Geometría

Panel de flores · Día de la madre (2021) elaborado con p5.js

En esta entrada comparto panel de flores para celebrar con todas las mamás el #DiadelaMadre.

Se trata de un gráfico con fondo aleatorio y flores de distinto tamaño y color en cada ejecución (pulsar F5 para actualizar) elaborado con p5.js.

Ya me contarás qué te parece 😉

Gif animado

Panel de flores en la web de p5.js

«Panel de flores · Día de la madre» by Luis M. Iglesias bajo licencia CC BY SA

 

Más contenido matemático en redes sociales

Colaboración con el Observatorio de Tecnología Educativa del INTEF. Graspable Math: una nueva manera de explorar y hacer matemáticas

El pase de diapositivas requiere JavaScript.

En esta entrada tengo el gusto de compartir artículo elaborado para el Observatorio de Tecnología Educativa del INTEF, un espacio de referencia en torno a la innovación digital en el aula.

Está dedicado a Graspable Math, una herramienta joven, aún poco extendida en España y en el contexto iberoamericano, con mucha potencialidad didáctica para el aula de matemáticas y con la que he trabajado de manera intensiva el último año.

 

ARTÍCULO EN EL OBSERVATORIO

Se trata de  “Graspable Math: una nueva manera de explorar y hacer matemáticas”. Está escrito por Luis Miguel Iglesias Albarrán, profesor de enseñanza secundaria en la especialidad de Matemáticas y Director del IES San Antonio en Bollullos Par del Condado (Huelva).

Graspable Math es una herramienta digital interactiva innovadora que permite una nueva manera de explorar y comprender, mediante la interacción (tocando y arrastrando números y símbolos), las relaciones matemáticas. Forma parte de un proyecto de investigación financiado por el Institute of Education Sciences (IES) dependiente del U.S. Department of Education.

Es una herramienta permite “aprender haciendo” (learning by doing) matemáticas, favoreciendo el aprendizaje autónomo de los estudiantes y permitiéndoles poner el foco en las estructuras matemáticas. El diseño de la herramienta ayuda a salvar el obstáculo de la notación formal, haciendo posible que el alumnado se centre en cómo funcionan. Les brinda, en este sentido, oportunidades para razonar y deducir de manera flexible sobre las tareas matemáticas.

Con Graspable Math se nos presenta, en definitiva, una nueva manera de explorar, enseñar y de hacer matemáticas.

Si quieres saber más sobre Grapable Math, puedes leer el artículo elaborado por Luis Miguel Iglesias Albarrán en el que, además, hace una valoración personal y ofrece recomendaciones para el empleo de esta herramienta.

Acceso al artículo “Graspable Math: una nueva manera de explorar y hacer matemáticas” en formatos PDF y web

 

Dejo a continuación más material por si quieres iniciarte en el uso de esta versátil herramienta.

PUBLICACIONES SOBRE GRASPABLE MATH

En este espacio he realizado distintas publicaciones al respecto:

 

LISTA DE VÍDEOS SOBRE GRASPABLE MATH

Comparto también lista con más de una treintena de vídeos sobre diferentes usos didácticos de esta herramienta.

 

Lista de vídeos en Youtube sobre Graspable Math (33 vídeos)

Te animo a usarla con tu alumnado, a compartirla con tus contactos y compañeros a través de la red y quedo a tu disposición para cualquier duda o comentario al respecto, en forma de comentario bajo esta entrada o en mis perfiles en redes sociales.

¡Ya me contarás cómo te ha ido con tus alumnos en clase! 🙂

MÁS CONTENDO MATEMÁTICO EN REDES SOCIALES

Vídeo: Pi (π), la ridícula forma en la que se calculaba Pi… hasta que… llegó Isaac Newton

Lo que tienen las vacaciones de Semana Santa, máxime estas tan atípicas con motivo de la COVID. Tiempo para disfrutar en familia, leer, ver, escuchar, observar… y publicar.

Hace tiempo que un vídeo no me resultaba tan didáctico como este. De ahí que haya decidido compartirlo en esta entrada para contribuir a su difusión. Me encanta la manera tan didáctica que tienen de explicar la historia de la matemática, máxime sobre un concepto tan relevante como Pi. Desde ya, tengo claro que formará parte de mi propuesta didáctica para el aula: Porque Pi es mucho más que 3.1416. Aprendizaje de conceptos por investigación.

