Buenas PrácTICas 2.0

Reto matemático terrorífico para la noche de Halloween – Graspable Math

Comparte MatemáTICas: 1,1,2,3,5,8,13,...

En esta entrada os propongo un reto terrorífico para la noche de Halloween, basado en un modelo de áreas.

¿Cómo lo ves? ¿Eres capaz de resolverla?

¿Truco o trato? 🙂

Tarea interactiva. Reto matemático terrorífico para la noche de Halloween, realizada en Graspable Math

Pulsa aquí para completar el reto en GMA y dejar registrada tu respuesta (First Name: Tu nombre – Last Initial: Inicial de tu apellido)

Más contenido matemático en redes sociales

Comparte MatemáTICas: 1,1,2,3,5,8,13,...

Colaboración con el Observatorio de Tecnología Educativa del INTEF. Graspable Math: una nueva manera de explorar y hacer matemáticas

Comparte MatemáTICas: 1,1,2,3,5,8,13,...

El pase de diapositivas requiere JavaScript.

En esta entrada tengo el gusto de compartir artículo elaborado para el Observatorio de Tecnología Educativa del INTEF, un espacio de referencia en torno a la innovación digital en el aula.

Está dedicado a Graspable Math, una herramienta joven, aún poco extendida en España y en el contexto iberoamericano, con mucha potencialidad didáctica para el aula de matemáticas y con la que he trabajado de manera intensiva el último año.

 

ARTÍCULO EN EL OBSERVATORIO

Se trata de  “Graspable Math: una nueva manera de explorar y hacer matemáticas”. Está escrito por Luis Miguel Iglesias Albarrán, profesor de enseñanza secundaria en la especialidad de Matemáticas y Director del IES San Antonio en Bollullos Par del Condado (Huelva).

Graspable Math es una herramienta digital interactiva innovadora que permite una nueva manera de explorar y comprender, mediante la interacción (tocando y arrastrando números y símbolos), las relaciones matemáticas. Forma parte de un proyecto de investigación financiado por el Institute of Education Sciences (IES) dependiente del U.S. Department of Education.

Es una herramienta permite “aprender haciendo” (learning by doing) matemáticas, favoreciendo el aprendizaje autónomo de los estudiantes y permitiéndoles poner el foco en las estructuras matemáticas. El diseño de la herramienta ayuda a salvar el obstáculo de la notación formal, haciendo posible que el alumnado se centre en cómo funcionan. Les brinda, en este sentido, oportunidades para razonar y deducir de manera flexible sobre las tareas matemáticas.

Con Graspable Math se nos presenta, en definitiva, una nueva manera de explorar, enseñar y de hacer matemáticas.

Si quieres saber más sobre Grapable Math, puedes leer el artículo elaborado por Luis Miguel Iglesias Albarrán en el que, además, hace una valoración personal y ofrece recomendaciones para el empleo de esta herramienta.

Acceso al artículo “Graspable Math: una nueva manera de explorar y hacer matemáticas” en formatos PDF y web

 

Dejo a continuación más material por si quieres iniciarte en el uso de esta versátil herramienta.

PUBLICACIONES SOBRE GRASPABLE MATH

En este espacio he realizado distintas publicaciones al respecto:

 

LISTA DE VÍDEOS SOBRE GRASPABLE MATH

Comparto también lista con más de una treintena de vídeos sobre diferentes usos didácticos de esta herramienta.

 

Lista de vídeos en Youtube sobre Graspable Math (33 vídeos)

Te animo a usarla con tu alumnado, a compartirla con tus contactos y compañeros a través de la red y quedo a tu disposición para cualquier duda o comentario al respecto, en forma de comentario bajo esta entrada o en mis perfiles en redes sociales.

¡Ya me contarás cómo te ha ido con tus alumnos en clase! 🙂

MÁS CONTENDO MATEMÁTICO EN REDES SOCIALES

Comparte MatemáTICas: 1,1,2,3,5,8,13,...

Artículo en monográfico Dialogia – O (Re)inventar da Educação em Tempos de Pandemia. El aprendizaje del álgebra en Educación Secundaria: las estrategias metacognitivas desde la tecnología digital

Comparte MatemáTICas: 1,1,2,3,5,8,13,...
Se trata de una investigación realizada con mis directoras de Tesis, las doctoras Isabel Pascual y Blanca Arteaga, sobre el aprendizaje del álgebra en Educación Secundaria, usando las estrategias metacognitivas desde la tecnología digital. Aprovecho estas líneas para agradecer todo su conocimiento y el apoyo que me están brindando desde el primer instante de este viaje académico.

