Competencia Digital Docente (CDD)

Participación en «Learning, Training & Teaching Activity (LTTA) FAIaS Braga · Fomentando la Inteligencia Artificial en las Escuelas»

Comparte MatemáTICas: 1,1,2,3,5,8,13,...

Inteligencia Artificial en Educación. LTTA FAIaS Braga

La pasada semana tuvo lugar, en la antigua y monumental ciudad de Braga (Portugal), un importante evento educativo para introducir la Inteligencia Artificial (IA) en la escuela, desde una visión interdisciplinar e inclusiva.
Si hace relativamente poco celebrábamos la introducción de competencias específicas y saberes básicos relacionados con el pensamiento computacional en Matemáticas y en otras materias en los Reales Decretos de Enseñanzas Mínimas de nueva ley educativa española,  LOMLOE (recomiendo lectura de este interesante análisis de Programamos), me encantaría poder ver reflejado en un futuro no muy lejano pasos en la misma dirección respecto a la IA.

Según la UNESCO, la inteligencia artificial (IA) tiene la capacidad de hacer frente a algunos de los mayores desafíos que afronta, hoy en día, el ámbito de la educación, de desarrollar prácticas de enseñanza y aprendizaje innovadoras y, finalmente, de acelerar el progreso en la consecución del ODS 4. No obstante, estos avances tecnológicos rápidos implican inevitablemente numerosos riesgos y retos, que los debates sobre las políticas y los marcos reglamentarios tienen aún dificultades para poder superarlos.
El vínculo entre la IA y la educación comprende tres ámbitos:
  • aprender con la IA, utilizando las herramientas de IA en las aulas
  • aprender sobre la IA, sus tecnologías y sus técnicas), y,
  • prepararse para la IA, permitiendo que todos los ciudadanos comprendan la repercusión potencial de la IA en nuestras vidas
Estos vínculos establecidos por la UNESCO se ponen de manifiesto y son concretados a través de la puesta en marcha de proyectos específicos.
Uno de los proyectos pioneros y más relevantes en el panorama educativo español y europeo es «Fostering Artificial Intelligence at School« (FAIaS) un proyecto Erasmus+ (2020-1-ES01-KA201-083047) financiado por la Comisión Europea durante el período comprendido entre el 01/09/2020 y el 31/08/2023 y con las siguientes instituciones como socios participantes:
  • Universidad Rey Juan Carlos (Spain), co-ordinator
  • Vrije Universiteit Brussel (Belgium)
  • CollectiveUp (Belgium)
  • Theatro Circo de Braga (Portugal)

Desde el 31 de mayo al 3 de junio de 2022, los investigadores invitados hemos participado en conferencias, actividades y talleres relacionados con el uso de la Inteligencia Artificial en las escuelas.

Durante estas intensas, interesantes y enriquecedoras jornadas de trabajo, aprovecho estas líneas para agradecer la invitación recibida desde la coordinación del proyecto,  he tenido la oportunidad de:

  • aprender, conocer y compartir con colegas de España, Portugal, Bélgica, Luxemburgo, Grecia y Colombia, interesantes experiencias sobre el uso de la IA en Educación
  • reflexionar sobre los modos de introducir la IA en las escuelas,
  • debatir sobre sus implicaciones éticas
  • analizar las necesidades formativas previas de los docentes, e,
  • iniciar el diseño de planes de clase para ayudar y acompañar en los momentos iniciales a los docentes en la introducción de esta tendencia emergente en educación

El proyecto «Fostering Artificial Intelligence at School« (FAIaS)

Se cree que la inteligencia artificial (IA) es un factor clave de la cuarta revolución industrial que transformará la economía y reinventará la naturaleza de nuestro trabajo. Estaremos cada vez más apoyados e interactuaremos con tecnología impulsada por Inteligencia Artificial. Esto exige una educación que nos prepare para este futuro.
FAIaS tiene la intención de perfeccionar las habilidades, tanto cognitivas como blandas, necesarias para comprender, construir o interactuar con la Inteligencia Artificial. Por lo tanto, consideramos la IA, no en el sentido estricto y puramente tecnológico, sino en el sentido amplio, ya que afecta muchas partes diferentes de nuestras vidas. Por lo tanto, optamos decididamente por un enfoque interdisciplinario e inclusivo que se centre no solo en las actividades STEM, sino que involucre todas las materias escolares y cubra una amplia gama de aspectos, incluidos los éticos, filosóficos, económicos, legales e históricos. Creemos que abordar un tema desde diferentes perspectivas profundiza la comprensión y crea cohesión entre los alumnos en un campo intrínsecamente interdisciplinario como la Inteligencia Artificial.
OBJETIVOS
El objetivo final de FAIaS es mejorar el conocimiento de la inteligencia artificial en niños y jóvenes. Desglosamos esta meta en los siguientes objetivos de alto nivel:
  • Mejorar la comprensión de los estudiantes de secundaria sobre las tecnologías de IA y su impacto.
  • Proporcionar a los docentes de todas las materias herramientas y pautas en línea y fuera de línea que puedan integrarse fácilmente en sus cursos.
  • Mejorar los conocimientos de las minorías y grupos desfavorecidos de la sociedad en concreto, a través de la educación no formal.
  • Crear una herramienta interactiva en línea para que los alumnos y los profesores experimenten con la IA

SITIO WEB DEL PROYECTO
Toda la información sobre el proyecto, eventos y resultados están accesibles en el sitio web http://fosteringai.net
Recomiento seguir las diferentes publicaciones y evolución del proyecto.

ALGUNAS FOTOS

El pase de diapositivas requiere JavaScript.

