Buenos días, comenzando esta nueva semana, comparto este material que he ido elaborando para mi alumnado de Matemáticas 4ºESO, por si fuera de utilidad para tu trabajo en el aula o para compartir con tus alumnos.
En esta entrada comparto una actividad para practicar la asociación entre una representación mediante un diagrama de cinta y varias ecuaciones asociadas al mismo.
La actividad la elaboré hace bastante tiempo con Desmos. Hoy la recupero en esta entrada por si fuera de utilidad en tu aula.
Concreción curricular
· Competencias específicas: Conexiones intra-matemáticas (CE5) y Representación (CE7)
Graspable Math y Geogebra; aliadas extraordinarias para enseñar y aprender matemáticas en contextos presenciales discontinuos. 5 tareas resueltas en vídeos sobre funciones lineales, afines, paralelismo y ecuaciones de la recta, la cual comenzaba así:
Los lectores asiduos de este rincón virtual matemático conocen sobradamente mi predilección por estas dos poderosas herramientas digitales. En mi opinión, indispensables ambas para la enseñanza y el aprendizaje de la matemática en el siglo XXI, siendo especialmente útiles en los contextos de enseñanza-aprendizaje semipresencial y a distancia especialmente extendidos con motivo de la COVID-19.
Aprovecho estas líneas para invitarte a visitar las distintas publicaciones sobre propuestas didácticas para trabajar en el aula y los materiales que he compartido sobre ambas en los últimos años:
Pues bien, si juntamos ambas, el resultado no puede ser catalogado de otro modo que excelente.
Como muestra de ello comparto en esta entrada 5 tareas resueltas paso a paso, en otros tantos vídeos, con ayuda de Geogebra y Graspable Math.
Estos materiales los desarrollé para mis estudiantes de Matemáticas de 3º de ESO (14-15 años) para trabajar en modalidad online durante el cierre de los centros educativos españoles, periodo de la suspensión de la actividad docente presencial (marzo-junio 2020), con motivo de la COVID-19.
Espero te animes a usar los vídeos con tu alumnado si los consideras de utilidad
(…)
Puedes acceder al contenido completo pulsando más abajo:
Pues bien, esa alianza sigue dando frutos. Y muy buenos además. Ese es el motivo que me trae hoy a escribir estas líneas.
Como Geogebra Ambassador y como usuario habitual y elaborador de diverso material con Graspable Math, además de alpha tester de la herramienta con acceso a funcionalidades experimentales en fase de desarrollo es una gran alegría mostraros la herramienta Geogebra Math Practice.
Geogebra Math Practice, una herramienta para la práctica algebraica con ayuda de GeoGebra
GeoGebra Math Practice ayuda a los estudiantes en su trabajo paso a paso en la resolución de ejercicios de álgebra. Combina el Solver Engine interno de GeoGebra y la tecnología Graspable Math basada en investigaciones para proporcionar notación interactiva, sugerencias adaptativas y comentarios en tiempo real que permiten a los estudiantes explorar diferentes caminos en el proceso de resolución, ayudándoles a ganar en confianza, favoreciendo la fluidez de los procedimientos y la comprensión conceptual.
GeoGebra Math Practice es una colaboración entre GeoGebra y Graspable Math , y es de uso gratuito para profesores y estudiantes.
Animación interactiva. Ejemplo de resolución de ecuación con Geogebra Math Practice
Estas son las características clave de GeoGebra Math Practice :
Utiliza la notación dinámica de Graspable Math para manipular y resolver problemas algebraicos con gestos (tocar y arrastrar) y animaciones interactivas.
Obtén sugerencias visuales y conceptuales para cada uno de los pasos, proporcionadas por Solver Engine de GeoGebra.
Obtén comentarios instantáneos sobre cada paso.
Reescribe libremente el problema con el teclado matemático virtual de GeoGebra.
Practica problemas similares para profundizar en tu comprensión de las habilidades clave.
Tipos de ejercicios relacionados con el sentido algebraico que se pueden trabajar actualmente con Geogebra Math Practice (GMP).
GeoGebra Math Practice actualmente es capaz de ayudarte con ejercicios sobre:
El orden (jerarquía) de las operaciones
Operaciones aritméticas
Operaciones con fracciones
Operaciones con potencias
Expresiones algebraicas
Desarrollo (distribución) de expresiones algebraicas.
Simplificación de expresiones fraccionarias
Polinomios
Reescribir a forma estándar
Sumar y restar polinomios
División por monomios
Ecuaciones lineales
Ecuaciones lineales de 1 paso, 2 pasos y varios pasos
Resolver ecuaciones lineales con múltiples o ninguna solución.
También puede utilizar GeoGebra Math Practice con otros ejemplos y tipos de ejercicios pero es posible que no recibas sugerencias ni comentarios precisos. Durante los próximos meses se espera que sigan ampliando la funcionalidad y se puedan realizar más tipos de ejercicios.