Dialogia – Dossiê: O (Re)inventar da Educação em Tempos de Pandemia [La (re) invención de la educación en tiempos de pandemia]

El número 36 de la Revista Dialogia ha publicado el monográfico “La (Re) invención de la educación en tiempos de pandemia” donde se recogen investigaciones que presentan como temáticas los diferentes matices y procesos de adaptación / transformación de la Educación Básica y Superior que, entre otros cambios, se reestructuraron en el entorno en línea, inesperadamente. En cierta medida, dicha migración aceleró la (re) invención de prácticas pedagógicas, dando un nuevo significado a los viejos espacios y creando nuevos lugares para el aprendizaje y la enseñanza. Esta nueva situación ha generado numerosos desafíos a la Educación, en su conjunto, afectando, en particular, a docentes, estudiantes, directivos y familiares, a la vez que brinda un despertar al énfasis y expansión de la educación en línea en el país y el mundo.

En este sentido, el monográfico temático de esta edición de Dialogia cubre diferentes aspectos, innovaciones y desafíos que se plantean a la Educación en tiempos de Pandemia. Se trata de pensar y problematizar, en este contexto, las diferentes formas y contenidos de la nueva organización pedagógica en el entorno online y fuera de él. Entre otros procesos, este nuevo marco socioeconómico y cultural viene provocando cambios en diferentes frentes, involucrando recursos humanos, didácticos, tecnológicos, estrategias educativas, acceso social, formación docente, llevando al foco analítico los avances y dificultades encontradas en esta coyuntura nacional y global. tan particular en la trayectoria histórica de la humanidad.

Más información: aquí.

 

Artículo: El aprendizaje del álgebra en Educación Secundaria: las estrategias metacognitivas desde la tecnología digital

Resumen

La situación de aprendizaje en las escuelas españolas cambió cuando se decretó el estado de alarma en el mes de marzo de 2020, cerrando las escuelas de una forma brusca. Este artículo muestra la adaptación a un medio de aprendizaje íntegramente digital, llevada a cabo en un instituto de Educación Secundaria, en el sur de España. El trabajo se desarrolla en un aula de Matemáticas con estudiantes de 14-15 años, que aprenden conceptos de álgebra. Para ello, se utilizan materiales diversos que facilitan el aprendizaje autónomo y la comunicación docente-estudiante. Los instrumentos de evaluación utilizados son dos plantillas para la resolución de problemas sustentadas en estrategias metacognitivas. Los resultados muestran que los estudiantes han superado los criterios de evaluación marcados para este bloque de contenido, a la vez que el diseño ha facilitado unos niveles de retroalimentación óptima durante todo el proceso de enseñanza-aprendizaje.

Palabras clave

Aprendizaje del algebra; Aprendizaje en línea; COVID-19; Enseñanza virtual; Metacognición; Formación matemática en secundaria

Texto completo

PDF (ESPAÑOL (ESPAÑA))

 

Índice completo del número 36 de la revista Dialogia

Número 36 (2020): septiembre / diciembre

Índice

Editorial

Rosiley Aparecida Teixeira, Adriana Aparecida de Lima Terçariol, Daniela Melaré Vieira Barros, Jason Ferreira Mafra
1-2

