digcompedu

Inteligencia Artificial de ChatGPT para docentes. Propuestas de ejercicios de identidades notables y aprendizaje autorregulado simplificación expresiones algebraicas

Comparte MatemáTICas: 1,1,2,3,5,8,13,...

Continuando la serie de vídeos relativos al uso didáctico de la IA, en esta nueva entrada comparto 2 vídeos para trabajar saberes básicos relacionados con el sentido algebraico. Ambos guardan una muy estrecha relación con las expresiones algebraicas, concretamente con las identidades notables.

Ejercicio clásico de matemáticas relacionado con el desarrollo de expresiones algebraicas, conteniendo identidades notables. Aprendizaje autorregulado con ayuda de la Inteligencia Artificial.

Inteligencia Artificial de ChatGPT para docentes. Propuesta de ejercicios de identidades notables

Seguiremos informando de nuestros avances 🙂

Ya me contarás qué te han parecido estas propuestas de aprendizaje y enseñanza apoyadas en la Inteligencia Artificial Generativa de ChatGPT.

Seguimos…

Más contenido matemático en redes sociales

Comparte MatemáTICas: 1,1,2,3,5,8,13,...

Una nueva era en la creación de contenidos digitales educativos de la mano de la Inteligencia Artificial de ChatGPT y eXeLearning

Comparte MatemáTICas: 1,1,2,3,5,8,13,...

Los lectores habituales de este blog son conocedores de mi pasión por la generación de contenidos educativos digitales. En este blog hay algunos de centenares de ellos. 

He tenido la suerte, además, de participar en algunos de los grandes proyectos institucionales de Recursos Educativos Abiertos de nuestro país. Concretamente, en los últimos años, como:

  • Elaborador del Proyecto EDIA. ABP de Matemáticas

  • Elaborador del Proyecto Situaciones de Aprendizaje MEFP INTEF. Creamos nuestro Círculo Matemático Computacional

 

 

 

 

 

 

 

 

https://www.juntadeandalucia.es/educacion/portals/web/transformacion-digital-educativa/rea/modelo-pedagogico-guia-tecnica

https://www.juntadeandalucia.es/educacion/portals/web/transformacion-digital-educativa/rea

Además de ello, en un campo, no ya emergente, sino de plena actualidad, como es el de la Inteligencia Artificial, he podido vivir de primera mano experiencias formativas de gran nivel, entre ellas mi participación en el

  • Proyecto Fostering Artificial Intelligence at Schools (FAIaS)

Una nueva era en la creación de contenidos digitales educativos de la mano de ChatGPT y eXeLearning

Pues bien, aprovechando el conocimiento en dichos ámbitos, se me ha ocurrido combinar ambos:

  • Recursos Educativos Abiertos, creación de contenido digital con la herramienta eXeLearning, 

+

  • Inteligencia Artificial Generativa de OpenAI, ChatGPT, y más concretamente uno de mis asistentes GPT.

El resultado de esta fusión se puede comprobar en el siguiente vídeo, en el que muestro el proceso de creación de contenidos en eXeLearning, previa sencilla supervisión del contenido devuelto por mi asistente GPT. Creo que serán únicamente las primeras fusiones entre ambas tecnologías, ya que creo que mis asistentes y yo nos llevaremos bien y formaremos un gran equipo.

Seguiremos informando de nuestros avances 🙂

 

Una nueva era en la creación de contenidos digitales educativos de la mano de ChatGPT y eXeLearning

Pulsa en el siguiente enlace para que puedas interactuar con mi asistente (a fecha 5/12/2023 se requiere disponer de cuenta ChatGPT Plus de pago).

Ya me contarás qué te ha parecido esta manera de generar contenidos digitales educativos interactivos en eXeLearning.

Seguimos…

Más contenido matemático en redes sociales

Comparte MatemáTICas: 1,1,2,3,5,8,13,...

Propuesta didáctica LingMáTICas. Fortaleciendo la competencia linguística: comunicación, representación y resolución de problemas matemáticos de decimales y fracciones elaborando cómics digitales

Comparte MatemáTICas: 1,1,2,3,5,8,13,...