Más contenido matemático en redes sociales

Comparte MatemáTICas: 1,1,2,3,5,8,13,...

MatemáTICas: 1,1,2,3,5,8,13… cumple 13 años en la red

Comparte MatemáTICas: 1,1,2,3,5,8,13,...

Hoy es un día especial para quien escribe ya que, tal día como hoy, hace 13 años (14 de marzo de 2009), en el hueco que gentilmente me cedieron los compañeros de Profeblog, escribía los primeros renglones de mi libro virtual matemático; MatemáTICas: 1,1,2,3,5,8,13,…  

Pastel de cumpleaños con vela rosa número 13 en backgraund azul prendido fuego por encendedor. vista de primer plano | Foto Premium

Fuente: Freepik

Lo bauticé con este nombre, en honor a una de las sucesiones más conocidas de la matemática, la sucesión de Fibonacci

File:Fibonacci sequence - starting with zero.jpg

File:Fibonacci blocks.svg

Fuente: Wikimedia commons

Llegó a este mundo cuando ya incluso anunciaban la muerte de los blogs. Ya veis que no hice mucho caso a tales rumores :-). Lo tenía claro. Necesitaba un espacio que complementara mis clases, un rincón que apostase de manera clara por la inclusión de la tecnología en la práctica educativa, en mis clases de matemáticas. Un lugar en la red donde centralizar los materiales didácticos que fuese elaborando para mis alumnos. Ese sitio, ese lugar, ese espacio debía de ser un blog, este blog.

Y claro, no podía ser de otra forma. Su fecha de lanzamiento, el día de Pi #díadePi o #Piday, por aquello del inglés, 3/14 (14 de marzo). Mi primer post, un modesto y tímido, Bienvenid@ . La 40ª Conferencia General de la UNESCO proclamó el 14 de marzo de cada año como el Día Internacional de las Matemáticas en noviembre de 2019 (40C/Resolución 30).

Por este motivo, hoy, la comunidad matemática mundial también está de celebración, aunque no podamos hacerlo como quisiéramos y nos gustaría. El mundo y especialmente Europa está viviendo días negros por la invasión de Ucrania a manos de Rusia. Si no tuvimos bastante con la COVID-19, la tragedia humanitaria causada por esta violación de las fronteras de un país y de los derechos humanos nos tiene bastante apenados y sonrojados, al ver día tras día a través de los medios de comunicación la barbarie que la especie humana pude llegar a cometer. Desde estas líneas, todo mi apoyo y fuerza al pueblo ucraniano.

Mucho ha llovido desde aquel 14/03/2009. El termino competencia digital había realizado su incursión junto al resto de Competencia Básicas de la LOE (Ley Orgánica de Educación, 2006). Los docentes que usábamos los blogs como medio para ampliar nuestra aula física, lo que hoy sería un entorno blended-learning, lo hacíamos a voluntad propia y éramos considerado una especie un tanto singular. Recuerdo aquella mesa de debate en el primer EABE (Encuentro Andaluz de Blogs Educativos) donde en la mesa de trabajo simultánea ya hablamos del reconocimiento de la competencia digital. ¡Qué cosas se nos ocurrían! 😉

13 años más tarde, dos nuevas leyes educativas LOMCE (2013) y LOMLOE (2020), celebro que Europa y España lo tengan claro, y con un buen marco de la Competencia Digital Docente elaborado por INTEF con colaboración de las comunidades, habrá un proceso certificador y acreditador de la competencia a través de actividades formativas alineadas con dicho marco, que se desencadenará en nuestro país en próximas fechas. La Educación de hoy día no se concibe sin Tecnología, y en Matemáticas son imprescindibles para Enseñar y para Aprender.

Iglesias-Albarrán, Luis M. Enseñanza y aprendizaje de las matemáticas en la era digital. Ambientes de aprendizaje mediados por TIC,SCOPEO MONOGRÁFICO Nº4: e-MatemáTICas,,4,41-80,2012,Universidad de Salamanca. Servicio de Innovación y Producción Digital

 

Desde aquel día, reconocimiento del ITE, ahora INTEF, como Buena Práctica 2.0 por la inclusión de las TIC en la práctica educativa,  muchas vivencias, reconocimientos en certámenes y otras muy buenas experiencias profesionales a través de las cuales he conocido, compartido y descubierto grandes compañeros/as de viaje, más de 500 entradas publicadas, multitud de materiales de elaboración propia o recopilados, material de conferencias, jornadas de trabajo en las que he participado, artículos publicados en revistas o reseñas de colaboraciones en libros, más de 6 millones de visitas,… hacen que hoy deba daros las GRACIAS, y confirmar que seguiré viniendo por aquí mientras tenga fuerzas, a compartir cada vez que tenga o sea capaz de encontrar la manera de hacer un hueco para escribir y publicar sobre Matemáticas (con Tecnología): MatemáTICas.

Para terminar os dejo con tres vídeos sobre Pi y dos poemas. Espero que os guste.

Vídeo: ¿Para qué sirve el número Pi? BBC Mundo

 

Vídeo: El número Pi Canal encuentro Adrián Paenza

Vídeo: Spock («Star Trek») desactiva una computadora malvada pidiéndole que calcule el último dígito de Pi :-). Fuente: Mathigon

 

Poema: El número Pi (Wislawa Szymborska, Premio Nobel de Literatura 1996). Fuente: Yosoytuprofe

El admirable número Pi
tres coma uno cuatro uno.
Las cifras que siguen son también preliminares
cinco nueve dos porque jamás acaba.
No puede abarcarlo seis cinco tres cinco la mirada,
ocho nueve ni el cálculo
siete nueve ni la imaginación,
ni siquiera tres dos tres ocho un chiste, es decir, una comparación
cuatro seis con cualquier otra cosa
dos seis cuatro tres de este mundo.

