El cerebro existe para resolver problemas. Es su razón de ser.
Video 



El cerebro existe para resolver problemas. Es su razón de ser.
Un buen problema vale más por las ideas que despierta que por la respuesta que guarda.
Luis M. Iglesias (2025) · MatemáTICas: 1,1,2,3,5,8,13,…
Los conceptos trigonométricos y la resolución de triángulos representan un pilar fundamental en el último curso de secundaria y bachillerato. Sin embargo, estos conceptos suelen generar dificultades de comprensión para muchos alumnos debido a su naturaleza abstracta.
El uso de pequeñas calculadoras y artefactos digitales, como los applets interactivos o los simuladores ofrecen una interactividad y ayudan a facilitar a la comprensión a través de la representación visual, obteniendo además retroalimentación inmediata.
Apoyándome en Claude, la inteligencia artificial de Anthropic, he elaborado un simulador para mis alumnos de 4º de ESO, el cual comparto en esta entrada.
Continuando la serie de vídeos relativos al uso didáctico de la IA, en esta nueva entrada comparto un vídeo para trabajar saberes básicos relacionados con el sentido de la medida y el sentido espacial en Matemáticas B de 4º de ESO, aunque también de aplicación en 1º de Bachillerato.
B. Sentido de la medida.
1. Medición.
− Razones trigonométricas de un ángulo agudo y sus relaciones: aplicación a la resolución de problemas.
C. Sentido espacial.
1. Figuras geométricas de dos y tres dimensiones.
− Propiedades geométricas de objetos matemáticos y de la vida cotidiana: investigación con programas de geometría dinámica.
4. Visualización, razonamiento y modelización geométrica.
− Modelos geométricos: representación y explicación de relaciones numéricas y algebraicas en situaciones diversas.
− Modelización de elementos geométricos con herramientas tecnológicas como programas de geometría dinámica, realidad aumentada….
− Elaboración y comprobación de conjeturas sobre propiedades geométricas mediante programas de geometría dinámica u otras herramientas.
En esta ocasión vamos a presentar un simulador para resolver triángulos rectángulos. Os dejo a continuación enlace al mismo y un pequeño vídeo explicativo mostrando su uso. Espero que os guste y os resulte de utilidad para vuestras clases. Estaré encantado de leer tus comentarios aquí en el blog, en Youtube o en otras redes sociales.
El simulador presenta las siguientes funcionalidades:
Pulsa en la imagen o aquí para acceder y usar el simulador
Si consideras interesante este ejemplo puedes suscribirte al blog para estar informado por correo electrónico de las nuevas publicaciones o a mi canal de Youtube donde iré publicando todo aquello que me sea posible compartir para sacarle partido a la IA en el aula.
Seguiré informando de los avances 🙂
Ya me contarás qué te han parecido estas propuestas de aprendizaje y enseñanza apoyadas en la Inteligencia Artificial Generativa, en este caso de Claude, así como en los otros de ChatGPT,…
Seguimos…
La transformación de nuestras concepciones como docentes es una tarea continua y esencial para mejorar la calidad educativa en el aula. Nuestras creencias y prácticas impactan directamente en cómo nuestros alumnos aprenden matemáticas y perciben su utilidad.
En el nuevo marco normativo, autonómico andaluz y estatal, derivado de la implantación de la LOMLOE, la resolución de problemas se posiciona como una herramienta metodológica clave, no solo para enseñar contenidos, sino también para desarrollar el razonamiento, la comunicación y la autonomía de nuestros alumnos.
Durante mi intervención en las Jornadas para el Impulso del Razonamiento Matemático en Andalucía, celebradas en Málaga y Córdoba hace un par de semanas, reflexionamos, entre otros aspectos, sobre cómo nuestras concepciones sobre los problemas pueden influir sobre la manera en qué los enseñamos, qué tipo de problemas enseñamos y cómo/qué aprenden nuestros alumnos.
