STEM

11 Recursos Educativos Abiertos Interactivos (…de Matemáticas) elaborados con H5P. Un menú de degustación para el aprendizaje del álgebra

Comparte MatemáTICas: 1,1,2,3,5,8,13,...

Los lectores habituales de este blog conocen el gusto, más bien adicción :-), que tengo por los Recursos Educativos Abiertos (REA)

El rol de docente como elaborador de contenidos digitales educativos ofrece autonomía, enriquece nuestras clases y nos permite desarrollar una atención educativa más personalizada para nuestros alumnos. Aunque en mi opinión, consumida la quinta parte del siglo XXI, esto no debería ser suficiente. Lo ideal sería llegar a promover ambientes de aprendizaje donde sean los propios alumnos los productores de contenidos.

Create and share with H5P 

En la línea de la atención personalizada, usando el símil gastronómico, he preparado un menú de degustación (compuesto por 11 platos) para el aprendizaje del álgebra. Para su elaboración he utilizado la herramienta H5P, software libre, con un potencial increíble en el ámbito educativo debido a su excelente integración con los principales servicios CMS y LMS como WordPress (es el caso de este post), Moodle, Blackboard, Canvas, Brightspace y Drupal.

No es el objetivo de esta entrada describir el funcionamiento de H5P. Para ello recomiendo, entre otros, el excelente post, que escribiera la compañera y amiga de CEDEC, Lola Alberdi, titulado ¿Qué puede hacer H5p por mis alumnos?

 

¿Qué es H5P?

H5P es una plataforma de creación de contenidos interactivos, gratuita y abierta, con todas las ventajas que proporciona el software libre en educación, ampliando las posibilidades de aprendizaje de nuestros alumnos. H5P permite realizar alrededor de 35 tipos diferentes de contenidos interactivos, y es:

  • multiplataforma (funciona el Linux, Windows, IOS),
  • de código abierto y por lo tanto sostenible en el tiempo, asegurando la perdurabilidad de nuestras creaciones,
  • con libertad para usar, copiar, modificar y distribuir el software,
  • optimiza recursos, reduciendo el costos de equipos,
  • crea alumnos libres, no dependientes de un producto concreto ya que se enseña a trabajar con una tecnología.

H5P está realizado mayormente con código JavaScript con el objetivo de integrarlo con nuevas plataformas por lo que, además de realizar actividades y contenidos interactivos en la misma plataforma de H5p, podemos integrarlo con un plugin en nuestro Moodle, WordPress o Drupal. En caso de que tengamos alguna duda, es útil resaltar que cuenta con un foro de usuario bastante ágil y eficiente. En definitiva, la herramienta capacita a todos para crear, compartir y reutilizar contenido interactivo con facilidad.

 

Pixabay by geralt

 

Menú de degustación para el aprendizaje del álgebra. 11 recursos interactivos elaborados con H5P

Asociación de conceptos
 
Sopa de letras
 
Rellenar huecos. Procedimiento de resolución de ecuaciones de primer grado
 
Quiz. Autoevaluación
 
Razonamiento algebraico. Lenguaje algebraico respuesta abierta, libre.
 
6 Test de resolución de ecuaciones de primer grado. Cada uno contiene 10 actividades aleatorias con 6 posibles respuestas.

Test de ecuaciones nivel I

 

Test de ecuaciones nivel II

 

Test de ecuaciones nivel III

 

Test de ecuaciones nivel I (con fracciones)

 

Test de ecuaciones nivel II (con fracciones)

 

Test de ecuaciones nivel III (con fracciones)

 

Más contenido matemático en redes sociales

Comparte MatemáTICas: 1,1,2,3,5,8,13,...

Lista de Apps y calculadoras avanzadas para resolver ejercicios de matemáticas. Repensando las tareas de matemáticas en tiempos del coronavirus

Comparte MatemáTICas: 1,1,2,3,5,8,13,...