Los lectores de este blog conocen bien mi predilección por vincular lengua y matemáticas. Ello me llevó hace más de una década a bautizarla. Es decir, a buscar un término, un palabro, con el que poder categorizarlas. Le llamé LingMáTICas.

Así, definí LingMáTICas como el conjunto de propuestas didácticas, contextos de aprendizaje, encaminados a fortalecer la competencia lingüística, en todos sus ámbitos, desde el aula de matemáticas, con ayuda de la tecnología (TIC).

Definición de LingMáTICas. Luis M. Iglesias

Son muchos los compañeros docentes que en estos momentos están inmersos en la elaboración del plan de trabajo para el tratamiento de la lectura en el aula de matemáticas en sus respectivos centros educativos, de manera especial en Andalucía, atendiendo a las INSTRUCCIONES DE 21 DE JUNIO DE 2023, DE LA VICECONSEJERÍA DE DESARROLLO EDUCATIVO Y FORMACIÓN PROFESIONAL, SOBRE EL TRATAMIENTO DE LA LECTURA PARA EL DESPLIEGUE DE LA COMPETENCIA EN COMUNICACIÓN LINGÜÍSTICA EN EDUCACIÓN PRIMARIA Y EDUCACIÓN SECUNDARIA OBLIGATORIA.

Con la idea de aportar mi granito de arena, para ayudar en la medida de lo posible, quiero compartir en esta entrada un trabajo de investigación-acción que llevé a cabo hace unos años por si fuera de utilidad. 

El mismo fue presentado en el Congreso Iberoamericano «La educación ante el nuevo entorno digital», a finales del 2019. Este Congreso fue un espacio donde se pretendía dar a conocer proyectos o experiencias relacionadas con cualquier área temática, pero con el denominador común del entorno digital en el que ya estamos inmersos.

Título 
Decimales y fracciones entre textos e imágenes: una experiencia de aprendizaje basada en la elaboración de cómics digitales. 

Autoría 

Resumen 
Esta investigación-acción tiene como objetivo la construcción de cómics matemáticos para facilitar el aprendizaje de fracciones y decimales. La justificación del uso del cómic radica en la motivación de los estudiantes por el uso de información visual, que al combinarla con el texto puede dar lugar a elementos de desarrollo de habilidades, creatividad y la lectura de contenido (Urbani, 1978, citado en Toh, 2009).  El soporte tecnológico se sostiene en una de las dimensiones de la competencia digital (Marqués, 2009), la dimensión del aprendizaje, expresada como transformación del contenido en adquisición del conocimiento. Además, el cómic se considera una herramienta con potencial para el aprendizaje de las matemáticas, por sus capacidades creativas y visuales (Cleaver, 2008) así como una posibilidad de mejora en la alfabetización de los estudiantes (Tilley, 2008).  

La investigación describe el proceso y resultados de una experiencia en el tercero de Enseñanza Secundaria Obligatoria, en Matemáticas orientadas a las enseñanzas académicas. El contenido a trabajar venía delimitado por el criterio de evaluación “utilizar las propiedades de los números racionales para operarlos, utilizando la forma de cálculo y notación adecuada, para resolver problemas de la vida cotidiana, y presentando los resultados con la precisión requerida” (RD. 1105/2014, p. 391). 

Nota:

En esa fecha estaba en vigor el currículo LOMCE por lo que es evidente que habría que hacer la traslación al currículo actual LOMLOE, RD 217/2022 – Decreto 102/203 de 9 de mayo – Orden 30 de mayo 2023 Currículo Secundaria Andalucía, aunque no es excesivamente complicado. De manera clara tiene vinculación con el Sentido numérico (en lo relativo a saberes básicos) y con los Criterios de Evaluación correspondientes de las Competencias Específicas relativas a la resolución de problemas [RESPRO] y a la comunicación y representación [COMREP] Y socioemocionales [SOCAFE].

