Números

Repite conmigo: 1/3 es mayor que 1/4. El contenido matemático de fracciones de primaria que hizo fallar una campaña publicitaria contra McDonald’s

Comparte MatemáTICas: 1,1,2,3,5,8,13,...

Aunque las comparaciones siempre son odiosas, creo que puedo afirmar sin temor a equivocarme que:

Si la COVID-19 es una pandemia que está teniendo consecuencias muy graves para la humanidad, el anumerismo y la falta de competencia matemática ha tenido, está teniendo y, a menos que luchemos con todas nuestras fuerzas desde las aulas, tendrá un impacto muy negativo y seguirá causando estragos en las sociedades.

Y no creamos que es cosa de ahora, intentemos buscar sus causas y culpar a los actuales planes de estudios, en la situación de España,… En absoluto tiene nada que ver. Como comento es un problema histórico, algo que viene de lejos. Este caso concreto que os traigo ocurrió en EEUU en los años 80 del siglo pasado.

Lo que ocurrió fue que:

La cadena A&W Restaurants lanzó, puso a la venta, una hamburguesa de 1/3 de libra para competir contra la exitosa hamburguesa de 1/4 de libra de McDonalds pero nadie la compraba porque creían que las hamburguesas de 1/3 eran más pequeñas que las de 1/4.

El error: considerar que como 3 es menor que 4, la fracción 1/3 es menor que 1/4.

Se repite e insiste una y otra vez en la importancia de contextualizar las matemáticas escolares, poniendo ejemplos de situaciones cercanas a la realidad cotidiana. Si no hacemos esto y nos centramos únicamente en explicar los contenidos teóricos y que los alumnos apliquen lo aprendido en fichas rutinarias de actividades descontextualizadas, estamos condenados a ver una y otra vez, este tipo de situaciones. En este caso lo que no funcionó fue una campaña publicitaria de una empresa. Hay muchas otras situaciones en que estos errores de contenidos matemáticos elementales pueden acabar costando mucho dinero o poner en peligro a las personas.

En el siguiente podcast de Historias de la economía (elEconomista) podrás conocer la historia completa:

La campaña contra McDonalds que fracasó porque los estadounidenses no entendían las fracciones

Comparto a continuación algunas representaciones de las fracciones implicadas realizadas con Mathigon:

El pase de diapositivas requiere JavaScript.

Para terminar, os comparto un extracto de elEconomista.es donde se muestra cómo la compañía ha aprendido y, viendo las dificultades de la población para las matemáticas, ha decidido darle la vuelta a la tortilla y promocionar la hamburguesa de 1/3 de libra, pero ahora ‘vendiéndola’ como de 3/9 de libra. Como la gente piensa que 1/4 es mayor que 1/3 porque 4 es mayor que 3, espera que la gente piense que 3/9 es mayor que 1/4 porque 9 es mayor que 4. ¡Qué cosas! 🙂

Hasta ahora, A&W había no había prestado atención a esta historia. Ojo, aunque fuera no nos suene mucho su nombre, estamos hablando de una cadena de restaurantes con más de 100 años de historia, que cuenta con más de 500 establecimientos en Estados Unidos, y que requiere de una inversión inicial de más de un millón de dólares en algunos casos para conseguir una franquicia.

Pues bien, tras muchos años callando sobre esta anécdota, han decidido contarla y tratar de sacarle provecho. Han lanzado una campaña, en tono humorístico, basada en una hamburguesa de 3/9 de libra, jugando con los problemas de la gente para entender las matemáticas. Si creían que 4 es más que 3, ¡entonces 9 es aún mayor!

La compañía, tras una reestructuración en 2011, hoy sigue creciendo y expandiéndose. Y sus campañas alcanzan cierto éxito.

Ironías del destino, años después, ya en este siglo, McDonald’s lanzó su propia hamburguesa de un tercio de libra, la ‘Angus Third Pounder’, que ya no está disponible en sus restaurantes.

Más contenido matemático en redes sociales

Comparte MatemáTICas: 1,1,2,3,5,8,13,...

Reto matemático terrorífico para la noche de Halloween – Graspable Math

Comparte MatemáTICas: 1,1,2,3,5,8,13,...

En esta entrada os propongo un reto terrorífico para la noche de Halloween, basado en un modelo de áreas.