En esta ocasión vamos a crear un mapa mental. Echemos un vistazo a su definición y alguna de sus características antes de continuar.
Un mapa mental es un diagrama usado para representar palabras, ideas, tareas, lecturas, dibujos, u otros conceptos ligados y dispuestos radicalmente a través de una palabra clave o de una idea central. Los mapas mentales son un método muy eficaz para extraer y memorizar información. Son una forma lógica y creativa de tomar notas, organizar, asociar y expresar ideas, que consiste en cartografiar sus reflexiones sobre un tema. Es representado por medio de dibujos imágenes, o puede no incluir estas y llevar colores para mejor representación del tema.
Un mapa mental es una imagen de distintos elementos, utilizados como puntos clave, que dan información específica de un tema en particular o de la ramificación de varios temas en relación con un punto central. Es también una manifestación gráfica del pensamiento radial donde de un núcleo central se irradian ramas en todas las direcciones cuando asociamos ideas. Es captar en un solo plano toda la información. Los mapas mentales son considerados como apuntes visuales para transmitir mejor el pensamiento, sintetizar conocimientos y lograr un aprendizaje significativo.
Dentro de los mapas mentales se pueden utilizar palabras claves, signos, símbolos, dibujos, códigos y abreviaturas. Con los mapas mentales se aprende a organizar y asociar las ideas. Para entender mejor qué es un mapa mental, imaginemos el plano de una ciudad. El centro de la urbe representa la idea principal; las principales avenidas que llevan al centro representan los pensamientos clave del proceso mental; las calles menores representan los pensamientos secundarios, etc.; las imágenes o formas especiales pueden representar monumentos o ideas especialmente importantes.
Un mapa mental se obtiene y se desarrolla alrededor de una palabra, frase o texto, situado en el centro, para luego derivar ideas, palabras y conceptos, mediante líneas que se trazan hacia alrededor del título; el sentido de estas líneas puede ser horario o antihorario; es un recurso muy efectivo para facilitar el estudio académico. El gran difusor de la idea del mapa mental fue Tony Buzan en 1974, con su libro Use Your Head, donde promueve la nemotecnia y el uso de mapas mentales como herramientas del aprendizaje.
Si consideras interesante este ejemplo puedes suscribirte al blog para estar informado por correo electrónico de las nuevas publicaciones o a mi canal de Youtube donde iré publicando todo aquello que me sea posible compartir para sacarle partido a la IA en el aula.
Este ejemplo animación interactiva en PDF como ayuda para la comprensión de un concepto matemático, en este caso la pendiente de la recta, forma parte de un producto más complejo.
Como he indicado en respuesta a un comentario al vídeo en Youtube, además de la interacción con ChatGPT, requiere conocimiento de LaTeX, algo avanzado al hacer uso de librerías específicas, y compilación para la generación del PDF final con la animación. Sería un poco largo de describir. Si saco algo de tiempo documentaré el proceso completo.
Si consideras interesante este ejemplo puedes suscribirte al blog para estar informado por correo electrónico de las nuevas publicaciones o a mi canal de Youtube donde iré publicando todo aquello que me sea posible compartir para sacarle partido a la IA en el aula.
Continuando la serie de vídeos relativos al uso didáctico de la IA, en esta nueva entrada comparto 2 vídeos para trabajar saberes básicos relacionados con el sentido algebraico. Ambos guardan una muy estrecha relación con las expresiones algebraicas, concretamente con las identidades notables.
Ejercicio clásico de matemáticas relacionado con el desarrollo de expresiones algebraicas, conteniendo identidades notables. Aprendizaje autorregulado con ayuda de la Inteligencia Artificial.
Los lectores habituales de este blog son conocedores de mi pasión por la generación de contenidos educativos digitales. En este blog hay algunos de centenares de ellos.
He tenido la suerte, además, de participar en algunos de los grandes proyectos institucionales de Recursos Educativos Abiertos de nuestro país. Concretamente, en los últimos años, como:
Además de ello, en un campo, no ya emergente, sino de plena actualidad, como es el de la Inteligencia Artificial, he podido vivir de primera mano experiencias formativas de gran nivel, entre ellas mi participación en el
Proyecto Fostering Artificial Intelligence at Schools (FAIaS)
Una nueva era en la creación de contenidos digitales educativos de la mano de ChatGPT y eXeLearning
Pues bien, aprovechando el conocimiento en dichos ámbitos, se me ha ocurrido combinar ambos:
Recursos Educativos Abiertos, creación de contenido digital con la herramienta eXeLearning,
+
Inteligencia Artificial Generativa de OpenAI, ChatGPT, y más concretamente uno de mis asistentes GPT.
El resultado de esta fusión se puede comprobar en el siguiente vídeo, en el que muestro el proceso de creación de contenidos en eXeLearning, previa sencilla supervisión del contenido devuelto por mi asistente GPT. Creo que serán únicamente las primeras fusiones entre ambas tecnologías, ya que creo que mis asistentes y yo nos llevaremos bien y formaremos un gran equipo.