El nuevo currículo de Matemáticas derivado de la implantación de la LOMLOE tiene como líneas principales en la definición de las competencias específicas de matemáticas la resolución de problemas y las destrezas socioafectivas. En la introducción de la materia se recoge literalmente:
La investigación en didáctica ha demostrado que el rendimiento en matemáticas puede mejorar si se cuestionan los prejuicios y se desarrollan emociones positivas hacia las matemáticas. Por ello, el dominio de destrezas socioafectivas como identificar y manejar emociones, afrontar los desafíos, mantener la motivación y la perseverancia y desarrollar el autoconcepto, entre otras, permitirá al alumnado aumentar su bienestar general, construir resiliencia y prosperar como estudiante de matemáticas.
Por otro lado, resolver problemas no es solo un objetivo del aprendizaje de las matemáticas, sino que también es una de las principales formas de aprender matemáticas. En la resolución de problemas destacan procesos como su interpretación, la traducción al lenguaje matemático, la aplicación de estrategias matemáticas, la evaluación del proceso y la comprobación de la validez de las soluciones. Relacionado con la resolución de problemas se encuentra el pensamiento computacional. Este incluye el análisis de datos, la organización lógica de los mismos, la búsqueda de soluciones en secuencias de pasos ordenados y la obtención de soluciones con instrucciones que puedan ser ejecutadas por una herramienta tecnológica programable, una persona o una combinación de ambas, lo cual amplía la capacidad de resolver problemas y promueve el uso eficiente de recursos digitales.
En este nuevo paradigma curricular, reforzado aún más si cabe en Andalucía con las Instrucciones de Razonamiento Matemático (18 junio 2024), se hace necesario poner la mirada en lo que la investigación educativa ha caracterizado como concepciones docentes sobre la resolución de problemas matemáticos.
Este artículo surge de los comentarios positivos que me han trasladado, por diferentes vías y redes sociales, muchos compañeros y compañeras de diferentes colegios e institutos de la geografía andaluza que acudieron a alguna de las jornadas o que han visto las grabaciones de las mismas, así como del interés común mostrado por la resolución de problemas y las concepciones que tenemos sobre ellas. Me reitero en mi opinión, como profesor de matemáticas e investigador en didáctica de la matemática, que este aspecto es crucial porque las concepciones afectan directamente tanto al proceso de enseñanza como al aprendizaje de nuestros alumnos.
Esta entrada en «el sitio de mi recreo», que no es otro que este blog de Matemáticas, no pretende ser más que una invitación a reflexionar, a compartir estrategias y a avanzar hacia una enseñanza más centrada en la resolución de problemas como eje vertebrador del aprendizaje matemático.
Ahora bien, como en todo proceso de transformación, debemos comenzar con una mirada instrospectiva, autocrítica y abierta al cambio, pilares básicos para construir una práctica docente más reflexiva, inclusiva y eficaz.
A continuación planteo y ofrezco algunas respuestas y reflexiones que espero sean de utilidad para que ¡¡sigamos avanzando juntos!!
Ya me contarás tu opinión. Me interesa y mucho.
1. ¿Por qué es importante estudiar las concepciones del profesorado sobre la resolución de problemas?
Es crucial porque estas concepciones determinan cómo enseñamos y cómo los alumnos aprenden. Creencias erróneas, a menudo relacionadas con una formación deficiente, pueden limitar el uso de estrategias efectivas y perpetuar prácticas poco centradas en el desarrollo del pensamiento matemático.
2. ¿Qué tipo de concepciones erróneas sobre la resolución de problemas se detectan?
Actualmente, se identifican los siguientes problemas comunes:
3. ¿Qué factores favorecen la transformación de concepciones erróneas?
Los siguientes elementos resultan fundamentales para este proceso de transformación:
4. ¿Cómo influye la diversidad cultural en la resolución de problemas?
Aunque puede ser un reto, la diversidad cultural presente en nuestras aulas y en nuestros centros educativos es una riqueza que, bien gestionada, favorece el aprendizaje.
Las estrategias cooperativas, el trabajo en equipo en grupos heterogéneos y mixtos, la aceptación de la crítica razonada, el fomento de la perseverancia y una cultura de aprendizaje a partir del error, ayudan a superar barreras lingüísticas y promueven el intercambio de ideas desde diferentes perspectivas.
5. ¿Qué papel desempeña la comunicación en la enseñanza de la resolución de problemas?
Como se puede ver en diversos ejemplos en la presentación que usé, este es un aspecto fundamental y muy presente en mi aula, ya que considero que la comunicación es fundamental para que nuestros alumnos verbalicen sus ideas, compartan estrategias y construyan conocimiento colectivo.
Es de vital importancia dedicar tiempo para fomentar el diálogo y el debate matemático en el aula.
6. ¿Qué estrategias didácticas mejoran la gestión del aula durante la resolución de problemas?
Entre las más efectivas destacan:
7. ¿Es posible cambiar las concepciones del profesorado sobre la relevancia de la resolución de problemas?
Sí, es posible. Mostrar cómo la resolución de problemas introduce conceptos nuevos, desarrolla el pensamiento matemático y beneficia a nuestros alumnos puede transformar nuestra percepción y darle la importancia que merece.
Compartir nuestras prácticas de aula, en entornos presenciales (departamento, área, grupos de trabajo, jornadas, congresos,…) o virtuales (a través de blogs, redes sociales,…) es una buena opción. Doy fe de ello.
8. ¿Qué se necesita, que aspectos so para lograr una transformación de las concepciones?
Es imprescindible:
En esta entrada quiero compartir una Situación de Aprendizaje (SdA) que elaboré hace casi dos años con la magnífica herramienta eXeLearning, para iniciar al alumnado en el uso de la IA, a través del Pensamiento Computacional, mostrando técnicas de Aprendizaje Automático, Machine Learning, haciendo uso de las herramientas Learning ML y Scratch.
Mediante el trabajo en el aula con esta SdA pretendo introducir la Inteligencia Artificial (IA) y el Machine Learning (ML) al alumnado de ESO y Bachillerato. La misma presenta un enfoque práctico y guiado, paso a paso, facilitando la comprensión de conceptos complejos a través de ejemplos concretos, comprensibles por todos los alumnos, y el uso de herramientas visuales como Scratch y Learning ML. La inclusión de instrumentos de evaluación como las rúbricas presentes en el REA tienen la finalidad tiene la intención de ayudar a estimar de alguna manera, medir, el aprendizaje de los alumnos y asegurar un proceso educativo efectivo.
Se recomienda analizar con mayor profundidad todos el contenido del REA; enlaces a videos, así como explorar a fondo la SdA para obtener una visión más completa.
Quisiera destacar que el uso de la inteligencia artificial (IA), específicamente el Aprendizaje Automático (Machine Learning o ML) en Educación, a edades tempranas es posible a software educativo gratuitos; Scratch y la herramienta Learning ML.
Temas principales
https://luismiglesias.es/iaparaunmundomejor/SA/index.html
El pasado martes 29 de octubre, en el Salón de Actos de la Facultad de Derecho de la Universidad de Málaga, y el lunes 4 de noviembre, en el Salón de Actos del Rectorado de la Universidad de Córdoba, se se han celebrado sendas jornadas para el profesorado de Andalucía Oriental y Andalucía Occidental.
Estas jornadas, impulsadas por la Dirección General de Innovación Educativa y Formación del Profesorado, y organizadas por los CEP de Málaga y de Córdoba han versado sobre las Instrucciones de Razonamiento Matemático (18 junio 2024), con presentación institucional a cargo del DG de Innovación y Formación del Profesorado, D. Francisco Javier Franco Fernández, y han constado de ponencias para las distintas etapas y mesas redondas.
En total han asistido más de 800 docentes de todas las provincias andaluzas, profesores y profesoras que imparten matemáticas en las distintas etapas educativas; Infantil, Primaria, Secundaria y Bachillerato.
He tenido el gusto de participar en la mesa redonda moderada por D. Agustín Carrillo de Albornoz, SAEM Thales y Secretario General de la FESPM, junto a mis compañeros D.ª Belén Sepúlveda, D. Juan Antonio Reyes y D. Guillermo Cotrino.
Estoy encantando de que se potencie el razonamiento matemático y la resolución de problemas en Andalucía, muy feliz por el impulso de la Consejería de Desarrollo Educativo y la Formación Profesional con estas jornadas así como con el resto de actuaciones que desarrollarán las Instrucciones y agradecido por participar en las mismas aportando mi granito de arena.
Os comparto el material en el que he apoyado mi intervención por si fuera de utilidad, tanto para los docentes que han participado en las Jornadas, como para aquellos compañeros y compañeras que no han podido asistir.