¿Cómo lo ves? ¿Eres capaz de resolverla?

¿Truco o trato? 🙂

Tarea interactiva. Reto matemático terrorífico para la noche de Halloween, realizada en Graspable Math

Pulsa aquí para completar el reto en GMA y dejar registrada tu respuesta (First Name: Tu nombre – Last Initial: Inicial de tu apellido)

Más contenido matemático en redes sociales

Comparte MatemáTICas: 1,1,2,3,5,8,13,...

Vídeo: Pi (π), la ridícula forma en la que se calculaba Pi… hasta que… llegó Isaac Newton

Comparte MatemáTICas: 1,1,2,3,5,8,13,...

Lo que tienen las vacaciones de Semana Santa, máxime estas tan atípicas con motivo de la COVID. Tiempo para disfrutar en familia, leer, ver, escuchar, observar… y publicar.

Hace tiempo que un vídeo no me resultaba tan didáctico como este. De ahí que haya decidido compartirlo en esta entrada para contribuir a su difusión. Me encanta la manera tan didáctica que tienen de explicar la historia de la matemática, máxime sobre un concepto tan relevante como Pi. Desde ya, tengo claro que formará parte de mi propuesta didáctica para el aula: Porque Pi es mucho más que 3.1416. Aprendizaje de conceptos por investigación.

Espero que lo disfrutéis tanto como yo.

Vídeo: π ✔️ La ridícula forma en la que se calculaba Pi… hasta que… llegó Isaac Newton 💫

Durante miles de años, los matemáticos calcularon Pi de forma obvia pero numéricamente ineficiente. Entonces llegó Newton y cambió el juego.

Este descubrimiento transformó la manera en que calculamos para siempre. Para muchos científicos Isaac Newton ha sido el más grande científico de todos los tiempos. Una de sus más grandes contribuciones fue expresar el comportamiento físico de la naturaleza en forma de leyes naturales, demostrando que las que gobiernan el movimiento en la Tierra y las que gobiernan el movimiento de los cuerpos celestes son las mismas. Destacan sus trabajos sobre la naturaleza de la luz y la óptica y el desarrollo del cálculo matemático. Desarrollo la ley de convección térmica, sus estudios sobre la velocidad del sonido en el aire; y su propuesta de una teoría sobre el origen de las estrellas. Fue también un pionero de la mecánica de fluidos, estableciendo una ley sobre la viscosidad. El gran mérito de Newton fue tomar los conocimientos de Galileo y Kepler y a partir de sus discusiones con Hyugens, Leibniz, Halley sobre todo, Robert Hooke y formular leyes que explican tanto el movimiento de los astros como el de los movimientos de cualquier otro objeto y de paso la mecánica de las máquinas.

Arndt, J., & Haenel, C. (2001). Pi-unleashed. Springer Science & Business Media – https://ve42.co/Arndt2001

Dunham, W. (1990). Journey through genius: The great theorems of mathematics. Wiley – https://ve42.co/Dunham1990

Borwein, J. M. (2014). La vida de π: De Arquímedes a ENIAC y más allá. En De Alejandría, a través de Bagdad (pp. 531-561). Springer, Berlín, Heidelberg – https://ve42.co/Borwein2012

Un agradecimiento especial a Alex Kontorovich, Profesor de Matemáticas de la Universidad de Rutgers, y Profesor Visitante Distinguido para la Difusión Pública de las Matemáticas Museo Nacional de Matemáticas MoMath por formar parte de este vídeo del Día de Pi.

Más contenido matemático en redes sociales

Comparte MatemáTICas: 1,1,2,3,5,8,13,...

miniTAREA. Oferta promocional #eXPLÍCAlo

Comparte MatemáTICas: 1,1,2,3,5,8,13,...

Matemáticas en la vida cotidiana. Observa la imagen con la oferta promocional y lee con atención las siguientes situaciones hipotéticas de compras:
  • Situación 1. Producto 1 – Valor 1000 € y Producto 2 – Valor 10 €.
  • Situación 2. Producto 1 – Valor 10 € y Producto 2 – Valor 1000 €.
¿Qué importe deberíamos abonar en cada una de las situaciones?
¿Qué opción elegirías si fueras el comprador?
¿Qué observas?
#eXPLÍCAlo
Comparte MatemáTICas: 1,1,2,3,5,8,13,...