Espero que lo disfrutéis tanto como yo.

Vídeo: π ✔️ La ridícula forma en la que se calculaba Pi… hasta que… llegó Isaac Newton 💫

Durante miles de años, los matemáticos calcularon Pi de forma obvia pero numéricamente ineficiente. Entonces llegó Newton y cambió el juego.

Este descubrimiento transformó la manera en que calculamos para siempre. Para muchos científicos Isaac Newton ha sido el más grande científico de todos los tiempos. Una de sus más grandes contribuciones fue expresar el comportamiento físico de la naturaleza en forma de leyes naturales, demostrando que las que gobiernan el movimiento en la Tierra y las que gobiernan el movimiento de los cuerpos celestes son las mismas. Destacan sus trabajos sobre la naturaleza de la luz y la óptica y el desarrollo del cálculo matemático. Desarrollo la ley de convección térmica, sus estudios sobre la velocidad del sonido en el aire; y su propuesta de una teoría sobre el origen de las estrellas. Fue también un pionero de la mecánica de fluidos, estableciendo una ley sobre la viscosidad. El gran mérito de Newton fue tomar los conocimientos de Galileo y Kepler y a partir de sus discusiones con Hyugens, Leibniz, Halley sobre todo, Robert Hooke y formular leyes que explican tanto el movimiento de los astros como el de los movimientos de cualquier otro objeto y de paso la mecánica de las máquinas.

Arndt, J., & Haenel, C. (2001). Pi-unleashed. Springer Science & Business Media – https://ve42.co/Arndt2001

Dunham, W. (1990). Journey through genius: The great theorems of mathematics. Wiley – https://ve42.co/Dunham1990

Borwein, J. M. (2014). La vida de π: De Arquímedes a ENIAC y más allá. En De Alejandría, a través de Bagdad (pp. 531-561). Springer, Berlín, Heidelberg – https://ve42.co/Borwein2012

Un agradecimiento especial a Alex Kontorovich, Profesor de Matemáticas de la Universidad de Rutgers, y Profesor Visitante Distinguido para la Difusión Pública de las Matemáticas Museo Nacional de Matemáticas MoMath por formar parte de este vídeo del Día de Pi.

Más contenido matemático en redes sociales

Animación interactiva: medidas y escalas. ¡Qué grandes/pequeños somos!

Animación interactiva, compartida en Twitter por @ZonePhysics basada en Google Earth/Maps, sobre medidas y escalas. 

https://twitter.com/i/status/1082245445475356677

STEM en el aula de Matemáticas. Tutorial de modelado e impresión 3D con Geogebra

 

Geogebra, software libre polivalente, herramienta archiconocida por toda la comunidad matemática y científica, sigue creciendo y evolucionando a pasos agigantados en el campo de la geometría tridimensional.

Con la ayuda de Geogebra podemos modelar cualquier objeto, darle color y colocarlo en cualquier entorno. Además, con la App de Realidad Aumentada (disponible de momento únicamente para iOS, podemos ver las creaciones en 3D desde nuestra dispositivo móvil (tablet/smartphone) y enseñarselos a todo el mundo utilizando la realidad aumentada.

No cabe duda de que es una herramienta extraordinaria para implementar el enfoque STEM en el aula de Matemáticas. Por si fuera poco, podremos materializar nuestras creaciones, con la ayuda de una impresora 3D.

En esta entrada, comparto un extraordinario tutorial, el cual he conocido a través del Prof. Tomás Recio, elaborado por Diego Lieban y Cecilia Russo.

Con la ayuda de este excelente tutorial podemos dar nuestros primeros pasos en el campo de la impresión 3D con Geogebra, de una manera sencilla y disfrutar y reutilizar diferentes modelos elaborados, listos para imprimir.

 

Acceso al tutorial elaborado por Diego Lieban y Cecilia Russo

Una de vectores: ¿»dirección» prohibida o «sentido» prohibido? #Matemáticas

A veces, cuando nos expresamos en el lenguaje coloquial, solemos relajarnos y perder el rigor a la hora de hablar, incluso, en ocasiones, podemos generar confusiones y conflictos innecesarios. Estas confusiones suelen aparecer, por ejemplo, cuando nos referimos a los términos: dirección y sentido.