Entrevista

Rosiley Aparecida Teixeira, Adriana Aparecida de Lima Terçariol
3-6

Monográfico La (re) invención de la educación en tiempos de pandemia

Lisandra da Trindade Alfaro, Caroline Tavares de Souza Clesar, Lucia Maria Martins Giraffa
7-21
Leer Raquel Almeida, Carla Spagnolo
22-34
Tárcila Lorrane Fernandes de Souza Soares, Ícaro Silva de Santana, Maria Luiza Caires Comper
35-48
Luis Miguel Iglesias Albarrán, Isabel Pascual Gómez, Blanca Arteaga-Martínez
49-72
Andréia Martins, Agata Laisa Laremberg Alves Cavalcanti, Anne Caroline Soares Dourado
73-85
Marcos Godoi, Larissa Beraldo Kawashima, Luciane de Almeida Gomes
86-101
Juliana Pedroso Bruns, Rita Buzzi Rausch
102-115
Fernanda Carla Da Silva Costa, Viviane Lima Martins
116-127
Joao Ferreira Sobrinho Junior, Cristina de Cássia Pereira Moraes
128-148
Jordana da Silva Corrêa, Neiva Afonso Oliveira
149-161
Regiane Caldeira, Stephanni G. Silva Sudré, Gabriel José Pereira
162-175
Fernando José de Almeida, Maria da Graça Moreira Silva, Maria Elizabeth Bianconcini de Almeida
176-192
Jacks Richard de Paulo, Stela Maris Mendes Siqueira Araújo, Priscila Daniele de Oliveira
193-204
Brenda Iolanda Silva do Nascimento, Iago Vilaça de Carvalho, Fernanda Antunes Gomes da Costa
205-219
Michel Douglas Pachiega, Débora Raquel da Costa Milani
220-234
Luciana Longuini da Silva, Kellen Jacobsen Follador
235-251
Raquel Mignoni de Oliveira, Ygor Corrêa
252-268
Jane Helen Gomes de Lima, Gislane Sávio, Graziela Pavei Peruch Rosso
269-282
Eniel de Espírito Santo, Tatiana Polliana Pinto de Lima
283-297
Ana Carolina Oliveira Silva, Shirliane de Araújo Sousa, Jones Baroni Ferreira de Menezes
298-315
Filipa Seabra, Luísa Aires, António Teixeira
316-334
Wanderleya Nara Gonçalves Costa
335-347
Alexandre José de Carvalho Silva, Sayonara Ribeiro Marcelino Cruz, Warlley Ferreira Sahb
348-366
Ana Nobre, Ana Mouraz
367-381
Carla Cristie de França Silva, Lêda Gonçalves de Freitas
382-395
Fernanda Araujo Coutinho Campos, Rute Pereira
396-410
Jucelia Cruz, Elisabeth dos Santos Tavares, Michel Costa
411-427

Artículos

Anaide Maria Alves da Paz, Maria de Fátima Gomes da Silva
428-440
Anselmo Calzolari, Éverton Madaleno Batisteti, Roseli Rodrigues de Mello
441-457
Elizabete Pereira Barbosa, Luciana Freitas de Oliveira Almeida
458-469
Linda Carter Souza da Silva, Luiz Gomes da Silva Filho
470-483
Givanildo da Silva, Alex Vieira da Silva, Inalda Maria dos Santos
484-501
Marinalva Lopes Ribeiro, Taiara de Lima Silva Sales
502-517
Ana Paula de Almeida Guimarães, Lenie Machado, Gabriela Reyes Ormeno
518-531
Jorge França de Farias Júnior
532-549
Telma Temoteo dos Santos
550-567
Rosemary Roggero, Adriana Zanini da Silva
568-580
Milena da Silva Langhanz, Lorena Almeida Gill
581-594
Maria Daiane da Silva Monteiro, Suely Alves da Silva
595-609

Dialogía

Comparte MatemáTICas: 1,1,2,3,5,8,13,...

Graspable Math y Geogebra; aliadas extraordinarias para enseñar y aprender matemáticas en contextos presenciales discontinuos. 5 tareas resueltas en vídeos sobre funciones lineales, afines, paralelismo y ecuaciones de la recta

Comparte MatemáTICas: 1,1,2,3,5,8,13,...

Los lectores asiduos de este rincón virtual matemático conocen sobradamente mi predilección por estas dos poderosas herramientas digitales. En mi opinión, indispensables ambas para la enseñanza y el aprendizaje de la matemática en el siglo XXI, siendo especialmente útiles en los contextos de enseñanza-aprendizaje semipresencial y a distancia especialmente extendidos con motivo de la COVID-19.

Aprovecho estas líneas para invitarte a visitar las distintas publicaciones sobre propuestas didácticas para trabajar en el aula y los materiales que he compartido sobre ambas en los últimos años:

Pues bien, si juntamos ambas, el resultado no puede ser catalogado de otro modo que excelente.

Como muestra de ello comparto en esta entrada 5 tareas resueltas paso a paso, en otros tantos vídeos, con ayuda de Geogebra y Graspable Math. 

Estos materiales los desarrollé para mis estudiantes de Matemáticas de 3º de ESO (14-15 años) para trabajar en modalidad online durante el cierre de los centros educativos españoles, periodo de la suspensión de la actividad docente presencial (marzo-junio 2020), con motivo de la COVID-19.

Espero te animes a usar los vídeos con tu alumnado si los consideras de utilidad.

 

Vídeos

1. Funciones lineales. Pertenencia a recta. Ecuación de la recta Geométrico – Graspable Math & Geogebra

 

2. Funciones lineales. Pertenencia a recta. Ecuación de la recta. Geometría Analítica. Graspable Math

 

3. Funciones afines. Ecuación de la recta. Recta paralela pasando por un punto – Graspable Math & Geogebra

 

4. Funciones lineales – Paralelismo – Significado de m y n en la ecuación explícita – Graspable Math & Geogebra

 

5. Funciones afines. Ecuación de la recta. Recta paralela pasando por un punto – Graspable Math & Geogebra

Más contenido matemático en redes sociales

Comparte MatemáTICas: 1,1,2,3,5,8,13,...

Tarea Open Middle sobre logaritmos (cambio de base) elaborada en Graspable Math y en Scratch

Comparte MatemáTICas: 1,1,2,3,5,8,13,...

Comenzamos la semana con esta entrada donde comparto los materiales de una propuesta didáctica para trabajar los logaritmos (teorema del cambio de base).

Se trata de una tarea de tipo Open Middle, traducida al español y adaptada a partir de la original en inglés del profesor Bryan Anderson. La he implementado en dos herramientas que en mi opinión presentan un potencial didáctico increible y a las que soy adicto; Graspable Math y Scratch.

Para ayudarte a implementar esta propuesta con tus estudiantes incluyo:

  1. Enunciado de la tarea en Graspable Math
  2. Tarea interactiva. Logaritmos OM realizada en Graspable Math
  3. Tarea interactiva. Logaritmos OM realizada en Scratch

Espero te animes a usar la propuesta con tu alumnado y os resulte atractiva y de utilidad.

Ya me contarás cómo te ha ido.

¡Ánimo!

 

Propuesta didáctica

 

1. Enunciado de la tarea en Graspable Math

 

2. Tarea interactiva. Logaritmos OM, realizada en Graspable Math.

 

3. Tarea interactiva. Logaritmos OM realizada en Scratch

Enlace a Logaritmos OM en Scratch

 

Esta entrada participa en la Edición 11.6: Conjeturas del Carnaval de Matemáticas, que en esta ocasión organiza Gaussianos.

 

Más contenido matemático en redes sociales

Comparte MatemáTICas: 1,1,2,3,5,8,13,...

Tarea rica elaborada y resuelta con Graspable Math para trabajar las expresiones algebraicas con 2 variables

Comparte MatemáTICas: 1,1,2,3,5,8,13,...

En esta entrada comparto los materiales de una propuesta didáctica para trabajar las expresiones algebraicas con 2 variables.

Para ayudarte a implementar esta propuesta con tus estudiantes incluyo:

  1. Enunciado de la tarea
  2. Incomparable. Expresiones algebraicas con 2 variables realizado en Graspable Math.
  3. Vídeo con la resolución de la tarea usando Graspable Math.

Espero te animes a usar la propuesta con tu alumnado y os resulte atractiva y de utilidad.

Ya me contarás cómo te ha ido.

¡Ánimo!

 

Propuesta didáctica

 

1.Enunciado de la tarea

 

 

2. Tarea: Incomparable. Expresiones algebraicas con 2 variables realizada en Graspable Math.

 

3. Vídeo con la resolución de la tarea usando Graspable Math.

 

MÁS CONTENIDO MATEMÁTICO EN REDES SOCIALES

Comparte MatemáTICas: 1,1,2,3,5,8,13,...

Laberinto de ecuaciones de primer y segundo grado con Graspable Math. Propuesta didáctica con plantilla editable y vídeos de ayuda

Comparte MatemáTICas: 1,1,2,3,5,8,13,...

En esta entrada comparto los materiales de una propuesta didáctica para trabajar las ecuaciones de primer y segundo grado (cuadráticas) que diseñé y llevé a cabo con mi alumnado de Matemáticas de 3º de ESO (14-15 años) en modalidad online durante el cierre de los centros educativos españoles, periodo de la suspensión de la actividad docente presencial (marzo-junio 2020), con motivo de la COVID-19.