Lista de Apps y calculadoras avanzadas para resolver ejercicios de matemáticas. Repensando las tareas de matemáticas en tiempos del coronavirus

Comparte MatemáTICas: 1,1,2,3,5,8,13,...

Reflexión. Repensando las tareas de matemáticas en tiempos del coronavirus

La tecnología está democratizando el acceso a las matemáticas de toda la ciudadanía. En los últimos años han proliferado herramientas y calculadoras avanzadas disponibles en formato App en nuestros dispositivos móviles que, con una simple foto a un libro de texto, a una hoja de ejercicios de clase o introduciendo manualmente con nuestros dedos la ecuación, nos ofrecen la solución y el paso a paso detallado.

Como todo, estas herramientas presentan ventajas e inconvenientes. Entre sus ventajas, la posibilidad de analizar distintas maneras de resolver ejercicios y problemas. Inconvenientes, ya podemos suponerlos, y muchos docentes de matemáticas han podido experimentarlos de primera mano al corregir las actividades de sus alumnos. Entregarse en cuerpo y alma a ellas, sin obtener ningún tipo de aprendizaje, tan solo para obtener la solución, copiar la resolución paso a paso y cumplir el trámite de entregar los ejercicios de clase, puede traer consecuencias devastadoras.

Teniendo presente que han venido para quedarse, si los docentes despreciamos/obviamos su existencia y su potencial puede traer consecuencias importantes para los procesos de Enseñanza-Aprendizaje en las clases de Matemáticas.

En un escenario de pandemia como el que estamos atravesando, con escenarios de aprendizaje remotos a distancia o semi-presencial, donde no vemos trabajar al alumnado delante de nosotros, nos lleva a ‘repensar’, con carácter de urgencia, las tareas de matemáticas, enfocándolas hacia entornos de investigación y resolución de problemas y tareas auténticas. Reducir únicamente las tareas de matemáticas que proponemos a nuestros alumnos a hojas de ejercicios descontextualizadas, ejercicios del pie de página del libro de texto (actividades de aplicación) o problemas-tipo simples, puede llevar a que nuestros aprendices recurran con demasiada frecuencia a este tipo de herramientas, y no la usen únicamente para comprobar la solución o para aprender conjeturando a partir de algunos ejemplos resueltos, cayendo en una dependencia casi total de las mismas.

Es por ello por lo que comparto una colección de ellas, y una posible tarea de uso de este tipo de herramientas, promoviendo el enfoque crítico-reflexivo de los alumnos, más allá de la resolución mecánica de un sistema de ecuaciones lineales.

Como docente de matemáticas reflexioné bastante sobre el tema de esta entrada en los últimos años, especialmente durante el periodo de confinamiento que vivimos en España durante el tercer trimestre del curso pasado, donde tuve que poner el foco en tareas abiertas, creativas y reflexivas para obtener evidencias reales y significativas de aprendizaje de mis alumnos. La lectura de este post de 3nions.com, me animó definitivamente a compartirlo con vosotros.

Me gustaría conocer tu opinión al respecto. Puedes compartirla conmigo como comentario a esta entrada, justo más abajo, o en Twitter en @luismiglesias  

¡Suerte en el nuevo curso!

 

Propuesta de Tarea. con ayuda de Microsoft Math Solver

Analizar la resolución del siguiente sistema de ecuaciones.

¿Qué observas? ¿Es correcta la solución? ¿Cómo lo resolverías tú? ¿Por qué?

Lista de herramientas (Apps y calculadoras avanzadas)

1. Photomath

2. Microsoft Math Solver

3. Calculadora científica HiPER

Las 15 mejores aplicaciones de Math Solver que resuelven problemas matemáticos verbales

4. Brainly

5. Math Tricks

Las 15 mejores aplicaciones de Math Solver que resuelven problemas matemáticos verbales

6. Mathway

7. Khan Academy

Las 15 mejores aplicaciones de Math Solver que resuelven problemas matemáticos verbales

8. WolframAlpha

Las 15 mejores aplicaciones de Math Solver que resuelven problemas matemáticos verbales

9. Cymath

Las 15 mejores aplicaciones de Math Solver que resuelven problemas matemáticos verbales

