Enseñanza de las Matemáticas

Problemas matemáticos históricos en verso para celebrar el Día Mundial de la Poesía

Comparte MatemáTICas: 1,1,2,3,5,8,13,...

No todo iba a ser hablar del innombrable bicho. Como nos instaba Freddie Mercury (Queen) en su disco Innuendo, The Show Must Go On. Teniendo presente este espíritu me he animado a escribir una entrada en este día Día Mundial de la Poesía.

Celebración matemática para el Día Mundial de la Poesía (21 de marzo)

He querido sumarme a la celebración de esta efeméride fusionando la poesía con las matemáticas, en el marco de mi línea de trabajo LingMáTICas, proponiendo la resolución de algunos problemas de números y álgebra planteados de una manera singular. Para ello he elegido varios problemas matemáticos en verso recogidos en el libro Lilavati, obra de especial relevancia en la historia de las matemáticas.

Sobre el Lilavati

 

Bhaskara II (1114-1185), fue un matemático y astrónomo indio. Es conocido, entre otros motivos, por ser el creador de la fórmula cuadrática. Bhaskara escribió un libro al que llamó Lilavati, nombre de su hija a quien iba dedicado. Bhaskara mostró en esta obra que hasta los problemas matemáticos más complejos pueden ser presentados de una forma amena y divertida, e incluso en verso. Lilavati se puede clasificar entre los manuales de divulgación que utilizan como forma el diálogo. Un padre se dirige con ternura a su hija Lilavati para desentrañarle los secretos de la matemática a través de ejercicios en verso, llenos de evocadoras imágenes.

Selección de problemas (retos) en verso

A continuación os presento una selección de 4 problemas en verso recogidos en dicha obra. Debemos tener en cuenta la distancia entre un poema escrito en sánscrito y la correspondiente traducción en español. Es obvio que pierde el ritmo y la calidad del texto original, pero aún así tienen un encanto especial como verás a continuación.

Os invito a resolver los mismos y compartir las soluciones conmigo: mediante comentario en el blog al final de esta entrada, por correo electrónico o mediante alguno de mis perfiles en redes sociales.

Ya me contaréis qué os parece la propuesta y cómo os ha ido con ellas… 

Problema 1.

La quinta parte de un enjambre de abejas se posó en la flor de Kadamba,

la tercera parte en una flor de Silinda, 

el triple de la diferencia entre estos dos números

voló sobre una flor de Krutaja, 

y una abeja quedó sola en el aire, 

atraída por el perfume de un jazmín y de un padanus.

Dime, bella niña, 

cuál es el número de abejas que formaban el enjambre.

 

Problema 2. 

La raíz cuadrada de la mitad del número de abejas en un enjambre
ha volado hasta la planta de jazmín.
Ocho novenos del enjambre atrás quedaron.
Una abeja vuela junto a su compañero quien zumba dentro de la flor de loto;
en la noche, atraído por el dulce aroma de la flor, voló a su interior
¡y ahora está atrapado!
Dime, encantadora dama, el número de abejas que forman el enjambre.

 

Problema 3.

Érase un enamorado que en atención a su novia,
para su adorno y realce, compró algunas esmeraldas.
Un octavo tuvo a bien poner en una diadema.
Con tres séptimos del resto compuso una gargantilla.
Con la mitad del sobrante, arreglóse un brazalete.
De lo que quedó, tres cuartos engarzó en un cinturón
de vibrantes campanillas.
Y aún quedaron dieciséis muy preciosas esmeraldas
que esparció por sus cabellos.
Dime, niña, Lilavati,
cuántas piedras fue que el joven comprara para su amada.

 

Problema 4. 

Un cuarto de un dieciseisavo de un quinto de tres cuartos de dos tercios de un medio de un
dramma fue dado por un avaro a un mendigo en forma de limosna. Dime querida chiquilla, si
has aprendido bien el método fracciones compuestas, ¿cuántos varatakas dio el tacaño?
(1.280 varatakas equivalen a un dramma)

 

Más información

Reseña sobre versión adaptada al español, en la web de la RSME

https://www.rsme.es/2015/07/84-675-6189-0/

 

Más contenido matemático en redes sociales

Comparte MatemáTICas: 1,1,2,3,5,8,13,...

Manteles algebraicos. Las igualdades notables se sientan a la mesa

Comparte MatemáTICas: 1,1,2,3,5,8,13,...
(2x+4)² = 4x² + 16x + 16 = 4(x + 2)²

Compartido en Twitter por Jonathan Hall

A continuación, la versión en azulejos algebraicos

(2x+4)² = 4x² + 16x + 16 = 4(x + 2)²

compartida por Ahbil Woldejohannes de la representación de la misma igualdad notable que mostraba Jonathan en la foto del mantel.

Estos ejemplos se suman a los trabajados en clase. 

Geometría y álgebra van de la mano. «Visualizar» el álgebra nos ayuda cantidad 🙂

Seguimos… 

Comparte MatemáTICas: 1,1,2,3,5,8,13,...

Decimales y fracciones entre textos e imágenes: una experiencia de aprendizaje basada en la elaboración de cómics digitales. Comunicación en El Congreso Iberoamericano «La educación ante el nuevo entorno digital»

Comparte MatemáTICas: 1,1,2,3,5,8,13,...

El Congreso Iberoamericano «La educación ante el nuevo entorno digital» pretende ser un espacio donde cualquier docente pueda dar a conocer proyectos o experiencias relacionadas con cualquier área temática, pero con el denominador común del entorno digital en el que ya estamos inmersos. Se está desarrollando del 5 de noviembre al 15 de diciembre de 2019 en el Campus Virtual de Congresos de Formación IB.

A dicho evento online, el cual está resultando ser sumamente enriquecedor, hemos presentado la comunicación que indica el título de esta entrada, por si pudiera ser de utilidad y/o fuente de inspiración para nuevas propuestas didácticas.

Título 
Decimales y fracciones entre textos e imágenes: una experiencia de aprendizaje basada en la elaboración de cómics digitales. 

Autoría 

Resumen 
Esta investigación-acción tiene como objetivo la construcción de cómics matemáticos para facilitar el aprendizaje de fracciones y decimales. La justificación del uso del cómic radica en la motivación de los estudiantes por el uso de información visual, que al combinarla con el texto puede dar lugar a elementos de desarrollo de habilidades, creatividad y la lectura de contenido (Urbani, 1978, citado en Toh, 2009).  El soporte tecnológico se sostiene en una de las dimensiones de la competencia digital (Marqués, 2009), la dimensión del aprendizaje, expresada como transformación del contenido en adquisición del conocimiento. Además, el cómic se considera una herramienta con potencial para el aprendizaje de las matemáticas, por sus capacidades creativas y visuales (Cleaver, 2008) así como una posibilidad de mejora en la alfabetización de los estudiantes (Tilley, 2008).  

La investigación describe el proceso y resultados de una experiencia en el tercero de Enseñanza Secundaria Obligatoria, en Matemáticas orientadas a las enseñanzas académicas. El contenido a trabajar viene delimitado por el criterio de evaluación “utilizar las propiedades de los números racionales para operarlos, utilizando la forma de cálculo y notación adecuada, para resolver problemas de la vida cotidiana, y presentando los resultados con la precisión requerida” (RD. 1105/2014, p. 391).  

Los estudiantes construyen un cómic, utilizando una herramienta digital. Para el análisis de los resultados del conocimiento matemático expuesto se definen categorías que facilitan la identificación de cumplimiento de los estándares de aprendizaje. Estas categorías se construyen sustentadas en la investigación previa para el conocimiento matemático, desde la enseñanza y del aprendizaje de los números racionales. Las categorías que se utilizan son: el sentido dado a los algoritmos según su significado (que incluye la forma de utilizar los algoritmos y la resolución), la tipología del contexto que se utiliza para situar el objeto matemático, el rigor del lenguaje matemático, cómo se presentan los números (en forma decimal o fracción), y la reflexión final con los datos y resultados expuestos. 

Los resultados muestran distintos contextos que agrupamos como realistas y ficticios, donde estos últimos dan lugar a aquellos que dan sentido al objeto matemático y los que resultan forzados para introducir tanto el número como el algoritmo utilizado. Se utilizan distintos algoritmos, basados en suma y multiplicación; los cálculos implican usos como porcentaje, cálculo de las partes de un todo y equivalencia. En aquellas tareas que implican uso de algoritmos, los números base son fracciones en lugar de decimales. Encontramos tareas que finalizan de una manera reflexiva agrupando todos los datos utilizados a modo de recopilatorio para dar lugar a un ejercicio, y su solución. No aparecen demasiadas conversiones entre fracciones, y cuando lo hacen son para dar lugar a números que faciliten la interpretación de las partes de un todo. Los errores que aparecen surgen de cálculos encadenados entre fracciones, no siendo explícito si el cálculo es desde el paso anterior o desde el inicio, o cuando resultados dan lugar a números decimales y el contexto hubiese necesitado un número natural para su interpretación. 

Vídeo

 

https://congresoib.com/969joaquin-asenjo-perez/videos/video/302-decimales-y-fracciones-entre-textos-e-imagenes-una-experiencia-de-aprendizaje-basada-en-la

Esperando que os haya gustado esta investigación-acción en el campo de la Educación Matemática, queremos agradecer a Formación IB, a la UNED y a todas las personas que han apoyado y hecho posible este evento, de una u otra manera.

Comparte MatemáTICas: 1,1,2,3,5,8,13,...

Diagrama de barras con Scratch #Scratch3

Comparte MatemáTICas: 1,1,2,3,5,8,13,...

Si hace algunos meses compartía Encuesta: Betis-Sevilla. Propuesta didáctica #STEM para trabajar con la placa micro:bit #microbitedu y Scratch 3.0 #Scratch3, aplicación que muestra cómo realizar un sistema de encuesta integrando la placa programable micro:bit y la nueva versión de Scratch (Scratch 3.0), en esta entrada comparto pequeño programa que muestra como representar un diagrama de barras con Scratch, concretamente representa la serie histórica de la datos con la evolución de la población mundial.

Propuesta didáctica y modo de funcionamiento

La que hoy comparto es una propuesta didáctica para trabajar la representación de gráficos tan frecuentes en Estadística, como los diagramas de barras, con Scratch 3.0.

Para adaptarlo, basta modificar el escenario (nombres de los ejes de coordenadas) así como modificar las listas de datos a representar, pudiendo ser adaptada a otros contextos.

Para su elaboración he usado los bloques de Scratch 3.0: Movimiento, Apariencia, Eventos, Control y Variables, así como la extensión Lápiz.

Vídeo demostración

 

¿Quieres probarla?

Diagrama de barras. Evolución población mundial

Comparte MatemáTICas: 1,1,2,3,5,8,13,...

Trabajando la competencia comunicativa en el aula de matemáticas, con especial énfasis en la oralidad, a través de la lectura de novelas juveniles de divulgación matemática, integrando las TIC #PLC #ANL #LingMáTICas

Comparte MatemáTICas: 1,1,2,3,5,8,13,...

Introducción

Una vez concluido el curso escolar 2018/2019, en estos primeros días del caluroso julio en los que andamos inmersos en la preparación del siguiente curso, casi sin solución de continuidad, rondan por nuestra cabeza, flashes, de los diferentes momentos y experiencias de aula, de las distintas propuestas didácticas de enseñanza aprendizaje implementadas en el aula a lo largo del curso escolar.

Una de estas experiencias es la que ha motivado la redacción de este post, la cual espero sirva de ayuda e inspiración para otros compañeros/as docentes, interesados en trabajar la competencia comunicativa, desde Áreas No Lingüísticas (ANL), en este caso desde el Área de Matemáticas.

Justificación/Motivación

Si la incorporación de tareas comunicativas se podría ver como un hecho consumado en el ámbito de las Áreas Lingüísticas (AL), aún queda un camino importante por recorrer en las actuaciones encuadradas dentro de las denominadas Áreas No Lingüísticas (ANL).

Tomando como punto de partida mi concepción del aprendizaje como un todo integrado, funcional y utilitario e interconectado (interdisciplinar), más allá del aprendizaje aislado basado en el modelo de compartimentos estancos (materias), considero que en un contexto digital y de alfabetización audiovisual como el que nos encontramos, bien entrado el siglo XXI, y en la línea en la que vengo trabajando desde hace años en aulas matemáticas de Secundaria y Bachillerato andaluzas, conectando Lengua, Matemáticas y TIC en el aula (buscar LingMáTICas en la web o artículo en Educación 3.0, primavera de 2012), consideré interesante poner en marcha una propuesta para trabajar la competencia comunicativa:

  • con especial énfasis en la oralidad
  • a través de la lectura de novelas juveniles de divulgación matemática
  • integrando las TIC

La propuesta de intervención diseñada e implementada demandaba un papel eminentemente activo para mis aprendices, fomentando la comprensión y fluidez lectora, la capacidad de  síntesis, la oralidad y la creatividad, haciendo uso de dispositivos móviles para elaboración de productos multimedia (artefactos digitales como podcasts, pósters digitales…), trabajando así en altas dosis la competencia comunicativa.

Descripción de la propuesta de intervención

A continuación comparto presentación conteniendo: descripción, tareas, instrumentos y enlaces a alguno de los productos elaborados por los alumnos durante el desarrollo de la propuesta que he desarrollado para trabajar la oralidad, conjuntamente con el plan lector, en Matemáticas Orientadas a las Enseñanzas Académicas (3º de ESO). La propuesta queda enmarcada en el desarrollo del año 2 del Proyecto Lingüístico de Centro (PLC), en el que participamos desde el IES San Antonio de Bollullos Par del Condado.

 

  • Propuesta didáctica orientada al fortalecimiento de la competencia comunicativa, usando las TIC, desde un Área No Lingüística (ANL) como Matemáticas, con especial énfasis en la oralidad, a través del plan lector (líneas preferentes de actuación establecidas en el PLC de nuestro centro para el presente curso escolar).
  • Ha sido desarrollada con dos grupos de 3º de ESO en la asignatura Matemáticas Orientadas a las Enseñanzas Académicas.

 

https://tinyurl.com/oralidad-plc-lmia-1819

Espero resulte de utilidad el material compartido. Si crees que puede servir a algún compañero/a, no dudes en compartirla en tus redes sociales. Ya me contaréis que os parece, mediante comentarios debajo de esta entrada,  por correo-e o a través de las redes sociales. 

Por último, aprovecho la ocasión para desearos a todos/as los/as amigos/as visitantes/as de este blog, un feliz verano

Comparte MatemáTICas: 1,1,2,3,5,8,13,...

De linces ibéricos a unicornios, pasando por centauros. Tiempos de crisis, titulación con futuro. Hazte matemátic@ (y IV).

Comparte MatemáTICas: 1,1,2,3,5,8,13,...

Hace años escribí una trilogía de posts sobre los estudios de matemáticas y su empleabilidad. El último de ellos, Tiempos de crisis, titulación con futuro. Hazte matemátic@ (y III).

En el primero de ellos realizaba un llamamiento, hacia el reclutamiento de estudiantes universitarios matemáticos y escribí literalmente:

“Somos los linces ibéricos del gremio de titulados (graduados) universitarios. Hazte matemátic@ y salva la especie”.

En los siguientes posts observé cómo, afortunadamente, los datos indicaban que ambas poblaciones, la de matemáticos/as y la de linces ibéricos, evolucionamos a la par, abandonando el peligro de extinción, mostrando mi alegría por ello.

Casi 9 años más tarde, en un excepcional reportaje publicado en El País Semanal, el cual lleva por título Las mentes matemáticas mueven el mundo, leo con satisfacción lo que se evidencia a diario, pero abordado desde diferentes perspectivas con protagonistas relevantes en distintos ámbitos, que no es otra cosa que, los/as matemáticos/as hemos pasado de linces a unicornios, pasando por centauros. Sigue leyendo y encontrarás la justificación a esta afirmación que acabo de escribir.

El citado reportaje, de obligada lectura diría yo, aborda la potencia de las matemáticas desde 6 ópticas (La academia, Big data, Start-up, Supercomputación, La Olimpiada y Economía) y comienza con el párrafo que vemos en la imagen.

1. La academia

Jorge Osés, logroñés de 22 años, en quinto del doble grado de Matemáticas e Ingeniería Informática, cuenta en el descanso que ya está trabajando en Graphext, compañía que desarrolla una herramienta para el análisis de datos. “Las empresas”, dice, “valoran tu capacidad para resolver problemas”. Se metió en Matemáticas porque quería superar un reto difícil. “Ahora sé que soy capaz de hacer cualquier cosa. Tengo confianza en mí mismo. Matemáticas es pensar, con presión, y sin una base. La carrera no consiste en memorizar. Te plantean problemas, te preguntan cosas nuevas”. Big datainteligencia artificialfinanzas. El mundo digital es una locomotora. Y son pocos quienes tienen la llave para amasar la harina de este nuevo universo regido por el cálculo. Según Osés, “es más fácil contratar a un matemático y enseñarle economía que contratar a un economista y enseñarle matemáticas”.

El veterano catedrático Antonio Córdoba, director del Instituto de Ciencias Matemáticas, describe un nuevo tipo de criatura: “Ese centauro que forma el matemático con su ordenador es el espécimen más innovador que existe ahora mismo en la ciencia”. Siempre ha habido interacción de las matemáticas con todo, añade. “Pero desde la Segunda Guerra Mundial, y con la aparición de los grandes ordenadores —por cierto, creados por matemáticos—, ha ido in crescendo”. Córdoba compara la disciplina con una pirámide en cuyo vértice superior se encuentran los investigadores. Los matemáticos más creativos, personas que piensan en problemas sin necesidad de una aplicación en el mundo real. Pero sin los cuales no existirían avances en otros campos. Por debajo se encuentra la matemática aplicada. “Es este segundo estadio, el de la aplicación de los modelos matemáticos a ingeniería o economía, el que ha crecido”, dice. “El big data está muy bien. Pero se basa en teorías desarrolladas en la cumbre”. Ese es el propósito de este reportaje: un recorrido por las secciones de esa pirámide para entender el papel de las matemáticas en la revolución tecnológica.

“Ese centauro que forma el matemático con su ordenador es el espécimen más innovador que existe ahora en la ciencia”, dice Antonio Córdoba

El despacho de Ignacio Luengo, catedrático de Álgebra en la Complutense, se encuentra en la última planta de la Facultad y en él reina un caos de libros y folios con fórmulas escritas a mano. Es experto en singularidades. Durante siete años ha estado trabajando en un sistema de encriptación capaz de resistir la potencia de cálculo de un futuro ordenador cuántico. Para evitar que, cuando aparezca, toda la información que circula en la Red, y que hoy permanece cifrada gracias al teorema de Fermat, quede al desnudo. Presentó su protocolo (tres páginas llenas de polinomios) a un concurso público del Instituto Nacional de Estándares y Tecnología (NIST) de EE UU y aún se encuentra en fase de valoración. En su opinión, “ahora el mundo se está dando cuenta de que las matemáticas están por todas partes. Todos saben lo que son los algoritmos. Gobiernan la estrategia de grandes empresas y también nos ayudan a ligar. Yo terminé la carrera en el año 1975; en esa época, la mayoría venía pensando que iba a ser profesor de instituto. Eso ha cambiado. Hoy los alumnos quieren trabajar en la industria”.

El decano de Matemáticas de la Complutense, Antonio Bru, … explica que últimamente las empresas se acercan a la universidad para llevarse a los mejores. “Ayer justo el BBVA fichó a un alumno para temas de big data. Quieren personas preparadas para responder a problemas difíciles. Que sepan plantearlos y resolverlos. Con un grado de conocimiento matemático que permita describir y simular muchos procesos. Un todo en uno capaz de enfrentarse a casi cualquier problemática de manera eficiente”. Los salarios en el sector privado son tan competitivos que, según el decano, “el propio éxito de las matemáticas puede ir en su contra”. Hoy, la posibilidad de encontrar un empleo estable en la universidad es reducida. Lo cual desalienta a muchos doctores. Y desciende también el número de quienes quieren ser profesores en secundaria (en las últimas oposiciones se quedaron sin cubrir unas 300 plazas de profesores de Matemáticas, denunció el sindicato CSIF). “Puede ser el principio de nuestra muerte”, dice Bru. “Porque hay que explicar bien las matemáticas en el colegio y en la universidad. Y potenciar la investigación básica. El riesgo es que nos perdamos la revolución tecnológica”.

2. Big data

La omnipresencia de Google, el Internet de las cosas, las tarifas dinámicas de Uber y Cabify, las recomendaciones de Facebook e Instagram. Los datos son el nuevo petróleo. Y solo unos pocos parecen capaces de dominarlos. El primer empleo de la canadiense Holden Karau, antes incluso de acabar la carrera de Matemáticas en Ciencia de Computación, fue desarrollar para Amazon un modelo capaz de discernir entre las dos acepciones de la palabra rabbit en inglés. Una es “conejo”; la otra, “vibrador”. Llegó a ser ingeniera principal de soft­ware de big data en IBM. Hoy trabaja para Google, donde se dedica a enseñar lo que sabe y a supervisar lo que otros hacen dentro del gran buscador. Tiene 32 años, vive en San Francisco, pero recorre el globo dando conferencias en las que el contenido resulta un laberinto futurista. En noviembre participó en Madrid en el evento Big Data Spain. Salió al escenario vistiendo un largo abrigo de pelo blanco decorado con luces de colores y una capucha coronada con un cuerno. “Un científico de datos veterano es un unicornio”, se presentó. “Somos muy difíciles de encontrar”. Risas entre los asistentes, como preludio de una charla sobre Apache Spark —un “motor de análisis unificado para procesamiento de datos a gran escala”, define una web especializada—, “conductos de información” y “modelos de regresión lineal”. Karau bromea: “En ocasiones he roto cosas que valen millones”. De nuevo risas, porque los presentes parecen expertos en el arte de cosechar miles de datos, tratarlos y explotarlos.

Holden Karau, científica de datos de Google.
Imagen de El País Semanal, publicada en
Las mentes matemáticas mueven el mundo Holden Karau, científica de datos de Google. CARLOS SPOTTORNO

“La carrera no consiste en memorizar. Te plantean problemas, te preguntan cosas nuevas”, explica un estudiante de Matemáticas e Ingeniería Informática

3. Start-up

Mohamed Umair, paquistaní de 23 años, pedalea en las calles de Barcelona guiado por un algoritmo. Trabaja desde hace un año a lomos de una bicicleta para la compañía Glovo. Glovo es una start-up que recibe órdenes de clientes que piden algo, sobre todo comida, aunque puede ser cualquier cosa —condones, una guitarra, flores—, y envía ciclistas o motoristas a recoger el pedido y llevarlo hasta el destinatario. Ese proceso de asignación, que determina cuál es el mejor repartidor para cada pedido optimizando tiempo y distancia, es un proceso matemático complejo. La solución la calcu­la un algoritmo y la ejecutan personas como Umair. “Trabajo todos los días. Unas 8 o 10 horas. Hago una media de 70 u 80 kilómetros. Si la jornada es buena, quizá 110”, dice el paquistaní. “El trabajo está bien, por los ingresos. El empleo en el restaurante no era mejor. Aquí gano más, entre 1.200 y 1.500 euros al mes”.

La sede de Glovo en Barcelona ocupa dos plantas. La empresa nació en esta ciudad en 2015. Su jefe de tecnología, el canadiense Bartek Kunowski, también dio sus primeros pasos en Amazon (desarrollando un algoritmo de recomendación). Sobre Glovo, Kunowski dice: “Somos una compañía tech. Todo está basado en ciencias de la computación, es decir, en matemáticas”. Habla del algoritmo húngaro, pero también de los miles de datos que recolectan y almacenan, con los que pronostican la futura demanda. Y de sus modelos de machine learning(sistemas que aprenden automáticamente). Los cálculos se hacen para más de 60 ciudades de 20 países. Kunowski lidera un equipo internacional de 70 personas; son físicos, ingenieros, matemáticos y análogos, diestros en computación y código, que han de encajar con la cultura de la empresa: “Gente a la que le guste la tecnología, resolver problemas y que adoren las matemáticas”.

4. Supercomputación

El silencio de la vieja capilla es sepulcral. Hay una enorme urna de cristal transparente en el centro, y en su interior, como un tótem de nuestra era, se yerguen hileras de bastidores con miles de chips, nodos y procesadores. Para acceder a la urna hay que superar una puerta de seguridad. Dentro, el zumbido de los ventiladores vibra como la sala de máquinas de un barco. El ambiente es frío, pero si uno abre la espalda de una de las torres se libera un calor digital. Se ven cables, placas, lucecitas. “Esto es pura matemática”, dice el ingeniero que lo vigila.

Este supercomputador, el más potente de España y el quinto de Europa, llamado Mare Nostrum IV,alcanza una potencia pico de 13,7 petaflops, lo cual significa que puede ejecutar 13.700 billones de operaciones por segundo. Es difícil imaginarlo. Tampoco sus aplicaciones resultan demasiado comprensibles: gracias a esta máquina se han podido observar las ondas gravitacionales que Einstein predijo (el equipo LiGO, ganador del Nobel en 2017 por este trabajo, realizó parte de los cálculos en el Mare Nostrum). El supercomputador se encuentra en el campus de la Universidad Politécnica de Cataluña, en Barcelona, en este espacio que fue una capilla en el siglo XIX. Un emplazamiento tan exótico que Dan Brown lo usó como escenario de su novela Origen, en la que mezcla guerras de religión y ordenadores cuánticos.

El supercomputador Mare Nostrum IV en Barcelona.
Imagen de El País Semanal, publicada en
Las mentes matemáticas mueven el mundo – El supercomputador Mare Nostrum IV en Barcelona. CARLOS SPOTTORNO

En un edificio cercano se encuentran los investigadores del Centro Nacional de Supercomputación de Barcelona (BSC, por sus siglas en inglés), centenares de personas entregadas a las tareas más variopintas. Entre ellos abundan los matemáticos. Personas como Eva Casoni, de 36 años, doctora en Matemáticas, que se dedica a la simulación numérica de materiales. Es decir, provoca desastres aterradores: disecciona aortas y deforma el fuselaje de los aviones hasta romperlos, pero en un mundo ficticio, el de los cálculos matemáticos, empleando para ello “ecuaciones con un montón de parámetros” que solo son posibles de resolver a través de la supercomputación. La italiana Enza di Tomaso, doctora en Ingeniería Matemática, trabaja en el departamento de clima y se dedica a simular el movimiento de millones de partículas en la atmósfera, lo cual resulta útil para predecir las tormentas de arena —trabaja en coordinación con la Agencia Estatal de Meteorología (Aemet)—.

5. La Olimpiada

María Gaspar tiene mucho que ver con el creciente prestigio de las matemáticas… “Antes, los buenos tenían que disimular”. Gaspar también es profesora de Estalmat, un proyecto de detección y estímulo del talento precoz. Son clases de matemáticas puras que se imparten en fin de semana en toda España a menores sobresalientes. Y también tratan de ir un paso más allá: un empleado de IBM, por ejemplo, les dio hace poco lecciones de programación en R, lenguaje habitual en biomedicina y matemática financiera.

Álvaro Gamboa, de 13 años, el aspirante de menor edad en el examen de la fase cero de la Olimpiada Matemática, durante la prueba en la Universidad Complutense.

Imagen de El País Semanal, publicada en
Las mentes matemáticas mueven el mundo – Álvaro Gamboa, de 13 años, el aspirante de menor edad en el examen de la fase cero de la Olimpiada Matemática, durante la prueba en la Universidad Complutense. CARLOS SPOTTORNO

6. Economía

… Pablo Hernández, analista encargado del estudio, afirma: “Las matemáticas son un driver del crecimiento a largo plazo”. (En otros países europeos, donde se han hecho estudios similares, aseguran que las matemáticas contribuyen al PIB entre un 10% y un 15%, publicó Europa Press).

Lo mostrado en este post es sólo una pequeña parte del contenido del artículo publicado en El País Semanal: Las mentes matemáticas mueven el mundo. 

Tras realizar su lectura completa, ¿aún necesitas más argumento de peso para hacerte matemátic@? ¿A qué esperas?

Comparte MatemáTICas: 1,1,2,3,5,8,13,...

Encuesta: Betis-Sevilla. Propuesta didáctica #STEM para trabajar con la placa micro:bit #microbitedu y Scratch 3.0 #Scratch3

Comparte MatemáTICas: 1,1,2,3,5,8,13,...

Si hace algún tiempo compartía Estadística con #Scratch. Creación de un diagrama de sectores aplicación que muestra cómo representar un diagrama de sectores con Scratch, hoy comparto una aplicación que muestra cómo realizar un sistema de encuesta integrando la placa programable micro:bit y la nueva versión de Scratch, Scratch 3.0, lanzada oficialmente el pasado día 2 de enero de 2019.

Propuesta didáctica y modo de funcionamiento

La que hoy comparto es una propuesta didáctica con enfoque STEM para trabajar con la placa micro:bit y Scratch 3.0

Se trata de una encuesta para elegir el equipo favorito, en este caso entre Real Betis Balompié y Sevilla Fútbol Club

La misma, puede ser adaptada a otros contextos, con las modificaciones correspondientes, desde preguntas Verdadero/Falso, clasificación en grupos/categorías, …

Para su elaboración he usado todos los bloques de Scratch 3.0: Movimiento, Apariencia, Sonido, Eventos, Control, Sensores y Variables, así como las extensiones: Lápiz, Música y micro:bit.

Es la última extensión la que permite la interacción con la placa programable de su mismo nombre, la cual nos abre un mar de posibilidades para trabajar el enfoque STEM desde el aula de Matemáticas, mi materia, y desde cualquier otra; sin límites, donde nos lleve nuestra imaginación y creatividad en nuestro doble rol: como docentes (a la hora de presentar propuestas a nuestros estudiantes en entornos mediados por TIC) y como aprendices (al diseñar y programar nosotros mismos las distintas propuestas).

Debo reconocer que me he divertido mucho diseñando, programando y probando la misma con mi hijo y sus compañeros/as de clase que hoy nos acompañaban en casa preparando un trabajo para la clase de Francés. 

Vídeo demostración

 

¿Quieres probarla?

Nota: Es necesario disponer de una placa micro:bit conectada con Scratch vía Bluetooth. Si aún no dispones de ella, puedes verla funcionando en el vídeo de demostración anterior. 

Encuesta: Betis – Sevilla #Scratch3 + #microbit on Scratch 

Comparte MatemáTICas: 1,1,2,3,5,8,13,...

Animación interactiva: medidas y escalas. ¡Qué grandes/pequeños somos!

Comparte MatemáTICas: 1,1,2,3,5,8,13,...

Animación interactiva, compartida en Twitter por @ZonePhysics basada en Google Earth/Maps, sobre medidas y escalas. 

https://twitter.com/i/status/1082245445475356677
Comparte MatemáTICas: 1,1,2,3,5,8,13,...

El origen de los números #Podcast #LingMáTICas

Comparte MatemáTICas: 1,1,2,3,5,8,13,...
Verba volant – NEUDC RNE

Comparto en esta entrada el podcast correspondiente a la sección Verba Volant que nos trae cada sábado el profesor Emilio del Río en uno de mis programas radiofónicos favoritos, No es un día cualquiera, un clásico de las ondas del cual suelo disfrutar cada fin de semana en RNE, presentado por Pepa Fernández.

Minutos 2:30 al 16:00 aproximadamente

Quien me conoce, y los lectores habituales de este blog, saben de mi gusto y de la importancia que otorgo en el proceso de Enseñanza-Aprendizaje a la vinculación entre la Lengua y las Matemáticas; lo que denominé en llamar en su día como LingMáTICas.

Conocer el origen y la evolución de las palabras es otro aspecto fundamental para la construcción y comprensión del lenguaje matemático. El audio que os comparto es fácil de seguir y nos muestra aspectos interesantes del origen de los números, así como otros más lúdicos y algunas curiosidades que tal vez no conocías.

Espero que disfruten de él como yo lo hice, motivo por el cual he considerarlo interesante compartirlo en este espacio.

¡Feliz 2019 y que sigamos disfrutando de las Matemáticas!

Comparte MatemáTICas: 1,1,2,3,5,8,13,...

miniTAREA: Chocolatina fraccionaria

Comparte MatemáTICas: 1,1,2,3,5,8,13,...

miniTAREA. Observa la siguiente chocolatina y, pasados unos minutos, comenta aquellos aspectos matemáticos que te hayan llamado la atención y/o comprobado.

La misma ha aparecido en casa a la hora del postre, tras el almuerzo, al traerla nuestro hijo del colegio junto a otros pequeños regalos de su participación con su grupo-clase en «El amigo invisible».

Pero es muy curiosa, ¿verdad? ¿Conoces algún caso similar presentación de otra chocolatina? Bueno, piensa y nos cuentas.

 

Comparte MatemáTICas: 1,1,2,3,5,8,13,...
WP2Social Auto Publish Powered By : XYZScripts.com