Los estudiantes construyen un cómic, utilizando una herramienta digital. Para el análisis de los resultados del conocimiento matemático expuesto se definen categorías que facilitan la identificación de cumplimiento de los estándares de aprendizaje. Estas categorías se construyen sustentadas en la investigación previa para el conocimiento matemático, desde la enseñanza y del aprendizaje de los números racionales. Las categorías que se utilizan son: el sentido dado a los algoritmos según su significado (que incluye la forma de utilizar los algoritmos y la resolución), la tipología del contexto que se utiliza para situar el objeto matemático, el rigor del lenguaje matemático, cómo se presentan los números (en forma decimal o fracción), y la reflexión final con los datos y resultados expuestos. 

Los resultados muestran distintos contextos que agrupamos como realistas y ficticios, donde estos últimos dan lugar a aquellos que dan sentido al objeto matemático y los que resultan forzados para introducir tanto el número como el algoritmo utilizado. Se utilizan distintos algoritmos, basados en suma y multiplicación; los cálculos implican usos como porcentaje, cálculo de las partes de un todo y equivalencia. En aquellas tareas que implican uso de algoritmos, los números base son fracciones en lugar de decimales. Encontramos tareas que finalizan de una manera reflexiva agrupando todos los datos utilizados a modo de recopilatorio para dar lugar a un ejercicio, y su solución. No aparecen demasiadas conversiones entre fracciones, y cuando lo hacen son para dar lugar a números que faciliten la interpretación de las partes de un todo. Los errores que aparecen surgen de cálculos encadenados entre fracciones, no siendo explícito si el cálculo es desde el paso anterior o desde el inicio, o cuando resultados dan lugar a números decimales y el contexto hubiese necesitado un número natural para su interpretación. 

Descarga del material

 

DESCARGAR: LingMáTICas. Comunicación, representación y resolución de problemas matemáticos mediante cómics digitales

Más contenido matemático en redes sociales

Comparte MatemáTICas: 1,1,2,3,5,8,13,...

Álgebra de sucesos con Desmos. Sentido Estocástico. Animación

Comparte MatemáTICas: 1,1,2,3,5,8,13,...

En esta entrada comparto un gif animado sobre el álgebra de sucesos, obtenido a partir de un applet interactivo que elaboré hace algún tiempo con Desmos.

Concreción curricular

· Competencias específicas: Conexiones intra-matemáticas (CE5) y Representación (CE7)

· Saberes Básicos: Sentido estocástico 

Descripción

Animación

Álgebra de sucesos. Realizado con Demos por Luis M. Iglesias bajo licencia CC BY SA 4.0

Álgebra de sucesos. Realizado con Desmos por Luis M. Iglesias bajo licencia CC BY SA 4.0

Más contenido matemático en redes sociales

Comparte MatemáTICas: 1,1,2,3,5,8,13,...

Ejercicios interactivos para trabajar el sentido algebraico. Producto de polinomios usando el modelo de áreas elaborado con Desmos

Comparte MatemáTICas: 1,1,2,3,5,8,13,...

En esta entrada comparto una batería compuesta por 10 ejercicios interactivos, elaborados con Desmos, para trabajar el producto de polinomios (binomios, igualdades notables y polinomios hasta grado 4) usando el modelo de áreas.

Espero que resulten de utilidad y le saques mucho partido. Déjame tu comentario, ¡tu opinión me interesa! 😉

Concreción curricular

· Competencias específicas: Conexiones intra-matemáticas (CE5) y Representación (CE7)

· Saberes Básicos: Expresiones algebraicas (sentido algebraico) – Área de figuras planas rectángulos (sentido de la medida y sentido espacial)

Descripción

Ejercicios de práctica de la propiedad distributiva de expresiones algebraicas. Producto de polinomios apoyado en un modelo gráfico de áreas.

  • Producto de binomios (Ej1 y Ej2)
  • Producto de binomios. Identidades notables (Ej3, Ej4 y Ej5)
  • Producto de polinomios (Ej6, Ej7, Ej8, Ej9 y Ej10)

Obra derivada elaborada por Luis Miguel Iglesias Albarrán · MatemáTICas: 1,1,2,3,5,8,13,… a partir de la obra original de Daniel Wekselgreene. Traducido al español, modificado y generados nuevos ejercicios.