Los lectores de este blog conocen bien mi predilección por vincular lengua y matemáticas. Ello me llevó hace más de una década a bautizarla. Es decir, a buscar un término, un palabro, con el que poder categorizarlas. Le llamé LingMáTICas.
Así, definí LingMáTICas como el conjunto de propuestas didácticas, contextos de aprendizaje, encaminados a fortalecer la competencia lingüística, en todos sus ámbitos, desde el aula de matemáticas, con ayuda de la tecnología (TIC).
Con la idea de aportar mi granito de arena, para ayudar en la medida de lo posible, quiero compartir en esta entrada un trabajo de investigación-acción que llevé a cabo hace unos años por si fuera de utilidad.
El mismo fue presentado en el Congreso Iberoamericano «La educación ante el nuevo entorno digital», a finales del 2019. Este Congreso fue un espacio donde se pretendía dar a conocer proyectos o experiencias relacionadas con cualquier área temática, pero con el denominador común del entorno digital en el que ya estamos inmersos.
Título Decimales y fracciones entre textos e imágenes: una experiencia de aprendizaje basada en la elaboración de cómics digitales.
Autoría
Blanca Arteaga-Martínez blanca.arteaga@urjc.es
Prof.ª Ayudante Doctora – Universidad Rey Juan Carlos
Resumen
Esta investigación-acción tiene como objetivo la construcción de cómics matemáticos para facilitar el aprendizaje de fracciones y decimales. La justificación del uso del cómic radica en la motivación de los estudiantes por el uso de información visual, que al combinarla con el texto puede dar lugar a elementos de desarrollo de habilidades, creatividad y la lectura de contenido (Urbani, 1978, citado en Toh, 2009). El soporte tecnológico se sostiene en una de las dimensiones de la competencia digital (Marqués, 2009), la dimensión del aprendizaje, expresada como transformación del contenido en adquisición del conocimiento. Además, el cómic se considera una herramienta con potencial para el aprendizaje de las matemáticas, por sus capacidades creativas y visuales (Cleaver, 2008) así como una posibilidad de mejora en la alfabetización de los estudiantes (Tilley, 2008).
La investigación describe el proceso y resultados de una experiencia en el tercero de Enseñanza Secundaria Obligatoria, en Matemáticas orientadas a las enseñanzas académicas. El contenido a trabajar venía delimitado por el criterio de evaluación “utilizar las propiedades de los números racionales para operarlos, utilizando la forma de cálculo y notación adecuada, para resolver problemas de la vida cotidiana, y presentando los resultados con la precisión requerida” (RD. 1105/2014, p. 391).
Nota:
En esa fecha estaba en vigor el currículo LOMCE por lo que es evidente que habría que hacer la traslación al currículo actual LOMLOE, RD 217/2022 – Decreto 102/203 de 9 de mayo – Orden 30 de mayo 2023 Currículo Secundaria Andalucía, aunque no es excesivamente complicado. De manera clara tiene vinculación con el Sentido numérico (en lo relativo a saberes básicos) y con los Criterios de Evaluación correspondientes de las Competencias Específicas relativas a la resolución de problemas [RESPRO] y a la comunicación y representación [COMREP] Y socioemocionales [SOCAFE].
Los estudiantes construyen un cómic, utilizando una herramienta digital. Para el análisis de los resultados del conocimiento matemático expuesto se definen categorías que facilitan la identificación de cumplimiento de los estándares de aprendizaje. Estas categorías se construyen sustentadas en la investigación previa para el conocimiento matemático, desde la enseñanza y del aprendizaje de los números racionales. Las categorías que se utilizan son: el sentido dado a los algoritmos según su significado (que incluye la forma de utilizar los algoritmos y la resolución), la tipología del contexto que se utiliza para situar el objeto matemático, el rigor del lenguaje matemático, cómo se presentan los números (en forma decimal o fracción), y la reflexión final con los datos y resultados expuestos.
Los resultados muestran distintos contextos que agrupamos como realistas y ficticios, donde estos últimos dan lugar a aquellos que dan sentido al objeto matemático y los que resultan forzados para introducir tanto el número como el algoritmo utilizado. Se utilizan distintos algoritmos, basados en suma y multiplicación; los cálculos implican usos como porcentaje, cálculo de las partes de un todo y equivalencia. En aquellas tareas que implican uso de algoritmos, los números base son fracciones en lugar de decimales. Encontramos tareas que finalizan de una manera reflexiva agrupando todos los datos utilizados a modo de recopilatorio para dar lugar a un ejercicio, y su solución. No aparecen demasiadas conversiones entre fracciones, y cuando lo hacen son para dar lugar a números que faciliten la interpretación de las partes de un todo. Los errores que aparecen surgen de cálculos encadenados entre fracciones, no siendo explícito si el cálculo es desde el paso anterior o desde el inicio, o cuando resultados dan lugar a números decimales y el contexto hubiese necesitado un número natural para su interpretación.