10. Open Omnia

Las 15 mejores aplicaciones de Math Solver que resuelven problemas matemáticos verbales

11. MalMath

Las 15 mejores aplicaciones de Math Solver que resuelven problemas matemáticos verbales

12. Meritnation

13. QANDA

Las 15 mejores aplicaciones de Math Solver que resuelven problemas matemáticos verbales

14. Math Solver

Las 15 mejores aplicaciones de Math Solver que resuelven problemas matemáticos verbales

15. Math Cafe

Las 15 mejores aplicaciones de Math Solver que resuelven problemas matemáticos verbales

 

MÁS CONTENIDO MATEMÁTICO EN REDES SOCIALES

Comparte MatemáTICas: 1,1,2,3,5,8,13,...

Problemas matemáticos históricos en verso para celebrar el Día Mundial de la Poesía

Comparte MatemáTICas: 1,1,2,3,5,8,13,...

No todo iba a ser hablar del innombrable bicho. Como nos instaba Freddie Mercury (Queen) en su disco Innuendo, The Show Must Go On. Teniendo presente este espíritu me he animado a escribir una entrada en este día Día Mundial de la Poesía.

Celebración matemática para el Día Mundial de la Poesía (21 de marzo)

He querido sumarme a la celebración de esta efeméride fusionando la poesía con las matemáticas, en el marco de mi línea de trabajo LingMáTICas, proponiendo la resolución de algunos problemas de números y álgebra planteados de una manera singular. Para ello he elegido varios problemas matemáticos en verso recogidos en el libro Lilavati, obra de especial relevancia en la historia de las matemáticas.

Sobre el Lilavati

 

Bhaskara II (1114-1185), fue un matemático y astrónomo indio. Es conocido, entre otros motivos, por ser el creador de la fórmula cuadrática. Bhaskara escribió un libro al que llamó Lilavati, nombre de su hija a quien iba dedicado. Bhaskara mostró en esta obra que hasta los problemas matemáticos más complejos pueden ser presentados de una forma amena y divertida, e incluso en verso. Lilavati se puede clasificar entre los manuales de divulgación que utilizan como forma el diálogo. Un padre se dirige con ternura a su hija Lilavati para desentrañarle los secretos de la matemática a través de ejercicios en verso, llenos de evocadoras imágenes.

Selección de problemas (retos) en verso

A continuación os presento una selección de 4 problemas en verso recogidos en dicha obra. Debemos tener en cuenta la distancia entre un poema escrito en sánscrito y la correspondiente traducción en español. Es obvio que pierde el ritmo y la calidad del texto original, pero aún así tienen un encanto especial como verás a continuación.

Os invito a resolver los mismos y compartir las soluciones conmigo: mediante comentario en el blog al final de esta entrada, por correo electrónico o mediante alguno de mis perfiles en redes sociales.

Ya me contaréis qué os parece la propuesta y cómo os ha ido con ellas… 

Problema 1.

La quinta parte de un enjambre de abejas se posó en la flor de Kadamba,

la tercera parte en una flor de Silinda, 

el triple de la diferencia entre estos dos números

voló sobre una flor de Krutaja, 

y una abeja quedó sola en el aire, 

atraída por el perfume de un jazmín y de un padanus.

Dime, bella niña, 

cuál es el número de abejas que formaban el enjambre.

 

Problema 2. 

La raíz cuadrada de la mitad del número de abejas en un enjambre
ha volado hasta la planta de jazmín.
Ocho novenos del enjambre atrás quedaron.
Una abeja vuela junto a su compañero quien zumba dentro de la flor de loto;
en la noche, atraído por el dulce aroma de la flor, voló a su interior
¡y ahora está atrapado!
Dime, encantadora dama, el número de abejas que forman el enjambre.

 

Problema 3.

Érase un enamorado que en atención a su novia,
para su adorno y realce, compró algunas esmeraldas.
Un octavo tuvo a bien poner en una diadema.
Con tres séptimos del resto compuso una gargantilla.
Con la mitad del sobrante, arreglóse un brazalete.
De lo que quedó, tres cuartos engarzó en un cinturón
de vibrantes campanillas.
Y aún quedaron dieciséis muy preciosas esmeraldas
que esparció por sus cabellos.
Dime, niña, Lilavati,
cuántas piedras fue que el joven comprara para su amada.