Demo

Acceso a las actividades Desmos

Pulsar en Continuar sin iniciar sesión, introducir nombre y comenzar…

Pulsar para acceder a los ejercicios de práctica en Desmos

¿Cómo usar este recurso? Se puede acceder a https://student.desmos.com/join/bhwa7j?lang=es y proyectar en clase o compartir el enlace con los estudiantes, por correo electrónico u otro servicio de mensajería, enlazando desde una plataforma educativa o anotándolo en la pizarra.

Más contenido matemático en redes sociales

Comparte MatemáTICas: 1,1,2,3,5,8,13,...

(Vídeo) Participación en Mesa Redonda ‘Las redes sociales digitales y la formación continua de los docentes: perspectiva institucional’ en el I Congreso Internacional Online sobre Redes Sociales y Formación del Profesorado

Comparte MatemáTICas: 1,1,2,3,5,8,13,...

La semana pasada se celebró el I Congreso Internacional Online sobre Redes Sociales y Formación del Profesorado. Un congreso virtual en el que han participado ponentes internacionales y nacionales, organizado por la Universidad de Sevilla @congreso_redes, que ha contado con la participación de unos 250 asistentes de 15 países.

Para mí ha sido todo un honor haber sido invitado a participar en la Mesa Redonda: «Las redes sociales digitales y la formación continua de los docentes: perspectiva institucional» #redsocialyformacion, reflexionando sobre la importancia de las Redes Sociales #RRSS en el desarrollo profesional docente.

Aprovecho estas líneas para expresar mi agradecimiento a Mariano Real, Coordinador de la Mesa, a Carlos Marcelo Dr. de la Facultad de Educación de la Universidad de Sevilla, organizador del Congreso y a mis compañeros de la mesa, Manuel Martín, Jefe del Servicio de Planes y Programas Educativos de la Consejería de Desarrollo Educativo de la Junta de Andalucía y Beatriz Álvarez, asesora de Formación del Centro de Formación del Profesorado (CEP) de Sevilla y actualmente secretaria del CEP de Sevilla.

Comparto el vídeo de la grabación de la Mesa, esperando sea de utilidad.

Vídeo

Participantes (intervención)
🟪 Carlos Marcelo García (presentación)
Organización. Dr.  Facultad de Educación Universidad de Sevilla
🟦 Mariano Real Pérez (a partir de 02m 00s aprox.)
Asesor de Formación del CEP de Sevilla
🟩Manuel Martín González (a partir de 11m 20s aprox.)
Jefe del Servicio de Planes y Programas Educativos de la Consejería de Desarrollo Educativo de la Junta de Andalucía
🟨 Beatriz Álvarez Gutiérrez (a partir de 44m 10s aprox.)
Asesora de Formación del CEP de Sevilla y actualmente secretaria del CEP de Sevilla
🟪Luis Miguel Iglesias Albarrán (a partir de 58m 50s aprox.)
Director del Instituto de Enseñanza Secundaria «San Antonio» de Bollullos Par del Condado, en la provincia de Huelva

Imágenes

El pase de diapositivas requiere JavaScript.

 

Información sobre el Congreso

Las redes sociales se han convertido en una herramienta de comunicación para el profesorado. A través de ellas, cada vez más docentes tienen acceso a recursos, materiales, innovaciones, metodologías que pueden conocer y aplicar en sus aulas. También se están convirtiendo en una oportunidad para muchos docentes de desarrollar liderazgos informales que están reconociendo su conocimiento y experiencia docente.

La investigación sobre las redes sociales en la formación docente, tanto inicial como continua, ha comenzado a generar conocimiento principalmente descriptivo. Las investigaciones han confirmado que muchos docentes utilizan las redes sociales como una nueva vía de actualización. También se ha puesto de manifiesto cómo muchos docentes utilizan las redes para crear espacios de afinidad y colaboración.