Reflexión. Repensando las tareas de matemáticas en tiempos del coronavirus

La tecnología está democratizando el acceso a las matemáticas de toda la ciudadanía. En los últimos años han proliferado herramientas y calculadoras avanzadas disponibles en formato App en nuestros dispositivos móviles que, con una simple foto a un libro de texto, a una hoja de ejercicios de clase o introduciendo manualmente con nuestros dedos la ecuación, nos ofrecen la solución y el paso a paso detallado.

Como todo, estas herramientas presentan ventajas e inconvenientes. Entre sus ventajas, la posibilidad de analizar distintas maneras de resolver ejercicios y problemas. Inconvenientes, ya podemos suponerlos, y muchos docentes de matemáticas han podido experimentarlos de primera mano al corregir las actividades de sus alumnos. Entregarse en cuerpo y alma a ellas, sin obtener ningún tipo de aprendizaje, tan solo para obtener la solución, copiar la resolución paso a paso y cumplir el trámite de entregar los ejercicios de clase, puede traer consecuencias devastadoras.

Teniendo presente que han venido para quedarse, si los docentes despreciamos/obviamos su existencia y su potencial puede traer consecuencias importantes para los procesos de Enseñanza-Aprendizaje en las clases de Matemáticas.

En un escenario de pandemia como el que estamos atravesando, con escenarios de aprendizaje remotos a distancia o semi-presencial, donde no vemos trabajar al alumnado delante de nosotros, nos lleva a ‘repensar’, con carácter de urgencia, las tareas de matemáticas, enfocándolas hacia entornos de investigación y resolución de problemas y tareas auténticas. Reducir únicamente las tareas de matemáticas que proponemos a nuestros alumnos a hojas de ejercicios descontextualizadas, ejercicios del pie de página del libro de texto (actividades de aplicación) o problemas-tipo simples, puede llevar a que nuestros aprendices recurran con demasiada frecuencia a este tipo de herramientas, y no la usen únicamente para comprobar la solución o para aprender conjeturando a partir de algunos ejemplos resueltos, cayendo en una dependencia casi total de las mismas.

Es por ello por lo que comparto una colección de ellas, y una posible tarea de uso de este tipo de herramientas, promoviendo el enfoque crítico-reflexivo de los alumnos, más allá de la resolución mecánica de un sistema de ecuaciones lineales.

Como docente de matemáticas reflexioné bastante sobre el tema de esta entrada en los últimos años, especialmente durante el periodo de confinamiento que vivimos en España durante el tercer trimestre del curso pasado, donde tuve que poner el foco en tareas abiertas, creativas y reflexivas para obtener evidencias reales y significativas de aprendizaje de mis alumnos. La lectura de este post de 3nions.com, me animó definitivamente a compartirlo con vosotros.

Me gustaría conocer tu opinión al respecto. Puedes compartirla conmigo como comentario a esta entrada, justo más abajo, o en Twitter en @luismiglesias  

¡Suerte en el nuevo curso!

 

Propuesta de Tarea. con ayuda de Microsoft Math Solver

Analizar la resolución del siguiente sistema de ecuaciones.

¿Qué observas? ¿Es correcta la solución? ¿Cómo lo resolverías tú? ¿Por qué?

Lista de herramientas (Apps y calculadoras avanzadas)

1. Photomath

2. Microsoft Math Solver

3. Calculadora científica HiPER

Las 15 mejores aplicaciones de Math Solver que resuelven problemas matemáticos verbales

4. Brainly

5. Math Tricks

Las 15 mejores aplicaciones de Math Solver que resuelven problemas matemáticos verbales

6. Mathway

7. Khan Academy

Las 15 mejores aplicaciones de Math Solver que resuelven problemas matemáticos verbales

8. WolframAlpha

Las 15 mejores aplicaciones de Math Solver que resuelven problemas matemáticos verbales

9. Cymath

Las 15 mejores aplicaciones de Math Solver que resuelven problemas matemáticos verbales