Para ayudarte a implementar esta propuesta con tus estudiantes incluyo:

  1. Plantilla en formato editable (.docx)
  2. Plantilla en formato imprimible (.pdf)
  3. Vídeo de ayuda para los estudiantes para que puedan cumplimentar la plantilla en formato digital para escribir las ecuaciones y su resolución.
  4. Vídeo con la resolución de un laberinto de ecuaciones de primer grado realizado en Graspable Math.
  5. Laberinto de ecuaciones de primer grado sencillas. Método de las transformaciones algebraicas realizado en Graspable Math.

Espero te animes a usar la propuesta con tu alumnado y os resulte atractiva y de utilidad.

Ya me contarás cómo te ha ido.

¡Ánimo!

 

Propuesta didáctica

 

1.Plantilla en formato editable (.docx)

Plantilla – Laberinto de ecuaciones de primer y segundo grado

 

2. Plantilla en formato imprimible (.pdf)

Plantilla – Laberinto de ecuaciones de primer y segundo grado

 

3. Vídeo de ayuda para los estudiantes para que puedan cumplimentar la plantilla en formato digital para escribir las ecuaciones y su resolución. 

 

4. Vídeo con la resolución de un laberinto de ecuaciones de primer grado realizado en Graspable Math.

 

5. Laberinto de ecuaciones de primer grado sencillas. Método de las transformaciones algebraicas realizado en Graspable Math.

 

 

MÁS CONTENIDO MATEMÁTICO EN REDES SOCIALES

Comparte MatemáTICas: 1,1,2,3,5,8,13,...

Decimales y fracciones entre textos e imágenes: una experiencia de aprendizaje basada en la elaboración de cómics digitales. Comunicación en El Congreso Iberoamericano «La educación ante el nuevo entorno digital»

Comparte MatemáTICas: 1,1,2,3,5,8,13,...

El Congreso Iberoamericano «La educación ante el nuevo entorno digital» pretende ser un espacio donde cualquier docente pueda dar a conocer proyectos o experiencias relacionadas con cualquier área temática, pero con el denominador común del entorno digital en el que ya estamos inmersos. Se está desarrollando del 5 de noviembre al 15 de diciembre de 2019 en el Campus Virtual de Congresos de Formación IB.

A dicho evento online, el cual está resultando ser sumamente enriquecedor, hemos presentado la comunicación que indica el título de esta entrada, por si pudiera ser de utilidad y/o fuente de inspiración para nuevas propuestas didácticas.

Título 
Decimales y fracciones entre textos e imágenes: una experiencia de aprendizaje basada en la elaboración de cómics digitales. 

Autoría 

Resumen 
Esta investigación-acción tiene como objetivo la construcción de cómics matemáticos para facilitar el aprendizaje de fracciones y decimales. La justificación del uso del cómic radica en la motivación de los estudiantes por el uso de información visual, que al combinarla con el texto puede dar lugar a elementos de desarrollo de habilidades, creatividad y la lectura de contenido (Urbani, 1978, citado en Toh, 2009).  El soporte tecnológico se sostiene en una de las dimensiones de la competencia digital (Marqués, 2009), la dimensión del aprendizaje, expresada como transformación del contenido en adquisición del conocimiento. Además, el cómic se considera una herramienta con potencial para el aprendizaje de las matemáticas, por sus capacidades creativas y visuales (Cleaver, 2008) así como una posibilidad de mejora en la alfabetización de los estudiantes (Tilley, 2008).  

La investigación describe el proceso y resultados de una experiencia en el tercero de Enseñanza Secundaria Obligatoria, en Matemáticas orientadas a las enseñanzas académicas. El contenido a trabajar viene delimitado por el criterio de evaluación “utilizar las propiedades de los números racionales para operarlos, utilizando la forma de cálculo y notación adecuada, para resolver problemas de la vida cotidiana, y presentando los resultados con la precisión requerida” (RD. 1105/2014, p. 391).  

Los estudiantes construyen un cómic, utilizando una herramienta digital. Para el análisis de los resultados del conocimiento matemático expuesto se definen categorías que facilitan la identificación de cumplimiento de los estándares de aprendizaje. Estas categorías se construyen sustentadas en la investigación previa para el conocimiento matemático, desde la enseñanza y del aprendizaje de los números racionales. Las categorías que se utilizan son: el sentido dado a los algoritmos según su significado (que incluye la forma de utilizar los algoritmos y la resolución), la tipología del contexto que se utiliza para situar el objeto matemático, el rigor del lenguaje matemático, cómo se presentan los números (en forma decimal o fracción), y la reflexión final con los datos y resultados expuestos. 