La serpiente más larga de la tierra suma equis metros y se acaba.
Y lo mismo las serpientes míticas aunque tardan más.
El séquito de dígitos del número Pi
llega al final de la página y no se detiene,
sigue, recorre la mesa, el aire,
una pared, una hoja, un nido de pájaros, las nubes, hasta llegar
directo al cielo,
perderse en la insondable hinchazón del cielo.
¡Qué breve la cola de un cometa, cual la de un ratón!
¡Qué endeble el rayo de un astro si se curva en la insignificancia
del espacio!

Mientras aquí dos tres quince trescientos diecinueve
mi número de teléfono la talla de tu camisa
el año mil novecientos sesenta y tres sexto piso
el número de habitantes sesenta y cinco céntimos
dos pulgadas de cintura una charada y un mensaje cifrado
que dice vuela mi ruiseñor y canta
y también se ruega guardar silencio,
y se extinguirán cielo y tierra,
pero el número Pi no, jamás,
seguirá su camino con su nada despreciable cinco
con su en absoluto vulgar ocho
con su ni por asomo postrero siete,
empujando, ¡ay!, empujando a durar
a la perezosa eternidad.

Poema: El número  π (A Pilar Bayer y A F Walter May). Fuente: Repoelas


3

 

1

 

4

 

1

5

 

 

9

 

 

 

 

2

 

6

 

 

5

 

 

3

 

5

 

 

8

 

 

 

 

9

 

 

 

 

7

 

 

 

9

 

 

 

 

3

 

2

3

 

8

 

 

 

4

 

 

6

 

 

2

 

6

 

 

 

4

 

3

 

3

 

8

 

 

 

3

 

2

 

7

 

 

 

9

 

 

 

 

5

 

0

2

 

8

 

 

 

8

 

 

 

4

 

1

 

 

9

 

 

 

 

7

 

1

 

6

 

 

9

 

 

 

 

3

 

9

 

 

 

 

9

 

 

 

 

3

 

7

 

 

 

 

5

 

1

0

5

 

8

 

 

 

2

 

9

 

 

 

 

7

 

 

 

4

 

 

9

 

 

 

 

4

 

 

4

La longitud de la circunferencia,
la longitud del diámetro:
¡qué fuerza su cociente,

siempre el mismo, constante, eterno!,

tres coma catorce,
tres coma catorce dieciséis,
primeros balbuceos de un río infinito
de decimales sin período, siempre nuevos,

único e infinito, único y diverso,

tres coma catorce,
el recuerdo escolar de tantos cálculos,
tres coma catorce dieciséis,
el recuerdo de números en clave,
como barcos en un puerto,

humeantes, a punto de partir
río abajo, mientras el agua fluye
hecha números y caricia,
y el lomo de los cocodrilos de las preguntas
que van haciendo los matemáticos
anuncia ya todo tipo de peligros:
es fácil que una de ellas os pille
en sus mandíbulas plagadas de agudezas
y os arranque años de vida con un problema,

el área del círculo
Dividida por el cuadrado del radio

seductor, desafiante,
muy difícil de resolver,
pero tan atractivo que ni siquiera os déis cuenta
de que estáis quemando en él la vida,
de tan adentro como os ha entrado
aquella pregunta que tan pocos pueden comprender,

y los cinco sentidos se ponen al acecho
de algo que desborda los sentidos,
de las extrañas propiedades de un número
llamado irracional y que desborda la razón,
pero que está en el fondo de la razón del universo.

El primer problema: calcularlo,
obtener más y más decimales,
escalar un monte de decimales,

penetrando cada vez más en un mundo
que ya no pertenece al universo de la medida
–si medís las longitudes
de circunferencias reales, de diámetros reales,
y obtenéis su cociente,

sólo hallaréis dos decimales, tres decimales,
quizás cuatro decimales del número ?
(lo que de él sabían los egipcios):
los otros quedarán más allá
de los límites de la precisión de la medida-;
una definición, pues, que parece tan simple,
–un cociente de dos longitudes que estáis viendo
dibujadas en el papel–

y lleva, en cambio, a un desbordamiento de decimales.
¿Y cómo han calculado tantos decimales?
Durante más de dos mil quinientos años,
los que se atrevieron a embarcarse en la aventura,
siguiendo los pasos del gran Arquímedes,
inscribían polígonos en un círculo,
decágonos, dodecágonos, pentadecágonos,
polígonos de más y más lados,
y calculaban su perímetro

y lo dividían por el diámetro del círculo circunscrito;
naturalmente, cuanto más lados,
más se aproxima el polígono a la circunferencia
y más precisión se consigue en los decimales,
pero también encontraban
más y más dificultades;
parece duro, lo sé,

parece árido, lo sé,
pero también sé ver los atractivos
de navegar por un río en una selva espesa,
sin saber cómo será su curso un poco más allá,
ahora lento –decimales pequeños–,
ahora rápido –decimales grandes–,
siempre fluyente pero siempre impredictible:
¿cuál será el siguiente decimal?
¿Valdrá dos?, ¿valdrá cinco?, ¿valdrá nueve?

no hay manera de saberlo,
salvo que hagáis el cálculo;
¿cuál será el valor del decimal quinquagésimo?

el área de la esfera
dividida por cuatro veces el cuadrado del radio,

no hay otra manera de saberlo
que hacer todos y cada uno de los cálculos
que conducen hasta este decimal,

es decir, calcular todos los decimales anteriores
sin saltarse ni uno
–como en el tiempo de nuestra vida:
no hay otra manera de saber
lo que pasará dentro de un año
que vivir día a día todo el año,
hora a hora, minuto a minuto todo el año,
un tiempo, pues, diferente del tiempo de los astros,

predictible a largo término.
Pero sigamos con los decimales del número ?:
el método de los polígonos se hace largo y fatigoso:
¿habría manera de hallar un camino más rápido?