En este I Congreso Internacional sobre Redes Sociales y Formación del Profesorado pretendemos ofrecer un espacio que permita compartir e intercambiar los resultados de investigaciones que se vienen desarrollando, así como ser un punto de encuentro entre los investigadores de diferentes países para colaborar y dialogar.

A lo largo de estas tres jornadas se han desarrollado:

  • Conferencias plenarias a cargo de investigadores de reconocido prestigio en este ámbito del conocimiento.
  • Mesas redondas en las que participarán un máximo de cuatro personas para debatir sobre temáticas relacionadas con el congreso con espacio a los oyentes para realizar preguntas e intervenciones.
  • Comunicaciones sobre trabajos empíricos de investigación y experiencias en relación con la temática del congreso.

Este congreso se ha llevado a cabo con el apoyo de las siguientes instituciones:

Grupo IDEA. Universidad de Sevilla Ministerio de Ciencia e Innovación. Proyecto de I+D+i PGC2018-096474-B-I00, financiado/a por MCIN/ AEI/10.13039/501100011033/ “FEDER Una manera de hacer Europa”. Universidad de Sevilla
En la web del Congreso se puede acceder al programa completo y se irán subiendo las grabaciones de las distintas actividades desarrolladas.

Más contenido matemático en redes sociales

Comparte MatemáTICas: 1,1,2,3,5,8,13,...

MatemáTICas: 1,1,2,3,5,8,13… cumple 13 años en la red

Comparte MatemáTICas: 1,1,2,3,5,8,13,...

Hoy es un día especial para quien escribe ya que, tal día como hoy, hace 13 años (14 de marzo de 2009), en el hueco que gentilmente me cedieron los compañeros de Profeblog, escribía los primeros renglones de mi libro virtual matemático; MatemáTICas: 1,1,2,3,5,8,13,…  

Pastel de cumpleaños con vela rosa número 13 en backgraund azul prendido fuego por encendedor. vista de primer plano | Foto Premium

Fuente: Freepik

Lo bauticé con este nombre, en honor a una de las sucesiones más conocidas de la matemática, la sucesión de Fibonacci

File:Fibonacci sequence - starting with zero.jpg

File:Fibonacci blocks.svg

Fuente: Wikimedia commons

Llegó a este mundo cuando ya incluso anunciaban la muerte de los blogs. Ya veis que no hice mucho caso a tales rumores :-). Lo tenía claro. Necesitaba un espacio que complementara mis clases, un rincón que apostase de manera clara por la inclusión de la tecnología en la práctica educativa, en mis clases de matemáticas. Un lugar en la red donde centralizar los materiales didácticos que fuese elaborando para mis alumnos. Ese sitio, ese lugar, ese espacio debía de ser un blog, este blog.

Y claro, no podía ser de otra forma. Su fecha de lanzamiento, el día de Pi #díadePi o #Piday, por aquello del inglés, 3/14 (14 de marzo). Mi primer post, un modesto y tímido, Bienvenid@ . La 40ª Conferencia General de la UNESCO proclamó el 14 de marzo de cada año como el Día Internacional de las Matemáticas en noviembre de 2019 (40C/Resolución 30).

Por este motivo, hoy, la comunidad matemática mundial también está de celebración, aunque no podamos hacerlo como quisiéramos y nos gustaría. El mundo y especialmente Europa está viviendo días negros por la invasión de Ucrania a manos de Rusia. Si no tuvimos bastante con la COVID-19, la tragedia humanitaria causada por esta violación de las fronteras de un país y de los derechos humanos nos tiene bastante apenados y sonrojados, al ver día tras día a través de los medios de comunicación la barbarie que la especie humana pude llegar a cometer. Desde estas líneas, todo mi apoyo y fuerza al pueblo ucraniano.