Los resultados muestran distintos contextos que agrupamos como realistas y ficticios, donde estos últimos dan lugar a aquellos que dan sentido al objeto matemático y los que resultan forzados para introducir tanto el número como el algoritmo utilizado. Se utilizan distintos algoritmos, basados en suma y multiplicación; los cálculos implican usos como porcentaje, cálculo de las partes de un todo y equivalencia. En aquellas tareas que implican uso de algoritmos, los números base son fracciones en lugar de decimales. Encontramos tareas que finalizan de una manera reflexiva agrupando todos los datos utilizados a modo de recopilatorio para dar lugar a un ejercicio, y su solución. No aparecen demasiadas conversiones entre fracciones, y cuando lo hacen son para dar lugar a números que faciliten la interpretación de las partes de un todo. Los errores que aparecen surgen de cálculos encadenados entre fracciones, no siendo explícito si el cálculo es desde el paso anterior o desde el inicio, o cuando resultados dan lugar a números decimales y el contexto hubiese necesitado un número natural para su interpretación. 

Vídeo

 

https://congresoib.com/969joaquin-asenjo-perez/videos/video/302-decimales-y-fracciones-entre-textos-e-imagenes-una-experiencia-de-aprendizaje-basada-en-la

Esperando que os haya gustado esta investigación-acción en el campo de la Educación Matemática, queremos agradecer a Formación IB, a la UNED y a todas las personas que han apoyado y hecho posible este evento, de una u otra manera.

Comparte MatemáTICas: 1,1,2,3,5,8,13,...

Trabajando la competencia comunicativa en el aula de matemáticas, con especial énfasis en la oralidad, a través de la lectura de novelas juveniles de divulgación matemática, integrando las TIC #PLC #ANL #LingMáTICas

Comparte MatemáTICas: 1,1,2,3,5,8,13,...

Introducción

Una vez concluido el curso escolar 2018/2019, en estos primeros días del caluroso julio en los que andamos inmersos en la preparación del siguiente curso, casi sin solución de continuidad, rondan por nuestra cabeza, flashes, de los diferentes momentos y experiencias de aula, de las distintas propuestas didácticas de enseñanza aprendizaje implementadas en el aula a lo largo del curso escolar.

Una de estas experiencias es la que ha motivado la redacción de este post, la cual espero sirva de ayuda e inspiración para otros compañeros/as docentes, interesados en trabajar la competencia comunicativa, desde Áreas No Lingüísticas (ANL), en este caso desde el Área de Matemáticas.

Justificación/Motivación

Si la incorporación de tareas comunicativas se podría ver como un hecho consumado en el ámbito de las Áreas Lingüísticas (AL), aún queda un camino importante por recorrer en las actuaciones encuadradas dentro de las denominadas Áreas No Lingüísticas (ANL).

Tomando como punto de partida mi concepción del aprendizaje como un todo integrado, funcional y utilitario e interconectado (interdisciplinar), más allá del aprendizaje aislado basado en el modelo de compartimentos estancos (materias), considero que en un contexto digital y de alfabetización audiovisual como el que nos encontramos, bien entrado el siglo XXI, y en la línea en la que vengo trabajando desde hace años en aulas matemáticas de Secundaria y Bachillerato andaluzas, conectando Lengua, Matemáticas y TIC en el aula (buscar LingMáTICas en la web o artículo en Educación 3.0, primavera de 2012), consideré interesante poner en marcha una propuesta para trabajar la competencia comunicativa:

  • con especial énfasis en la oralidad
  • a través de la lectura de novelas juveniles de divulgación matemática
  • integrando las TIC

La propuesta de intervención diseñada e implementada demandaba un papel eminentemente activo para mis aprendices, fomentando la comprensión y fluidez lectora, la capacidad de  síntesis, la oralidad y la creatividad, haciendo uso de dispositivos móviles para elaboración de productos multimedia (artefactos digitales como podcasts, pósters digitales…), trabajando así en altas dosis la competencia comunicativa.