Habitualmente, solemos decir que vamos en «dirección contraria o dirección prohibida», cuando vemos la siguiente señal de tráfico:

Fuente: Pixabay

Sentido prohibido

Esta afirmación es incorrecta, esa señal indica «sentido prohibido» no «dirección prohibida». Indica que no se puede continuar hacia adelante, en el sentido de la marcha que llevamos.

No podemos decir que vamos en «dirección contraria» porque simplemente no existen direcciones contrarias. Hay múltiples, infinitas, direcciones. Podemos llevar la misma dirección que otro vehículo, persona, calle o se puede llevar una dirección distinta pero no podemos llevar nunca una dirección contraria a otra. Dos calles paralelas tienen la misma dirección, es decir, la dirección es la recta sobre la que están. Cuando en esa línea colocamos una flecha, entonces estamos definiendo el sentido.

Así, mientras hay infinitas direcciones posibles, sentidos sólo puede haber dos, así que sí se puede hablar de sentido contrario. Por ejemplo, en la siguiente situación:

Dos vehículos que circulan por la autovía del V Centenario (A-49), de Huelva a Sevilla y de Huelva a Sevilla, respectivamente, circulan en la misma dirección pero en sentidos contrarios.

Fuente: Recursos Thales Cica

Toma nota de este detalle, verás como deberás corregir a más de uno/a y a más de dos.

Fuente: Vectores fijos en el plano – E. Negrón

¡Hablemos con propiedad, gracias a las Mates! 😉 #felizverano

Artículo en Revista Epsilon 97 – Demostraciones del Teorema de Pitágoras con goma EVA. STEAM en el aula de Matemáticas

Acaba de publicarse oficialmente el número 97 de la revista Epsilon, veterana revista editada por la Sociedad Andaluza de Educación Matemática «Thales».

En esta entrada comparto un artículo que se incluye en dicho número:

Demostraciones del Teorema de Pitágoras con goma EVA. STEAM en el aula de Matemáticas

el cual os invito y animo a leer, referente a una gratificante y enriquecedora experimentación didáctica de aula en torno a la realización por parte de estudiantes de 2º de ESO de distintas construcciones, con goma EVA, para elaborar otras tantas demostraciones distintas del Teorema de Pitágoras, a partir de demostraciones sin palabras del mismo construidas con Geogebra. Experiencia STEAM = STEM + A, con un enfoque activo y competencial desarrollado en el aula de matemáticas.

Espero que el artículo os guste y os resulte enriquecedor para vuestro día a día en las aulas.

Demostraciones del Teorema de Pitágoras con goma EVA. STEAM en el aula de Matemáticas

Asimismo recomiendo la lectura del resto de artículos, los cuales enlazo a continuación y, a los que se puede acceder completamente en abierto desde la web de la revista: http://thales.cica.es/epsilon

17/6/17 Teselado, mosaicos, matemáticas, arte, geometría… #worldtessellationday

Imagen de Eider Antxustegi-Etxarte

A disfrutar…

¡¡ Feliz domingo #worldtessellationday !!

Demostrando el teorema de Pitágoras… con piezas de LEGO

Comparto en esta entrada una divertida y didáctica animación, la cual nos ofrece una demostración sin palabras del popularmente conocido Teorema de Pitágoras.

Espero que te diviertas aprendiendo.

¿Te animas a realizar, grabar y compartir tu propia demostración con otras medidas para los catetos y la hipotenusa (ternas pitagóricas) :-)?

miniTAREA. Cubos y cuadrados, parientes cercanos.

Observa con atención el siguiente vídeo, de apenas 13 segundos de duración, en el cual aparecen una serie de cubos y su descomposición.

El enunciado de la miniTAREA es el siguiente:

Imagen de @CambridgeMaths

Encuentra una expresión algebraica general, que relacione cubos y cuadrados, que explique la relación obtenida para el caso particular mostrado en el vídeo.

Esta entrada participa en la Edición 8.4 “Matemáticas de todos y para todos” del Carnaval de Matemáticas cuyo anfitrión es, en esta ocasión, matematicascercanas

WP2Social Auto Publish Powered By : XYZScripts.com
A %d blogueros les gusta esto: