy a gusto, para sacar adelante una batería de propuestas que aterrizaran y conectaran con la ciudadanía, mostrando la cara utilitaria de la matemática.

Por un lado, mediante tareas de modelización y resolución de problemas mostramos que es posible gestionar el talento desde edades tempranas mediante el estímulo matemático mediante tareas matemáticas contextualizadas «con sentido».A la presentación asistió público de distintas edades y no puedo dejar de mostrar mi alegría al ver como padres/madres acompañaron a la presentación del talento matemático a jovencito/as que ya desde edades tempranas muestran un sentimiento de cercanía y afinidad un tanto especial con las mates.

Por otro lado, mostramos en el taller de matemáticas en la calle el lado más lúdico de las mates mediante propuestas manipulativas y retos basados en estrategias «con mucha lógica». En definitiva, una tarde extraordinaria que no quería dejar de compartir. Creo que es importante aterrizar en la calle con tareas de divulgación. Es importante insistir y ayudar en la importancia de una efectiva alfabetización matemática.

Seguimos…

  

 

Comparte MatemáTICas: 1,1,2,3,5,8,13,...

Clara Nicolás Violant, alumna del IES Juan Ramón Jiménez de Moguer (Huelva), ganadora en la primera Olimpiada Internacional de Matemáticas

Comparte MatemáTICas: 1,1,2,3,5,8,13,...

La educación matemática, femenina, onubense, andaluza, pública está de enhorabuena. ¡¡Felicidades Clara!!

Clara Nicolás Violant, alumna de 3º de Secundaria del IES Juan Ramón Jiménez de Moguer, ha resultado ganadora de la Primera Olimpiada Internacional de Matemáticas ‘Formulo de Intergreco’, organizada por la Universidad de San Petersburgo y la Leonhard Euler International Charitable Foundation for Mathematics, que tuvo lugar el pasado mes de febrero en las dos sedes de ESTALMAT-Andalucía: Facultad de Informática de Sevilla y Facultad de Ciencias en Granada.

Se da la circunstancia que Clara Nicolás Violant fue también finalista de la fase nacional de la XXIII Olimpiada de la FESPM (federación de sociedades de profesores de matemáticas), celebrada el pasado junio en Euskadi en la prueba individual, junto a otros cinco alumnos de distintas comunidades autónomas.

Información completa y ampliada de la noticia en: HuelvaYa.es

Delegado Terrritorial de Educación en Huelva, Vicente Zarza Vázquez, y profesores junto con la alumna ganadora, Clara Nicolás Violant.

Delegado Terrritorial de Educación, Cultura y Deporte en Huelva, Vicente Zarza Vázquez, y profesores junto con la alumna ganadora, Clara Nicolás Violant.

Comparte MatemáTICas: 1,1,2,3,5,8,13,...

El poder de la mente – Un cerebro superdotado

Comparte MatemáTICas: 1,1,2,3,5,8,13,...

He querido compartir en este espacio, un documental realmente interesante.

¿Sobre quien? Sobre Danniel Tamet «Es un genio, no es humano»

Es un auténtico prodigio, capaz de hacer cosas inimaginables. Se «entretiene» planteándose retos como éste:

«Mi mayor ambición es recordar hasta 22500 decimales del número Pi y… recitarlo delante de un grupo de gente que lo vaya comprobando»

Pero no es sólo un genio de las matemáticas, también de la lengua. Habla 9 idiomas y es capaz de aprender un nuevo idioma en una semana.

Una epilepsia, transformó su cerebro. El de este chico es un claro ejemplo de que #nohaymalqueporbiennovenga

No os molesto más… os dejo disfrutarlo.

 

Documental: El poder de la mente - Un cerebro superdotado

Documental: El poder de la mente – Un cerebro superdotado

Comparte MatemáTICas: 1,1,2,3,5,8,13,...

Cuento: ¿Por qué no me entienden?

Comparte MatemáTICas: 1,1,2,3,5,8,13,...

Recojo en esta entrada un cuento elaborado por Gema Theus y donado a la Fundación AVANZA que puede ser una buena herramienta si quieres dialogar con chic@s con Altas Capacidades Intelectuales sobre el tema y no encuentras de qué modo hacerlo.

Lo recomiendo, sin duda, al mismo tiempo que os animo a difundirlo.

 

Comparte MatemáTICas: 1,1,2,3,5,8,13,...
WP2Social Auto Publish Powered By : XYZScripts.com