John Wallis, hacia mil seiscientos ochenta,
encuentra (en Oxford) que ? puede ser expresado
-tomad nota-
como el doble del producto de los cuadrados
de todos los números pares
dividido por el producto de los cuadrados

el volumen de la esfera
dividido por cuatro tercios del cubo de su radio,

de todos los números impares;
parece misterioso, lo sé,
no es evidente, ni fácil de demostrar,
pero es un salto, ¿no lo véis?:
hemos pasado, por primera vez en dos mil años,
de la geometría a la aritmética,

vemos el número ? con una luz diferente,
nos cuesta reconocer en este cociente
de productos de números
aquel cociente de longitudes inmediatas,

tan directamente visibles y sensibles,
y ahora nos parece arisco y misterioso,
pero su cálculo se ha hecho más fácil,

más y más decimales;
el proceso se acelera todavía más
cuando se hallan otras formas aritméticas

de escribir el número π, :
como suma de potencias,
como suma de inversos de potencias,
como raíz de sumas de inversos de potencias…
Pero se necesita, para eso,
afinar los instrumentos de las matemáticas,
inventar las derivadas,
inventar las integrales

–¿inventar o descubrir?:
observad que son conceptos diferentes
que suponen, también, ideas muy diversas

dos veces el producto de los cuadrados de todos los pares
dividido por el producto de los cuadrados de todos los impares

sobre qué son los números y la mente–,
inventar series de Taylor,
inventar series de Fourier,
inventar muchos otros procedimientos
que no quiero mencionar para evitar
que este escrito deje de ser lo que quiero:
un poema, en cierta forma, y no una lección

de matemáticas o historia
–por eso no hablo de otras propiedades
del número π, como la transcendencia,
ni doy ningún detalle de lo que digo.
No hablo de fórmulas concretas,
sino de emociones que he sentido,
y que antes que yo han sentido muchos otros,
y que sentirán muchos otros cuando yo ya no esté,
emociones de belleza y de vértigo

de viaje y de aventura,
de esfuerzo, de derrota, de victoria,
de rebeldía, de perseverancia,
de fusión con el mundo y de lejanía del mundo,
que algún día también sentiréis vosotros

el área de la elipse,
dividida por el producto de sus ejes,

si pensáis, con detalle, en este número
o en otros números que le son familiares
–la raíz cuadrada de dos, por ejemplo,
es decir, el cociente de la diagonal
y el lado de un cuadrado,
cociente irracional
que amargó la vejez de Pitágoras,
quien había enseñado que el mundo

estaba hecho de números puramente racionales
–pero ¡qué ironía, que dos formas,
el círculo y el cuadrado, que encontramos por doquier,
rehúsen expresarse en estos números!.
Pero podéis preguntaros otras cosas
que cuál será el siguiente decimal:
con los ordenadores, el proceso se ha acelerado
enormemente y conocemos ya

miles de decimales,
en lugar de los quinientos a que se había llegado
con el ingenio y las fuerzas estrictamente humanas;
así, pues, suponed que ya tenemos

miles de decimales,

todos ellos irrelevantes a efectos prácticos,
salvo los cinco primeros o, como máximo,
de los quince o veinte primeros, hilando fino.
Os podéis preguntar por la abundancia
relativa de las diversas cifras:
la del uno, la del dos, la del tres, la del cuatro,
la del cinco, la del seis, la del siete, la del ocho,
la del nueve, la del cero.
Pues bien: se comprueba –pero mucho antes

de que esto hubiera sido comprobado ya lo había demostrado
Borel y otros matemáticos–
que la abundancia relativa de las diversas cifras
es la misma,
que la abundancia relativa de todos los grupos de dos cifras
–quince, veintitrés, noventa y cinco, por ejemplo–
es la misma

que la abundancia relativa de todos los grupos de tres cifras

–ciento veintiuno, quinientos veintitrés, pongamos por caso-
es la misma,
y así sucesivamente para grupos
de más y más cifras;
en otras palabras: es seguro
que en los decimales de π, encontraréis la fecha

de vuestro nacimiento
(23-10-1953, en mi caso,
o bien 31-4-1592, si nos fijamos
en las siete primeras cifras de pi)
y también la fecha de vuestra muerte
(que no sabréis reconocer,
como en mi caso),
y vuestro número de teléfono;
más aún: si designamos las letras mediante números

–1 la A, 2 la B, 3 la C, 4 la D
y así sucesivamente–
sabed desde ahora que vuestro nombre está escrito

en los decimales del número π, ,
y que en algún lugar del número π, podéis hallar,
juntos, vuestro nombre y el de vuestro amor
y el nombre de vuestros hijos,
y las fechas del nacimiento y de la muerte
de cada uno de vosotros
Es vertiginoso, ciertamente, pero he de decir
que al lado de vuestro nombre también está escrito
el nombre de cualquier hombre o mujer

que hayan existido o que nunca existirán:
es, pues, vertiginoso y fútil:
está toda vuestra historia
pero también todas las otras posibles historias
que habríais podido vivir,
todos los otros amores
que hubierais podido tener,
de manera que lo dice todo y nada,
como algunos oráculos antiguos,

o como pasa a menudo cuando se habla demasiado.
Si miráis el número π, después de haber leído
este poema, os parecerá, quizás, vertiginoso,

como un pozo sin fondo, como un infinito
que se despliega ilimitadamente delante vuestro,
pero moriréis antes de haber podido leer
una mínima parte de sus decimales.
En el número π, hay el reposo y el movimiento
(como en el círculo),
la eternidad y el tiempo

(como en Dios),
la finitud y la infinidad
(como en el universo),
la armonía y el caos
(como en el mundo):

una definición breve y precisa,

y una inacabable sucesión de decimales
que no repiten su orden en ningún período.
Pero hay casos aún más inquietantes:
números que no es posible definir,
ristras infinitas de decimales

colocados al azar, al puro azar,
números, pues, que nunca podréis reducir
a una definición breve y concisa,
como π, o raíz de dos,
sino números que son movimiento sin reposo,
caos sin armonía, tiempo sin eternidad,
números que ni tan sólo podemos pronunciar,
números que nos recuerdan que el mundo es inefable,

la longitud de la circunferencia
dividida por dos veces el radio

y por eso conviene que, de vez en cuando,
la poesía hable de esta clase de números
que comparten con ella los límites del lenguaje,
y quien sabe si del mundo,
tal como los números hablan en ella
mediante los acentos, las sílabas, las estrofas.
O quizás son números que no pueden existir
si es que el mundo, en el fondo, es palabra
–no nuestra, claro está, sino de un Dios

que hubiera querido hacerse palabra a la medida
de nuestra limitada capacidad de escucha–,
pero esto nos conduciría a otros derroteros
–los de Dios y de su presencia
en el mundo y en nosotros–
que convendría no esquivar como lo hacemos,
tan desdeñosamente, en estos tiempos.

Pero me detengo aquí
y doy por acabado este poema
–de hecho, inacabado y discursivo–,
sabiendo, empero, que el número π, sigue,

caudaloso como todos los ríos a un tiempo,
con más cifras que gotas el Nilo o el Ganges,
el Volga o el Amazonas,
con más cifras que granos de arena
hay en todas las playas de la Tierra,
con más cifras que átomos hay
en todos los planetas del sistema solar,
y rehusando siempre un orden claro y repetitivo,
como un río espumoso y turbulento, infinito,

pero también lento, sutil, discreto,
modesto en su apariencia
pero con más propiedades que oro hay
en las minas del mundo,

o hasta que Dios se canse de él y diga basta,
y haga terminar el universo por la fatiga
de tener que soportar números como éste,
el número π.

(GRACIAS)^∞

Más contenido matemático en redes sociales

Comparte MatemáTICas: 1,1,2,3,5,8,13,...

Profundizando en la comprensión de la relación entre los coeficientes de una ecuación de segundo grado y sus raíces. Ejercicios resueltos en vídeo con Graspable Math

Comparte MatemáTICas: 1,1,2,3,5,8,13,...

En esta entrada comparto tres vídeos en los que muestro cómo profundizar en la comprensión de la relación entre los coeficientes de una ecuación de segundo grado y sus raíces. En demasiadas ocasiones solemos abordar en clase la explicación de un concepto o contenido matemático y, a renglón seguido, pasamos a la aplicación práctica reiterada con una batería de ejercicios tipo, sin profundizar en la comprensión del concepto.

Lo que propongo con estos tres vídeos es desplazar un poco el ejercicio típico rutinario: «Resuelve la ecuación de segundo grado …» «Halla las soluciones de la ecuación de segundo grado …» por otros que ahondan en la estructura de la ecuación y que nos permite obtener sus soluciones a partir de los coeficientes y, viceversa, obtener la expresión algebraica a partir de sus soluciones, ahondando y permitiendo ver la conexión existente.

Todos ellos han sido elaborados usando la herramienta digital interactiva Graspable Math, de las que ya os he hablado en anteriores entradas en este blog. Una herramienta ideal para acercar el lenguaje algebraico a nuestro alumnado, la cual nos facilita sobremanera a  docentes y estudiantes la escritura en lenguaje científico. Además de todo ello, se antoja como una aliada extraordinaria en entornos de enseñanza semipresencial, distancia o híbrido en el momento tan complejo que nos ha tocado vivir con motivo de la COVID.

Demostración: Relación entre coeficientes de una ecuación de 2º grado y sus raíces

Ejercicio. Comprobar relación entre los coeficientes y las raíces de una ecuación de 2ºgrado

Ejercicio. Hallar coeficiente usando relación coeficientes-raíces en ecuación de 2º grado

Podrás encontrar estos vídeos y muchos más en mi canal de Youtube MatemáTICas: 1,1,2,3,5,8,13,…  Si te ayudaron, y crees que pueden ayudar a estudiantes y profesores, suscríbete y comparte.

 

Más contenido matemático en redes sociales

Comparte MatemáTICas: 1,1,2,3,5,8,13,...

Reto matemático terrorífico para la noche de Halloween – Graspable Math

Comparte MatemáTICas: 1,1,2,3,5,8,13,...

En esta entrada os propongo un reto terrorífico para la noche de Halloween, basado en un modelo de áreas.

¿Cómo lo ves? ¿Eres capaz de resolverla?

¿Truco o trato? 🙂

Tarea interactiva. Reto matemático terrorífico para la noche de Halloween, realizada en Graspable Math

Pulsa aquí para completar el reto en GMA y dejar registrada tu respuesta (First Name: Tu nombre – Last Initial: Inicial de tu apellido)

Más contenido matemático en redes sociales

Comparte MatemáTICas: 1,1,2,3,5,8,13,...

Colaboración con el Observatorio de Tecnología Educativa del INTEF. Graspable Math: una nueva manera de explorar y hacer matemáticas

Comparte MatemáTICas: 1,1,2,3,5,8,13,...

El pase de diapositivas requiere JavaScript.

En esta entrada tengo el gusto de compartir artículo elaborado para el Observatorio de Tecnología Educativa del INTEF, un espacio de referencia en torno a la innovación digital en el aula.

Está dedicado a Graspable Math, una herramienta joven, aún poco extendida en España y en el contexto iberoamericano, con mucha potencialidad didáctica para el aula de matemáticas y con la que he trabajado de manera intensiva el último año.

 

ARTÍCULO EN EL OBSERVATORIO

Se trata de  “Graspable Math: una nueva manera de explorar y hacer matemáticas”. Está escrito por Luis Miguel Iglesias Albarrán, profesor de enseñanza secundaria en la especialidad de Matemáticas y Director del IES San Antonio en Bollullos Par del Condado (Huelva).

Graspable Math es una herramienta digital interactiva innovadora que permite una nueva manera de explorar y comprender, mediante la interacción (tocando y arrastrando números y símbolos), las relaciones matemáticas. Forma parte de un proyecto de investigación financiado por el Institute of Education Sciences (IES) dependiente del U.S. Department of Education.

Es una herramienta permite “aprender haciendo” (learning by doing) matemáticas, favoreciendo el aprendizaje autónomo de los estudiantes y permitiéndoles poner el foco en las estructuras matemáticas. El diseño de la herramienta ayuda a salvar el obstáculo de la notación formal, haciendo posible que el alumnado se centre en cómo funcionan. Les brinda, en este sentido, oportunidades para razonar y deducir de manera flexible sobre las tareas matemáticas.

Con Graspable Math se nos presenta, en definitiva, una nueva manera de explorar, enseñar y de hacer matemáticas.

Si quieres saber más sobre Grapable Math, puedes leer el artículo elaborado por Luis Miguel Iglesias Albarrán en el que, además, hace una valoración personal y ofrece recomendaciones para el empleo de esta herramienta.

Acceso al artículo “Graspable Math: una nueva manera de explorar y hacer matemáticas” en formatos PDF y web

 

Dejo a continuación más material por si quieres iniciarte en el uso de esta versátil herramienta.

PUBLICACIONES SOBRE GRASPABLE MATH

En este espacio he realizado distintas publicaciones al respecto:

 

LISTA DE VÍDEOS SOBRE GRASPABLE MATH

Comparto también lista con más de una treintena de vídeos sobre diferentes usos didácticos de esta herramienta.

 

Lista de vídeos en Youtube sobre Graspable Math (33 vídeos)

Te animo a usarla con tu alumnado, a compartirla con tus contactos y compañeros a través de la red y quedo a tu disposición para cualquier duda o comentario al respecto, en forma de comentario bajo esta entrada o en mis perfiles en redes sociales.

¡Ya me contarás cómo te ha ido con tus alumnos en clase! 🙂

MÁS CONTENDO MATEMÁTICO EN REDES SOCIALES

Comparte MatemáTICas: 1,1,2,3,5,8,13,...

Participación en Mesa Redonda ‘La innovación en los centros docentes de Andalucía’ en el 55º Encuentro de Centros Innovadores DIM-EDU y Comunicar-UHU

Comparte MatemáTICas: 1,1,2,3,5,8,13,...

La semana pasada tuve el gusto de participar junto a más de 600 profesores de España e Iberoamérica en el 55º Encuentro de Centros Innovadores del grupo DIM-EDU, importante evento educativo de carácter internacional celebrado en modalidad online por motivos de la COVID-19, coorganizado por el Grupo Comunicar y la Universidad de Huelva.

La jornada se celebró durante 12 horas consecutivas, con una veintena de actividades online entre mesas redondas, talleres y seminarios, contando con la participación de más de un centenar de ponentes, siendo los retos de la educación ante la pandemia de coronavirus los temas que más han marcado los seminarios y talleres. Con esta jornada se pretende proporcionar orientaciones y buenas prácticas para los centros educativos, orientados a equipos directivos, coordinadores de innovación y profesores de todos los niveles educativos.

Extracto publicado en el Portal de Comunicación de la Universidad de Huelva:

La inauguración de la jornada ha contado con la presencia de la rectora de la Universidad de Huelva, María Antonia Peña, quien ha resaltado que se hayan cumplido 55 ediciones de este evento “síntoma de que los participantes obtienen una experiencia muy valiosa”. Peña ha subrayado que lo más importante de estas jornadas es que “hace del conocimiento algo compartido y poder romper la barrera entre los ciclos educativos, porque el alumnado son las mismas personas que van avanzando en una carrera educativa, en lugar de tener barreras, hay que tener un espacio fluido”.

Por otro lado, el catedrático de la UHU y director del Grupo Comunicar, Ignacio Aguaded, en calidad de presidente de la jornada, ha destacado que “el modelo participativo es la mejor estrategia, porque el sistema unidireccional está desfasado y el aprendizaje se basa en la reflexión”. Aguaded ha destacado la dilatada experiencia investigadora en el uso de las TIC en la educación y la necesidad de implementar buenas prácticas con la coordinación de investigación y docencia.

El profesor de la Universitat Autònoma de Barcelona y coordinador global de las jornadas, Pere Marquès, afirmó que este encuentro pretende ser un foro para el intercambio de experiencias entre profesores de distintos centros escolares, profesionales y también la Universidad para mostrar y debatir ideas innovadoras que se conviertan en impacto y en mejora, de forma que los estudiantes tengan una docencia de mayor calidad para que repercuta en un mejor aprendizaje de los alumnos.

Asimismo, la delegada de Educación y Deporte de la Junta de Andalucía en Huelva, Estela Villalba, ha recordado que ella también forma parte del profesorado, por ello es conocedora de lo importante que es “poner al alumnado en el centro del proceso de la educación”. Al tiempo, ha señalado que “las condiciones que hemos vivido han puesto sobre la mesa la necesidad de buscar nuevas fórmulas y metodologías que permitan adaptarnos y ser flexibles”.

Tras la inauguración tuvo lugar la Mesa redonda-1. La innovación en los centros docentes de Andalucía, moderada por la Profa. María Cinta Aguaded.

Junto a los profesores Juan Antonio Aguilar, José Manuel Blázquez e Inmaculada Delgado, de Málaga y Sevilla, tuve la oportunidad de mostrar mi visión como director de un centro educativo público andaluz, haciendo balance de lo acontecido en el último año; las dificultades superadas, la innovación demandada implantada y lancé propuestas sobre los retos que nos esperan en la escuela post-covid. Entre ellos, me preocupan especialmente dos:

  1. gestionar la inteligencia emocional de toda la comunidad educativa y
  2. evolucionar hacia un modelo de innovación sostenible, aprovechando lo aprendido y el camino andado, principalmente en el ámbito de la Competencia Digital.

El pase de diapositivas requiere JavaScript.

Gracias a Pere Marqués por la invitación. Este tipo de eventos son siempre fuente de inspiración y una oportunidad para aprender entre iguales, difuminando las fronteras entre las distintas etapas educativas obligatorias y postobligatorias y la universidad. Al mismo tiempo se antojan imprescindibles para potenciar y afianzar alianzas y fortalecer las comunidades educativas digitales.

Especialmente interesante resultó también la Mesa redonda-2 Estrategia digital de educación de Andalucía. Desarrollo de la competencia digital docente que contó con la participación de María Elena Millán Villalobos, Jefa de Servicio de Planes de Formación de la Consejería de Educación y Deporte de la Junta de Andalucía y del Prof. Antonio de Padua Palacios Rodríguez, miembro Grupo Investigación Didáctica (HUM-390) de la Universidad de Sevilla, moderada por el Prof. de la onubense Antonio García Rojas. En ella se trató el tema de la estrategia digital de educación de Andalucía, el desarrollo de la competencia digital docente y se presentó el informe Global del Test de Competencia Digital Docente 2020.

El pase de diapositivas requiere JavaScript.

Os animo a visitar la web del encuentro y el portal de comunicación de la Universidad de Huelva para conocer más detalles sobre las interesantes experiencias, comunicaciones y mesas redondas del encuentro:

http://dimglobal.ning.com/profiles/blogs/jornadahuelva21
#CENTROSINNOVADORES – #JORNADADIM

JORNADA INTERNACIONAL. Se inscribe en el marco del Proyecto Centros Innovadores de la RED EDUCATIVA DIM-EDU y está organizado conjuntamente con el Grupo Comunicar.

DIRIGIDO a los equipos directivos, coordinadores de innovación y profesores en general de todos los niveles educativos, inspectores y gestores de la Administración Educativa, y especialistas de empresas del sector.

OBJETIVO: facilitar el intercambio de conocimientos y experiencias entre los agentes educativos, con el propósito de adquirir ideas que faciliten la mejora de su eficacia formativa.

Portal de Comunicación de la Universidad de Huelva

 

Más contenido matemático en redes sociales

Comparte MatemáTICas: 1,1,2,3,5,8,13,...

Aprovechamiento de bancos de Recursos Educativos Abiertos (REA). Conversión de SCORM a .elp con eXeLearning

Comparte MatemáTICas: 1,1,2,3,5,8,13,...

En post anteriores hemos tratado el concepto de Transformación Digital Educativa (TDE) con Recursos Educativos Abiertos (REA). Bancos de REA institucionales de calidad.

En esta entrada comparto vídeo describiendo el proceso de descarga de un recurso del excelente repositorio CREA Andalucía y obtención de fuente .elp (eXe Learning Project) a partir de él.

Pasos
  1. Acceso a CREA Andalucía
  2. Localización y selección del REA a descargar
  3. Descarga del REA en formato SCORM 2004 desde el nodo andaluz de Agrega (Agrega Andalucía)
  4. Apertura del fichero .zip (descargado en el paso 3) en eXeLearning
  5. Modificación en eXeLearning
  6. Guardado como fichero fuente en formato .elp (eXe Learning Project)
  7. Ejemplo de exportación en formato carpeta autocontenida (para trabajar con el REA en pendrive, subir a un repositorio, trabajar en local en un ordenador…)

Vídeo

Comparte MatemáTICas: 1,1,2,3,5,8,13,...

Propuesta didáctica: retos con la App _neuronal by #moviLMáTICas. Reto matemático de proporcionalidad resuelto en vídeo #mlearning

Comparte MatemáTICas: 1,1,2,3,5,8,13,...

El pase de diapositivas requiere JavaScript.

  • Introducción a la actividad

Se describe en el vídeo, paso a paso, y se resuelve un reto de manera íntegra, para aprender contenidos matemáticos en este contexto lúdico y gamificado con dispositivos móviles #mlearning.

Se requiere App gratuita para dispositivos Android descargada e instalada. Accesible en la Play Store en la dirección: https://play.google.com/store/apps/details?id=appinventor.ai_luismiglesias.moviLMaTICas_neuronal

 

  •  ¿Cómo presentar la actividad?