Descripción de la propuesta de intervención

A continuación comparto presentación conteniendo: descripción, tareas, instrumentos y enlaces a alguno de los productos elaborados por los alumnos durante el desarrollo de la propuesta que he desarrollado para trabajar la oralidad, conjuntamente con el plan lector, en Matemáticas Orientadas a las Enseñanzas Académicas (3º de ESO). La propuesta queda enmarcada en el desarrollo del año 2 del Proyecto Lingüístico de Centro (PLC), en el que participamos desde el IES San Antonio de Bollullos Par del Condado.

 

  • Propuesta didáctica orientada al fortalecimiento de la competencia comunicativa, usando las TIC, desde un Área No Lingüística (ANL) como Matemáticas, con especial énfasis en la oralidad, a través del plan lector (líneas preferentes de actuación establecidas en el PLC de nuestro centro para el presente curso escolar).
  • Ha sido desarrollada con dos grupos de 3º de ESO en la asignatura Matemáticas Orientadas a las Enseñanzas Académicas.

 

https://tinyurl.com/oralidad-plc-lmia-1819

Espero resulte de utilidad el material compartido. Si crees que puede servir a algún compañero/a, no dudes en compartirla en tus redes sociales. Ya me contaréis que os parece, mediante comentarios debajo de esta entrada,  por correo-e o a través de las redes sociales. 

Por último, aprovecho la ocasión para desearos a todos/as los/as amigos/as visitantes/as de este blog, un feliz verano

Comparte MatemáTICas: 1,1,2,3,5,8,13,...

Jornadas finales de asesoramiento para el Programa #PRODIG

Comparte MatemáTICas: 1,1,2,3,5,8,13,...

Hoy 14 de mayo se han celebrado en el CEP de Bollullos/Valverde, las jornadas finales del #PRODIG (Programa de Digitalización de Centros) para los centros educativos de la provincia de Huelva.

Las mismas tenían como objetivos:

  • Generar un espacio de comunicación e intercambio de experiencias entre el profesorado participante.
  • Revisión del trabajo realizado. Evaluar el desarrollo del programa, incidiendo en las herramientas facilitadas (SELFIE, MOOC, uso de Colabor@).
  • Facilitar las herramientas y los recursos didácticos para el desarrollo del programa en sus tres ámbitos.
  • Compartir modelos de buenas prácticas para el desarrollo del programa en el ámbito de la zona educativa.

a desarrollar en el siguiente programa:

  • 9:30-10:00 Recepción de materiales.
  • 10:00-11:00 Balance del programa. Retos y oportunidades.
  • 11:00-11:45 Intercambio de experiencias educativas de éxito en la aplicación del programa en los centros.
  • 11:45-12:15 Descanso
  • 12:15-13:00 Intercambio de experiencias educativas de éxito en la aplicación del programa en los centros.
  • 13:00-14:00 Uso y utilidad de la rúbrica #PRODIG y de sus resultados.

Además de conocer de primera mano, por parte de Rafael Vidal y Estrella Olivares del Servicio de Innovación, el balance del programa, sus principales retos y oportunidades tras el primer curso académico de implantación con 550 centros educativos participantes, hemos disfrutado del intercambio de experiencias y buenas prácticas expuestas por los compañeros/as de centros de la provincia, en los distintos ámbitos del programa: enseñanza-aprendizaje, organización del centro e información y comunicación.

En la última parte de la jornada hemos analizado y practicado, con los coordinadores de los centros, las herramientas disponibles para los centros #PRODIG desarrolladas en Séneca para el cierre del primer año de participación, que se ofrecen como ayuda en su desempeño y proceso de transformación en Organizaciones Educativas Digitalmente Competentes, con especial énfasis en la Rúbrica implementada en Séneca de manera magistral por el Servicio de Sistemas de Información de la Consejería de Educación y Deporte de la Junta de Andalucía, la cual ha sido elaborada de manera colaborativa por personal del Servicio de Innovación de la Consejería, el Equipo de Coordinación Pedagógica del Proyecto y expertos en materia de Formación del Profesorado del Servicio de Planes de Formación de Formación – CEPs y de las Delegaciones Territoriales.

Comparto en esta entrada la presentación realizada con eXeLearning con en la que apoyé mi intervención. Pulsa en la imagen o en el enlace inferior para acceder.

 

http://luismiglesias.es/prodig/prodigfinal1819huelva/

Comparte MatemáTICas: 1,1,2,3,5,8,13,...
WP2Social Auto Publish Powered By : XYZScripts.com