Terminamos con la mesa redonda: Agustín Carrillo (Asociación Thales), J. Antonio Reyes (IES Aljanadic, Posadas), Luis Miguel Iglesias (IES San Antonio, Bollullos Par del Condado), Guillermo Cotrina (IES Mare Nostrum, Málaga), Belén Sepúlveda (CDP San José de la Montaña, Málaga) pic.twitter.com/1gc2228Zsj
— CEP de Málaga (@cepmalaga) October 29, 2024
Terminamos con la mesa redonda: Agustín Carrillo (Thales), J. Antonio Reyes (IES Aljanadic, Posadas), Luis Miguel Iglesias (IES S Antonio, Bollullos Par del Condado), Guillermo Cotrina (IES Mare Nostrum, Málaga), Belén Sepúlveda (CDP S. José de la Montaña, Málaga)@EducaAnd pic.twitter.com/HK3tSD3FnQ
— CEP Córdoba (@cepcordoba) November 4, 2024
Ejercicio interactivo realizado con eXeLeaning. Identifica el número secreto con pistas
Más contenido matemático en redes sociales
El pasado 24 de noviembre del recién terminado 2023, disfruté impartiendo la Conferencia «Aprender y enseñar matemáticas con manipulativos virtuales» en el XXVII Congreso Nacional de Matemática Educativa, evento de referencia en nuestro querido país hermano de Guatemala, organizado por la Unidad de Modelación Matemática e Investigación de la Facultad de Ingeniería de la Universidad de San Carlos de Guatemala.
El evento contó con la participación de 44 ponentes de 8 países, Guatemala, México, Costa Rica, Estados Unidos de Norteamérica, Perú, Panamá, El Salvador y España, de forma virtual, con un total de 50 talleres y 6 conferencias plenarias acerca de la enseñanza y aprendizaje de esta materia en todos los niveles educativos. El mismo contó con la participación de 420 docentes.
Quiero expresar mi agradecimiento, por la confianza renovada y el respeto y cariño mostrado hacia mi trabajo, a todos los miembros del Comité Organizador del Congreso, con especial énfasis en la Dra. Mayra Castillo y el Dr. Julio Ricardo Castillo por todo el apoyo que me han dado, antes, durante y tras el evento.
Comparto a continuación el enlace al evento en Facebook donde se encuentra en el vídeo de mi Conferencia «Aprender y enseñar matemáticas con manipulativos virtuales» donde, durante más de dos horas, reflexioné, compartí e interactué con los profesores participantes, proponiendo diferentes actividades matemáticas basadas en materiales manipulativos, simulando una situación real de clase a distancia, explicitando propuestas metodológicas, favoreciendo el razonamiento y la argumentación matemática.
Aprender y enseñar matemáticas con manipulativos virtuales
XXVII Congreso Nacional de Matemática Educativa de Guatemala
Continuando la serie de vídeos relativos al uso didáctico de la IA, en esta nueva entrada comparto un vídeo para trabajar saberes básicos relacionados con el sentido de la medida y el sentido espacial.
En esta ocasión vamos a crear un mapa mental. Echemos un vistazo a su definición y alguna de sus características antes de continuar.
Un mapa mental es un diagrama usado para representar palabras, ideas, tareas, lecturas, dibujos, u otros conceptos ligados y dispuestos radicalmente a través de una palabra clave o de una idea central. Los mapas mentales son un método muy eficaz para extraer y memorizar información. Son una forma lógica y creativa de tomar notas, organizar, asociar y expresar ideas, que consiste en cartografiar sus reflexiones sobre un tema. Es representado por medio de dibujos imágenes, o puede no incluir estas y llevar colores para mejor representación del tema.
Un mapa mental es una imagen de distintos elementos, utilizados como puntos clave, que dan información específica de un tema en particular o de la ramificación de varios temas en relación con un punto central. Es también una manifestación gráfica del pensamiento radial donde de un núcleo central se irradian ramas en todas las direcciones cuando asociamos ideas. Es captar en un solo plano toda la información. Los mapas mentales son considerados como apuntes visuales para transmitir mejor el pensamiento, sintetizar conocimientos y lograr un aprendizaje significativo.
Dentro de los mapas mentales se pueden utilizar palabras claves, signos, símbolos, dibujos, códigos y abreviaturas. Con los mapas mentales se aprende a organizar y asociar las ideas. Para entender mejor qué es un mapa mental, imaginemos el plano de una ciudad. El centro de la urbe representa la idea principal; las principales avenidas que llevan al centro representan los pensamientos clave del proceso mental; las calles menores representan los pensamientos secundarios, etc.; las imágenes o formas especiales pueden representar monumentos o ideas especialmente importantes.
Un mapa mental se obtiene y se desarrolla alrededor de una palabra, frase o texto, situado en el centro, para luego derivar ideas, palabras y conceptos, mediante líneas que se trazan hacia alrededor del título; el sentido de estas líneas puede ser horario o antihorario; es un recurso muy efectivo para facilitar el estudio académico. El gran difusor de la idea del mapa mental fue Tony Buzan en 1974, con su libro Use Your Head, donde promueve la nemotecnia y el uso de mapas mentales como herramientas del aprendizaje.
Fuente: Wikipedia
Diferentes versiones en PDF del mapa mental
Inteligencia Artificial de ChatGPT para docentes. Mapa_mental__Clasificación_de_Triángulos_4
Inteligencia Artificial de ChatGPT para docentes. Mapa_mental__Clasificación_de_Triángulos_3
Inteligencia Artificial de ChatGPT para docentes. Mapa_mental__Clasificación_de_Triángulos_2
Inteligencia Artificial de ChatGPT para docentes. Mapa_mental__Clasificación_de_Triángulos_1
Si consideras interesante este ejemplo puedes suscribirte al blog para estar informado por correo electrónico de las nuevas publicaciones o a mi canal de Youtube donde iré publicando todo aquello que me sea posible compartir para sacarle partido a la IA en el aula.
Seguiré informando de los avances 🙂
Ya me contarás qué te han parecido estas propuestas de aprendizaje y enseñanza apoyadas en la Inteligencia Artificial Generativa de ChatGPT.
Seguimos…
Continuando la serie de vídeos relativos al uso didáctico de la IA, en esta nueva entrada comparto un vídeo para trabajar saberes básicos relacionados con el sentido de la medida y el sentido espacial. Entre otros, los siguientes:
B. Sentido de la medida.
1. Medición.
− La pendiente y su relación con un ángulo en situaciones sencillas: deducción y aplicación.
C. Sentido espacial.
1. Figuras geométricas de dos y tres dimensiones.
− Propiedades geométricas de objetos matemáticos y de la vida cotidiana: investigación con programas de geometría dinámica.
2. Localización y sistemas de representación.
− Expresiones algebraicas de una recta: selección de la más adecuada en función de la situación a resolver.
4. Visualización, razonamiento y modelización geométrica.
− Modelos geométricos: representación y explicación de relaciones numéricas y algebraicas en situaciones diversas.
− Modelización de elementos geométricos con herramientas tecnológicas como programas de geometría dinámica, realidad aumentada….
− Elaboración y comprobación de conjeturas sobre propiedades geométricas mediante programas de geometría dinámica u otras herramientas.
Visualización, mediante animación interactiva de la pendiente de una recta y su relación con la tangente del ángulo que forma con el eje de abscisas.
Este ejemplo animación interactiva en PDF como ayuda para la comprensión de un concepto matemático, en este caso la pendiente de la recta, forma parte de un producto más complejo.
Como he indicado en respuesta a un comentario al vídeo en Youtube, además de la interacción con ChatGPT, requiere conocimiento de LaTeX, algo avanzado al hacer uso de librerías específicas, y compilación para la generación del PDF final con la animación. Sería un poco largo de describir. Si saco algo de tiempo documentaré el proceso completo.
Si consideras interesante este ejemplo puedes suscribirte al blog para estar informado por correo electrónico de las nuevas publicaciones o a mi canal de Youtube donde iré publicando todo aquello que me sea posible compartir para sacarle partido a la IA en el aula.
Seguiré informando de los avances 🙂
Ya me contarás qué te han parecido estas propuestas de aprendizaje y enseñanza apoyadas en la Inteligencia Artificial Generativa de ChatGPT.
Seguimos…