Mucho ha llovido desde aquel 14/03/2009. El termino competencia digital había realizado su incursión junto al resto de Competencia Básicas de la LOE (Ley Orgánica de Educación, 2006). Los docentes que usábamos los blogs como medio para ampliar nuestra aula física, lo que hoy sería un entorno blended-learning, lo hacíamos a voluntad propia y éramos considerado una especie un tanto singular. Recuerdo aquella mesa de debate en el primer EABE (Encuentro Andaluz de Blogs Educativos) donde en la mesa de trabajo simultánea ya hablamos del reconocimiento de la competencia digital. ¡Qué cosas se nos ocurrían! 😉

13 años más tarde, dos nuevas leyes educativas LOMCE (2013) y LOMLOE (2020), celebro que Europa y España lo tengan claro, y con un buen marco de la Competencia Digital Docente elaborado por INTEF con colaboración de las comunidades, habrá un proceso certificador y acreditador de la competencia a través de actividades formativas alineadas con dicho marco, que se desencadenará en nuestro país en próximas fechas. La Educación de hoy día no se concibe sin Tecnología, y en Matemáticas son imprescindibles para Enseñar y para Aprender.

Iglesias-Albarrán, Luis M. Enseñanza y aprendizaje de las matemáticas en la era digital. Ambientes de aprendizaje mediados por TIC,SCOPEO MONOGRÁFICO Nº4: e-MatemáTICas,,4,41-80,2012,Universidad de Salamanca. Servicio de Innovación y Producción Digital

 

Desde aquel día, reconocimiento del ITE, ahora INTEF, como Buena Práctica 2.0 por la inclusión de las TIC en la práctica educativa,  muchas vivencias, reconocimientos en certámenes y otras muy buenas experiencias profesionales a través de las cuales he conocido, compartido y descubierto grandes compañeros/as de viaje, más de 500 entradas publicadas, multitud de materiales de elaboración propia o recopilados, material de conferencias, jornadas de trabajo en las que he participado, artículos publicados en revistas o reseñas de colaboraciones en libros, más de 6 millones de visitas,… hacen que hoy deba daros las GRACIAS, y confirmar que seguiré viniendo por aquí mientras tenga fuerzas, a compartir cada vez que tenga o sea capaz de encontrar la manera de hacer un hueco para escribir y publicar sobre Matemáticas (con Tecnología): MatemáTICas.

Para terminar os dejo con tres vídeos sobre Pi y dos poemas. Espero que os guste.

Vídeo: ¿Para qué sirve el número Pi? BBC Mundo

 

Vídeo: El número Pi Canal encuentro Adrián Paenza

Vídeo: Spock («Star Trek») desactiva una computadora malvada pidiéndole que calcule el último dígito de Pi :-). Fuente: Mathigon

 

Poema: El número Pi (Wislawa Szymborska, Premio Nobel de Literatura 1996). Fuente: Yosoytuprofe

El admirable número Pi
tres coma uno cuatro uno.
Las cifras que siguen son también preliminares
cinco nueve dos porque jamás acaba.
No puede abarcarlo seis cinco tres cinco la mirada,
ocho nueve ni el cálculo
siete nueve ni la imaginación,
ni siquiera tres dos tres ocho un chiste, es decir, una comparación
cuatro seis con cualquier otra cosa
dos seis cuatro tres de este mundo.

La serpiente más larga de la tierra suma equis metros y se acaba.
Y lo mismo las serpientes míticas aunque tardan más.
El séquito de dígitos del número Pi
llega al final de la página y no se detiene,
sigue, recorre la mesa, el aire,
una pared, una hoja, un nido de pájaros, las nubes, hasta llegar
directo al cielo,
perderse en la insondable hinchazón del cielo.
¡Qué breve la cola de un cometa, cual la de un ratón!
¡Qué endeble el rayo de un astro si se curva en la insignificancia
del espacio!

Mientras aquí dos tres quince trescientos diecinueve
mi número de teléfono la talla de tu camisa
el año mil novecientos sesenta y tres sexto piso
el número de habitantes sesenta y cinco céntimos
dos pulgadas de cintura una charada y un mensaje cifrado
que dice vuela mi ruiseñor y canta
y también se ruega guardar silencio,
y se extinguirán cielo y tierra,
pero el número Pi no, jamás,
seguirá su camino con su nada despreciable cinco
con su en absoluto vulgar ocho
con su ni por asomo postrero siete,
empujando, ¡ay!, empujando a durar
a la perezosa eternidad.