 

Problema 4. 

Un cuarto de un dieciseisavo de un quinto de tres cuartos de dos tercios de un medio de un
dramma fue dado por un avaro a un mendigo en forma de limosna. Dime querida chiquilla, si
has aprendido bien el método fracciones compuestas, ¿cuántos varatakas dio el tacaño?
(1.280 varatakas equivalen a un dramma)

 

Más información

Reseña sobre versión adaptada al español, en la web de la RSME

https://www.rsme.es/2015/07/84-675-6189-0/

 

Más contenido matemático en redes sociales

Comparte MatemáTICas: 1,1,2,3,5,8,13,...

El origen de los números #Podcast #LingMáTICas

Comparte MatemáTICas: 1,1,2,3,5,8,13,...
Verba volant – NEUDC RNE

Comparto en esta entrada el podcast correspondiente a la sección Verba Volant que nos trae cada sábado el profesor Emilio del Río en uno de mis programas radiofónicos favoritos, No es un día cualquiera, un clásico de las ondas del cual suelo disfrutar cada fin de semana en RNE, presentado por Pepa Fernández.

Minutos 2:30 al 16:00 aproximadamente

Quien me conoce, y los lectores habituales de este blog, saben de mi gusto y de la importancia que otorgo en el proceso de Enseñanza-Aprendizaje a la vinculación entre la Lengua y las Matemáticas; lo que denominé en llamar en su día como LingMáTICas.

Conocer el origen y la evolución de las palabras es otro aspecto fundamental para la construcción y comprensión del lenguaje matemático. El audio que os comparto es fácil de seguir y nos muestra aspectos interesantes del origen de los números, así como otros más lúdicos y algunas curiosidades que tal vez no conocías.

Espero que disfruten de él como yo lo hice, motivo por el cual he considerarlo interesante compartirlo en este espacio.

¡Feliz 2019 y que sigamos disfrutando de las Matemáticas!

Comparte MatemáTICas: 1,1,2,3,5,8,13,...

miniTAREA: Chocolatina fraccionaria

Comparte MatemáTICas: 1,1,2,3,5,8,13,...

miniTAREA. Observa la siguiente chocolatina y, pasados unos minutos, comenta aquellos aspectos matemáticos que te hayan llamado la atención y/o comprobado.

La misma ha aparecido en casa a la hora del postre, tras el almuerzo, al traerla nuestro hijo del colegio junto a otros pequeños regalos de su participación con su grupo-clase en «El amigo invisible».

Pero es muy curiosa, ¿verdad? ¿Conoces algún caso similar presentación de otra chocolatina? Bueno, piensa y nos cuentas.

 

Comparte MatemáTICas: 1,1,2,3,5,8,13,...

Aprendizaje por indagación. Puzle de cuadrados perfectos

Comparte MatemáTICas: 1,1,2,3,5,8,13,...

Comparto en esta entrada una entretenida propuesta para trabajar aprendizaje por indagación con números cuadrados perfectos.

Puzle de cuadrados perfectos-luismiglesias.jpg

Pulsa aquí para descargar: Puzle de cuadrados perfectos

La propuesta es, básicamente, una versión en castellano de la original de Sarah Carter.

¡Gracias por la inspiración, Sarah! 😉

Comparte MatemáTICas: 1,1,2,3,5,8,13,...

miniTAREA. Cubos y cuadrados, parientes cercanos.

Comparte MatemáTICas: 1,1,2,3,5,8,13,...

Observa con atención el siguiente vídeo, de apenas 13 segundos de duración, en el cual aparecen una serie de cubos y su descomposición.

El enunciado de la miniTAREA es el siguiente:

Imagen de @CambridgeMaths

Encuentra una expresión algebraica general, que relacione cubos y cuadrados, que explique la relación obtenida para el caso particular mostrado en el vídeo.

Esta entrada participa en la Edición 8.4 “Matemáticas de todos y para todos” del Carnaval de Matemáticas cuyo anfitrión es, en esta ocasión, matematicascercanas

Comparte MatemáTICas: 1,1,2,3,5,8,13,...
WP2Social Auto Publish Powered By : XYZScripts.com