¿Cuántos neuropuntos serás capaz de conseguir? Juega, gana y comparte tus resultados.

Diviértete resolviendo retos matemáticos sencillos, en familia o en el aula, para entrenar tus neuronas.

 

  •  ¿Cómo desarrollar la actividad?

Descargar la App, resolver los retos, en familia o en el aula, y compartir los resultados, mediante publicaciones con capturas de pantalla mostrando la puntuación en vuestra plataforma educativa o en RRSS, a través del botón de Twitter incorporando en la propia App o mediante capturas de pantalla en otras redes sociales.

 

  • Vídeo: Resolución, paso a paso, de reto matemático de proporcionalidad, reparto proporcional directo, con la App _neuronal by #moviLMáTICas 

 

 

 

Comparte MatemáTICas: 1,1,2,3,5,8,13,...

Graspable Math y Geogebra; aliadas extraordinarias para enseñar y aprender matemáticas en contextos presenciales discontinuos. 5 tareas resueltas en vídeos sobre funciones lineales, afines, paralelismo y ecuaciones de la recta

Comparte MatemáTICas: 1,1,2,3,5,8,13,...

Los lectores asiduos de este rincón virtual matemático conocen sobradamente mi predilección por estas dos poderosas herramientas digitales. En mi opinión, indispensables ambas para la enseñanza y el aprendizaje de la matemática en el siglo XXI, siendo especialmente útiles en los contextos de enseñanza-aprendizaje semipresencial y a distancia especialmente extendidos con motivo de la COVID-19.

Aprovecho estas líneas para invitarte a visitar las distintas publicaciones sobre propuestas didácticas para trabajar en el aula y los materiales que he compartido sobre ambas en los últimos años:

Pues bien, si juntamos ambas, el resultado no puede ser catalogado de otro modo que excelente.

Como muestra de ello comparto en esta entrada 5 tareas resueltas paso a paso, en otros tantos vídeos, con ayuda de Geogebra y Graspable Math. 

Estos materiales los desarrollé para mis estudiantes de Matemáticas de 3º de ESO (14-15 años) para trabajar en modalidad online durante el cierre de los centros educativos españoles, periodo de la suspensión de la actividad docente presencial (marzo-junio 2020), con motivo de la COVID-19.

Espero te animes a usar los vídeos con tu alumnado si los consideras de utilidad.

 

Vídeos

1. Funciones lineales. Pertenencia a recta. Ecuación de la recta Geométrico – Graspable Math & Geogebra

 

2. Funciones lineales. Pertenencia a recta. Ecuación de la recta. Geometría Analítica. Graspable Math

 

3. Funciones afines. Ecuación de la recta. Recta paralela pasando por un punto – Graspable Math & Geogebra

 

4. Funciones lineales – Paralelismo – Significado de m y n en la ecuación explícita – Graspable Math & Geogebra

 

5. Funciones afines. Ecuación de la recta. Recta paralela pasando por un punto – Graspable Math & Geogebra

Más contenido matemático en redes sociales

Comparte MatemáTICas: 1,1,2,3,5,8,13,...

Ponencia sobre Recursos Educativos Abiertos (REA) en el Congreso Internacional sobre Educación, Investigación y Virtualidad – Universidad Nacional de Asunción de Paraguay

Comparte MatemáTICas: 1,1,2,3,5,8,13,...

La Dirección de Investigación y la Carrera de Ciencias de la Educación de la Facultad de Filosofía de la Universidad Nacional de Asunción (FFI-UNA) – Paraguay, casa central y filiales, invitan a participar en el Congreso Internacional Virtual sobre Educación, Investigación y Virtualidad 2020, que contará con la participación de expositores nacionales e internacionales.

La actividad se está desarrollando desde ayer, lunes 23, hasta el sábado, 28 de noviembre de 2020, de 18:00 a 20:30 h (hora de Asunción), con una amplia participación de colegas de distintos países del contexto latinoamericano. Los expositores del Congreso proceden de: Argentina, Brasil, Colombia, España, Paraguay y Uruguay.

La transmisión se está llevando a cabo a través del Facebook Live de la página de la Dirección de Investigación de la Facultad de Filosofía UNA: https://www.facebook.com/investigacionfiluna.

El Congreso brinda una oportunidad excelente para seguir aprendiendo y compartiendo experiencias sobre la docencia, investigación y gestión educativa en tiempos de pandemia en el contexto latinoamericano que, sin duda alguna, redundará en la mejora de la Educación en nuestro entorno.

Aprovecho estas líneas para expresar mi agradecimiento al Dr. Pedro Caballero y al Mg. Felipe Villalba, Director de Investigación y Profesor de la de la FFI-UNA, respectivamente, por la invitación a participar como ponente en este importante Congreso Internacional. En igual medida quiero expresar mi felicitación a la Universidad Nacional de Asunción (UNA) por el diseño y la impecable organización de este evento, tan necesario en el tiempo tan complejo que nos ha tocado vivir con motivo de la COVID-19.

Mi participación será el próximo jueves, y en ella trataré de aportar mi visión sobre la importancia de los Recursos Educativos Abiertos para la inclusión educativa y la igualdad de oportunidades, en tiempos de pandemia.

¡Los esperamos!

Programa del Congreso sobre Educación, Investigación y Virtualidad 2020

Grabación de la Jornada (26 de noviembre de 2020)

Enlace a la grabación (Desde 59′ hasta 1h 48′ y cierre, últimos 30′)

 

Más contenido matemático en redes sociales

Comparte MatemáTICas: 1,1,2,3,5,8,13,...
WP2Social Auto Publish Powered By : XYZScripts.com