10. Open Omnia

Las 15 mejores aplicaciones de Math Solver que resuelven problemas matemáticos verbales

11. MalMath

Las 15 mejores aplicaciones de Math Solver que resuelven problemas matemáticos verbales

12. Meritnation

13. QANDA

Las 15 mejores aplicaciones de Math Solver que resuelven problemas matemáticos verbales

14. Math Solver

Las 15 mejores aplicaciones de Math Solver que resuelven problemas matemáticos verbales

15. Math Cafe

Las 15 mejores aplicaciones de Math Solver que resuelven problemas matemáticos verbales

 

MÁS CONTENIDO MATEMÁTICO EN REDES SOCIALES

Comparte MatemáTICas: 1,1,2,3,5,8,13,...

Manteles algebraicos. Las igualdades notables se sientan a la mesa

Comparte MatemáTICas: 1,1,2,3,5,8,13,...
(2x+4)² = 4x² + 16x + 16 = 4(x + 2)²

Compartido en Twitter por Jonathan Hall

A continuación, la versión en azulejos algebraicos

(2x+4)² = 4x² + 16x + 16 = 4(x + 2)²

compartida por Ahbil Woldejohannes de la representación de la misma igualdad notable que mostraba Jonathan en la foto del mantel.

Estos ejemplos se suman a los trabajados en clase. 

Geometría y álgebra van de la mano. «Visualizar» el álgebra nos ayuda cantidad 🙂

Seguimos… 

Comparte MatemáTICas: 1,1,2,3,5,8,13,...

Decimales y fracciones entre textos e imágenes: una experiencia de aprendizaje basada en la elaboración de cómics digitales. Comunicación en El Congreso Iberoamericano «La educación ante el nuevo entorno digital»

Comparte MatemáTICas: 1,1,2,3,5,8,13,...

El Congreso Iberoamericano «La educación ante el nuevo entorno digital» pretende ser un espacio donde cualquier docente pueda dar a conocer proyectos o experiencias relacionadas con cualquier área temática, pero con el denominador común del entorno digital en el que ya estamos inmersos. Se está desarrollando del 5 de noviembre al 15 de diciembre de 2019 en el Campus Virtual de Congresos de Formación IB.

A dicho evento online, el cual está resultando ser sumamente enriquecedor, hemos presentado la comunicación que indica el título de esta entrada, por si pudiera ser de utilidad y/o fuente de inspiración para nuevas propuestas didácticas.

Título 
Decimales y fracciones entre textos e imágenes: una experiencia de aprendizaje basada en la elaboración de cómics digitales. 

Autoría 

Resumen 
Esta investigación-acción tiene como objetivo la construcción de cómics matemáticos para facilitar el aprendizaje de fracciones y decimales. La justificación del uso del cómic radica en la motivación de los estudiantes por el uso de información visual, que al combinarla con el texto puede dar lugar a elementos de desarrollo de habilidades, creatividad y la lectura de contenido (Urbani, 1978, citado en Toh, 2009).  El soporte tecnológico se sostiene en una de las dimensiones de la competencia digital (Marqués, 2009), la dimensión del aprendizaje, expresada como transformación del contenido en adquisición del conocimiento. Además, el cómic se considera una herramienta con potencial para el aprendizaje de las matemáticas, por sus capacidades creativas y visuales (Cleaver, 2008) así como una posibilidad de mejora en la alfabetización de los estudiantes (Tilley, 2008).  

La investigación describe el proceso y resultados de una experiencia en el tercero de Enseñanza Secundaria Obligatoria, en Matemáticas orientadas a las enseñanzas académicas. El contenido a trabajar viene delimitado por el criterio de evaluación “utilizar las propiedades de los números racionales para operarlos, utilizando la forma de cálculo y notación adecuada, para resolver problemas de la vida cotidiana, y presentando los resultados con la precisión requerida” (RD. 1105/2014, p. 391).  

Los estudiantes construyen un cómic, utilizando una herramienta digital. Para el análisis de los resultados del conocimiento matemático expuesto se definen categorías que facilitan la identificación de cumplimiento de los estándares de aprendizaje. Estas categorías se construyen sustentadas en la investigación previa para el conocimiento matemático, desde la enseñanza y del aprendizaje de los números racionales. Las categorías que se utilizan son: el sentido dado a los algoritmos según su significado (que incluye la forma de utilizar los algoritmos y la resolución), la tipología del contexto que se utiliza para situar el objeto matemático, el rigor del lenguaje matemático, cómo se presentan los números (en forma decimal o fracción), y la reflexión final con los datos y resultados expuestos. 

Los resultados muestran distintos contextos que agrupamos como realistas y ficticios, donde estos últimos dan lugar a aquellos que dan sentido al objeto matemático y los que resultan forzados para introducir tanto el número como el algoritmo utilizado. Se utilizan distintos algoritmos, basados en suma y multiplicación; los cálculos implican usos como porcentaje, cálculo de las partes de un todo y equivalencia. En aquellas tareas que implican uso de algoritmos, los números base son fracciones en lugar de decimales. Encontramos tareas que finalizan de una manera reflexiva agrupando todos los datos utilizados a modo de recopilatorio para dar lugar a un ejercicio, y su solución. No aparecen demasiadas conversiones entre fracciones, y cuando lo hacen son para dar lugar a números que faciliten la interpretación de las partes de un todo. Los errores que aparecen surgen de cálculos encadenados entre fracciones, no siendo explícito si el cálculo es desde el paso anterior o desde el inicio, o cuando resultados dan lugar a números decimales y el contexto hubiese necesitado un número natural para su interpretación. 

Vídeo

 

https://congresoib.com/969joaquin-asenjo-perez/videos/video/302-decimales-y-fracciones-entre-textos-e-imagenes-una-experiencia-de-aprendizaje-basada-en-la

Esperando que os haya gustado esta investigación-acción en el campo de la Educación Matemática, queremos agradecer a Formación IB, a la UNED y a todas las personas que han apoyado y hecho posible este evento, de una u otra manera.

Comparte MatemáTICas: 1,1,2,3,5,8,13,...

Reloj interactivo Geogebra para trabajar la magnitud tiempo (actividades horarias) en Educación Primaria

Comparte MatemáTICas: 1,1,2,3,5,8,13,...

Comparto en esta entrada un recurso interactivo realizado con Geogebra que elaboré hace más de 5 años para trabajar la magnitud tiempo en el aula de Primaria.

Propuesta didáctica. ¿Cómo usar el recurso?
1. Accede al recurso: http://luismiglesias.es/geogebra/Reloj_Interactivo.html
2. Se trata un applet interactivo realizado con Geogebra que permite trabajar un amplio abanico de actividades horarias, previa configuración de los distintos ajustes de configuración que ofrece.
+ Descripción: Reloj con motivo infantil que permite trabajar actividades horarias de manera interactiva.
+ Opciones:
(·) Ayuda. Describe cómo usar el applet.
(·) Créditos. Información sobre autoría.
(·) Mostar/Ocultar manecillas. Muestra u oculta las manecillas permitiendo obtener un reloj mudo para trabajar actividades varias sobre él e incluso imprimirlo.
(·) Mostrar/Ocultar horas. Muestra u oculta los números.
(·) Reproducir/Detener. Simula el funcionamiento normal de un reloj. Basta con desplazar los puntos rojos de cada una de las manecillas para obtener distintas posiciones horarias. Configura la hora deseada y pulsar en Reproducir/Detener.
3. Ideal para el trabajo con pizarra digital interactiva, con dispositivos móviles, e incluso en papel, mediante captura de pantalla e impresión con los diferentes ajustes de configuración que proporciona el mismo.
4. Posibilidad de colocarlo como reloj proyectado (proyector/pizarra digital) en vuestra aula.
+ Acceder al recurso: http://luismiglesias.es/geogebra/Reloj_Interactivo.html.
+ Un alumno/a lo pone en hora.
+ Pulsa Reproducir.

5. Trabajar situaciones problemáticas, como por ejemplo:

Cuestiones relacionadas con la imagen de la izquierda:
1. ¿Qué hora indica el reloj?
2. ¿Cuánto tiempo falta para la 1?
3. Javi tenía cita con el dentista a las 11:45 y al mirar el reloj se ha acordado de la cita. ¿Cuánto tiempo acumula de retraso?

 

 

Otra potencialidad del recurso es el trabajo con dispositivos móviles, como se muestra a continuación:

En una sesión de tutoría con un grupo de futuros maestros, los cuales deben realizar un trabajo de diseño de sesiones de clase para trabajar los ángulos en la asignatura de Didáctica de la Matemática de 3º curso del grado de Educación Primaria, les indiqué que con la posición de las manecillas de un reloj se pueden trabajar todos los ángulos y recordé que años atrás había elaborado este reloj interactivo para trabajar la magnitud tiempo. Gracias a ellos lo he compartido en este espacio… 5 años después. Vemos como no hace falta buscar mucho para trabajar en contextos reales y cercanos al alumnado, un simple reloj, nos puede dar mucho juego; aquí tenemos dos: ángulos y tiempo.

Espero resulte de utilidad.

Acceso al reloj a pantalla completa: http://luismiglesias.es/geogebra/Reloj_Interactivo.html

Comparte MatemáTICas: 1,1,2,3,5,8,13,...

Participación en Proyecto de Investigación Educativa con la herramienta ToolboX para desarrollar el pensamiento computacional en el aula de Matemáticas #STEM

Comparte MatemáTICas: 1,1,2,3,5,8,13,...

Durante el curso pasado, la D.G. de Innovación y Formación del Profesorado de la Consejería de Educación de la Junta de Andalucía puso en marcha un Proyecto de Investigación Educativa con la Universidad de Málaga consistente en realizar la “Validación de la herramienta Toolbox”, mediante la introducción de la programación informática y el pensamiento computacional en la escuela y evaluar su impacto en los aprendizajes de los estudiantes.

Al recibir dicha invitación por parte del Servicio de Innovación Educativa, tras años de trabajo en el aula y en la formación permanente del profesorado en esta línea, no dudé en sumarme a la iniciativa, así como hacer extensiva la invitación a todos mis compañeros/as del Departamento de Matemáticas. De este modo participamos los/as 6 profesores/as del Departamento, con 120 alumnos de los cursos 2º, 3º y 4º de ESO, usando el pensamiento computacional y la herramienta de programación informática, ToolboX, como medio para resolver problemas de matemáticas, con apenas 10 ordenadores portátiles como material informático disponible para la realización de este proyecto, con el esfuerzo y el trabajo de planificación que ello conlleva pero concluyendo que el esfuerzo bien mereció la pena. 

 

El proyecto de investigación constaba de dos partes o experimentos, E1 y E2.

Experimento E1. Experimento sobre adquisición de habilidades de programación («Hora del código»)

La realización de E1 en nuestro centro contó con la participación al completo del Departamento de Matemáticas (6 profesores/as) y 120 alumnos/as de 2º, 3º (incluyendo alumnado de PMAR de ambos cursos) y 4º de ESO, en las materias de Matemáticas, Matemáticas Académicas, Matemáticas Aplicadas, Ámbito Científico-Matemático y TIC.

Comenzando por el final podemos afirmar que la valoración es muy positiva, tanto en rendimiento obtenido como en las impresiones manifestadas por los estudiantes y por nosotros los docentes, si bien es cierto que la preparación previa para poder llevar a cabo la propuesta:

  • Instalación de Guadalinex Slim en 12 ultraportátiles de Escuela TIC 2.0, únicos medios con
    los que contamos para que puedan trabajar los alumnos.
  • Reunión de preparación previa en el seno del departamento y de seguimiento periódico
    posterior.
  • Cuadrante para poder desarrollar E1, sin interferir en el trabajo en la asignatura TIC que
    hace uso de estos portátiles.

ha sido realmente exigente y compleja, aunque volviendo al comienzo de mi valoración: EL ESFUERZO MERECE LA PENA.

Quiero realizar una crítica constructiva: a los centros experimentales, como los nuestros en esta experiencia, debería llegar dotación necesaria para realizar con garantías el pilotaje, ya sea ordenadores o kits para laboratorios,… o cualquier otra experimentación, el cual ayudaría a su éxito y posterior adopción a nivel de centro.

El formato de la hora del código propuesto es muy adecuado. Las tareas han estado bien seleccionadas, la herramienta está muy depurada, es bastante robusta e intuitiva y los resultados alcanzados, en muchos casos en apenas 30 minutos, son muy esperanzadores y animan a seguir en esta línea.

Tan solo una muestra de alumnos/as del centro habían trabajado con anterioridad con programación por bloques, Scratch, Papá Noel de Google,… y no hicieron alusión comparativa a ambas en ningún momento, aunque en unas tareas determinadas, si que conectaron funcionalidades trabajadas con ambas herramientas.

Experimento E2. Experimento sobre adquisición de competencias
Durante dos sesiones llevé a cabo E2 con 17 alumnos/as, en Matemáticas Académicas de 3º de ESO.
– Poner en marcha E2 en el aula fue sencillo debido a la experiencia previa acumulada con E1.
– El módulo que usé e2s3 (Experimento 2 para 3º de ESO) estaba muy bien diseñado, con tareas que van aumentando su complejidad de manera gradual por casi todos los contenidos de Estadística, los cuales trabajamos a comienzos de curso (en nuestro centro comenzamos en 3º y 4º por Estadística
y Probabilidad). A pesar de que la notación usada era ligeramente diferente a la trabajada en clase, nosotros usamos hi (Hi) en lugar de ni (Ni), no supuso mayor problema.

Enseguida captaron la relación columna de tabla – fila/lista/array en Toolbox y el patrón de las tareas:

  • la primera correcta
  • la segunda a corregir algo
  • la tercera a escribir código aprendiendo de las anteriores.

No requirieron realizar ninguna consulta en internet sobre algún concepto o parámetro
estadístico, hicieron un buen uso del tip cuando lo requirieron, estaba muy bien colocada
la ayuda al servicio de los alumnos en los momentos clave, y además las tareas iban
andamiando (semiconstruidas) sobre las anteriores.

 

Conclusiones/propuestas/sugerencias

A diferencia de E1, en E2 sí he podido apreciar con esta pequeña muestra una correlación
fuerte y positiva entre los rendimientos escolares (calificación en Matemáticas) y el ritmo y
la corrección con el que realizaban los distintos retos computacionales de e2s3, aunque
considero que es muy poco tiempo y pocos alumnos para extraer conclusiones acerca de
los aprendizajes.

– En la línea apuntada anteriormente, algún alumno llegó a visibilizar completamente el proceso afirmando «si yo preparo bien un programa en Toolbox, puede hacer las tareas por mí».

– Ha faltado una prueba escrita manual para ver el incremental del aprendizaje alcanzado tras introducir esta batería de tareas con Toolbox.

– También me gustaría probar Toolbox en distintos escenarios:

  1. Que los alumnos realicen tareas con ordenador de manera combinada conforme avanza la asignatura. (Tareas de Estadística con Toolbox, mientras se trabaja el bloque de Estadística en la asignatura).
    2. Desde el punto de vista del docente, como apoyo al proceso de enseñanza, usándolo con PDI/proyector.
    3. Combinando partes escritas con partes con ordenador en tareas/exámenes.

(Escrito a final del curso pasado – junio 2018) El curso próximo esperamos contar con medios informáticos suficientes, más allá de los 12 ultraportátiles de la Escuela TIC 2.0, año 2011, con los que contamos actualmente, para poder ofertar y desarrollar las materias TIC y la optativa que hemos diseñado desde el Departamento, «Matemáticas con ordenador». Tras los resultados obtenidos consideramos que Toolbox se ha ganado ser miembro de pleno derecho del conjunto de herramientas a usar en esa asignatura.

Agradecimiento a todos los coordinadores del pilotaje en los distintos centros por compartir vuestras experiencias a pie de aula; he aprendido mucho de ellas, al equipo UMA por la idea y el desarrollo de tan potente, robusta y versátil herramienta y a la D.G. de Innovación por apostar por ella y por confiar en nosotros para este pilotaje.

Ejemplo de tarea ToolboX

Acerca de ToolboX

La herramienta informática ToolboX (desarrollada en la Universidad de Málaga, en proyecto comandado por Francisco J. Vico, Catedrático en Ciencias de la Computación e IA de la ETS Ingeniería Informática – Universidad de Málaga) disponible en Guadalinex, tiene un amplio potencial como recurso educativo para enseñar a programar y adquirir competencias en la enseñanza preuniversitaria. Cabe destacar su carácter abierto, gratuito, la flexibilidad para que el docente adapte o incorpore nuevos contenidos, en función de sus necesidades y la facilidad de uso tanto en el aula como en el hogar por parte de los estudiantes.

En definitiva, un excelente recurso para ver como la programación ayuda a adquirir competencias, a través del trabajo con diferentes problegramas (problemas + programas), que seguiré utilizando con mis alumnos en el aula y a la cual invito a uniros.
ToolboX en nuestra clase.
Algunas imágenes tomadas durante las sesiones de trabajo con Toolbox en el aula realizando E1 y E2.

Más información
Web de ToolboX

 

Nota: Esta entrada la tenía pendiente desde final del curso pasado, junio’18, y por un motivo u otro la he ido postergando. Mi reciente paso por el I Congreso Iberoamericano de Docentes me ha animado a escribir. Creo que puede ser de utilidad para muchos otros docentes del contexto iberoamericano que quieran introducir el pensamiento computacional en sus aulas y, de manera especial, para los docentes de los más de 500 centros andaluces que han iniciado su andadura durante el presente curso en el programa PRODIG.

Comparte MatemáTICas: 1,1,2,3,5,8,13,...

STEM en el aula de Matemáticas. Tutorial de modelado e impresión 3D con Geogebra

Comparte MatemáTICas: 1,1,2,3,5,8,13,...

 

Geogebra, software libre polivalente, herramienta archiconocida por toda la comunidad matemática y científica, sigue creciendo y evolucionando a pasos agigantados en el campo de la geometría tridimensional.

Con la ayuda de Geogebra podemos modelar cualquier objeto, darle color y colocarlo en cualquier entorno. Además, con la App de Realidad Aumentada (disponible de momento únicamente para iOS, podemos ver las creaciones en 3D desde nuestra dispositivo móvil (tablet/smartphone) y enseñarselos a todo el mundo utilizando la realidad aumentada.

No cabe duda de que es una herramienta extraordinaria para implementar el enfoque STEM en el aula de Matemáticas. Por si fuera poco, podremos materializar nuestras creaciones, con la ayuda de una impresora 3D.

En esta entrada, comparto un extraordinario tutorial, el cual he conocido a través del Prof. Tomás Recio, elaborado por Diego Lieban y Cecilia Russo.

Con la ayuda de este excelente tutorial podemos dar nuestros primeros pasos en el campo de la impresión 3D con Geogebra, de una manera sencilla y disfrutar y reutilizar diferentes modelos elaborados, listos para imprimir.

 

Acceso al tutorial elaborado por Diego Lieban y Cecilia Russo

Comparte MatemáTICas: 1,1,2,3,5,8,13,...

Artículo en Revista Epsilon 97 – Demostraciones del Teorema de Pitágoras con goma EVA. STEAM en el aula de Matemáticas

Comparte MatemáTICas: 1,1,2,3,5,8,13,...

Acaba de publicarse oficialmente el número 97 de la revista Epsilon, veterana revista editada por la Sociedad Andaluza de Educación Matemática «Thales».

En esta entrada comparto un artículo que se incluye en dicho número:

Demostraciones del Teorema de Pitágoras con goma EVA. STEAM en el aula de Matemáticas

el cual os invito y animo a leer, referente a una gratificante y enriquecedora experimentación didáctica de aula en torno a la realización por parte de estudiantes de 2º de ESO de distintas construcciones, con goma EVA, para elaborar otras tantas demostraciones distintas del Teorema de Pitágoras, a partir de demostraciones sin palabras del mismo construidas con Geogebra. Experiencia STEAM = STEM + A, con un enfoque activo y competencial desarrollado en el aula de matemáticas.

Espero que el artículo os guste y os resulte enriquecedor para vuestro día a día en las aulas.

Demostraciones del Teorema de Pitágoras con goma EVA. STEAM en el aula de Matemáticas

Asimismo recomiendo la lectura del resto de artículos, los cuales enlazo a continuación y, a los que se puede acceder completamente en abierto desde la web de la revista: http://thales.cica.es/epsilon

Comparte MatemáTICas: 1,1,2,3,5,8,13,...

Applet interactivo Geogebra, vídeo y canvas para la resolución gráfica (paso a paso) de sistemas de ecuaciones lineales

Comparte MatemáTICas: 1,1,2,3,5,8,13,...

Comparto en esta entrada documento de utilidad he elaborado y usado esta misma mañana en clase, con una buena acogida por parte de mis aprendices de 2º de ESO. Visto el grado de aceptación de la misma, he decidido compartirla en el blog para su uso tanto en el aula como fuera de ella.

Dicho documento contiene:

  • Un modelo esquematizado, tipo canvas, que describe paso a paso el método gráfico de resolución de un sistema de dos ecuaciones lineales con dos incógnitas (pulsar para descargar fichero PDF). Este documento es idóneo tanto para proyección y uso en Pizarra Digital Interactiva, como para su impresión y que el alumnado practique el proceso usando esta plantilla guiada, lo que le facilitará su asimilación para resolver otros sistemas de ecuaciones a futuro.

Canvas-Resolucion-Sist2EcuLin-Metodo-Gráfico

  • Enlace a un applet interactivo realizado con Geogebra donde el alumnado puede introducir el sistema y comprobar si ha realizado correctamente la actividad, potenciando de este modo el aprendizaje autónomo de nuestro alumnado, así como dar la vuelta a la clase (#FlippedClassroom), sacando la rutina fuera de ella y ganando tiempo para abordar la resolución de problemas y tareas competenciales más enriquecedoras en clase.

Canvas-Resolucion-Sist2EcuLin-Metodo-Gráfico

Está compartido con licencia Creative Commons CC-BY-NC-SA para que puedas usarlo y distribuirlo libremente, con la única condición de citar la fuente original.

Espero sea de utilidad. ¡Ya me contarás qué te parece!

Más contenido matemático en redes sociales

Comparte MatemáTICas: 1,1,2,3,5,8,13,...

Tarea STEM. Modelización matemática con Geogebra: Embaldosado geométrico

Comparte MatemáTICas: 1,1,2,3,5,8,13,...

Comparto vídeo y applet interactivo realizado con Geogebra que nos permitirá visualizar la resolución de esta tarea, paso a paso.

Tarea STEM. Modelización matemática con Geogebra: Embaldosado geométrico
Cálculo del coste del material necesario para realizar el embaldosado de una edificación combinando distintos tipos de baldosas geométricas (octogonales, triangulares, cuadradas,…) y colores.

 

Comparte MatemáTICas: 1,1,2,3,5,8,13,...
WP2Social Auto Publish Powered By : XYZScripts.com