Poema: El número  π (A Pilar Bayer y A F Walter May). Fuente: Repoelas


3

 

1

 

4

 

1

5

 

 

9

 

 

 

 

2

 

6

 

 

5

 

 

3

 

5

 

 

8

 

 

 

 

9

 

 

 

 

7

 

 

 

9

 

 

 

 

3

 

2

3

 

8

 

 

 

4

 

 

6

 

 

2

 

6

 

 

 

4

 

3

 

3

 

8

 

 

 

3

 

2

 

7

 

 

 

9

 

 

 

 

5

 

0

2

 

8

 

 

 

8

 

 

 

4

 

1

 

 

9

 

 

 

 

7

 

1

 

6

 

 

9

 

 

 

 

3

 

9

 

 

 

 

9

 

 

 

 

3

 

7

 

 

 

 

5

 

1

0

5

 

8

 

 

 

2

 

9

 

 

 

 

7

 

 

 

4

 

 

9

 

 

 

 

4

 

 

4

La longitud de la circunferencia,
la longitud del diámetro:
¡qué fuerza su cociente,

siempre el mismo, constante, eterno!,

tres coma catorce,
tres coma catorce dieciséis,
primeros balbuceos de un río infinito
de decimales sin período, siempre nuevos,

único e infinito, único y diverso,

tres coma catorce,
el recuerdo escolar de tantos cálculos,
tres coma catorce dieciséis,
el recuerdo de números en clave,
como barcos en un puerto,

humeantes, a punto de partir
río abajo, mientras el agua fluye
hecha números y caricia,
y el lomo de los cocodrilos de las preguntas
que van haciendo los matemáticos
anuncia ya todo tipo de peligros:
es fácil que una de ellas os pille
en sus mandíbulas plagadas de agudezas
y os arranque años de vida con un problema,

el área del círculo
Dividida por el cuadrado del radio

seductor, desafiante,
muy difícil de resolver,
pero tan atractivo que ni siquiera os déis cuenta
de que estáis quemando en él la vida,
de tan adentro como os ha entrado
aquella pregunta que tan pocos pueden comprender,

y los cinco sentidos se ponen al acecho
de algo que desborda los sentidos,
de las extrañas propiedades de un número
llamado irracional y que desborda la razón,
pero que está en el fondo de la razón del universo.

El primer problema: calcularlo,
obtener más y más decimales,
escalar un monte de decimales,

penetrando cada vez más en un mundo
que ya no pertenece al universo de la medida
–si medís las longitudes
de circunferencias reales, de diámetros reales,
y obtenéis su cociente,

sólo hallaréis dos decimales, tres decimales,
quizás cuatro decimales del número ?
(lo que de él sabían los egipcios):
los otros quedarán más allá
de los límites de la precisión de la medida-;
una definición, pues, que parece tan simple,
–un cociente de dos longitudes que estáis viendo
dibujadas en el papel–

y lleva, en cambio, a un desbordamiento de decimales.
¿Y cómo han calculado tantos decimales?
Durante más de dos mil quinientos años,
los que se atrevieron a embarcarse en la aventura,
siguiendo los pasos del gran Arquímedes,
inscribían polígonos en un círculo,
decágonos, dodecágonos, pentadecágonos,
polígonos de más y más lados,
y calculaban su perímetro

y lo dividían por el diámetro del círculo circunscrito;
naturalmente, cuanto más lados,
más se aproxima el polígono a la circunferencia
y más precisión se consigue en los decimales,
pero también encontraban
más y más dificultades;
parece duro, lo sé,

parece árido, lo sé,
pero también sé ver los atractivos
de navegar por un río en una selva espesa,
sin saber cómo será su curso un poco más allá,
ahora lento –decimales pequeños–,
ahora rápido –decimales grandes–,
siempre fluyente pero siempre impredictible:
¿cuál será el siguiente decimal?
¿Valdrá dos?, ¿valdrá cinco?, ¿valdrá nueve?

no hay manera de saberlo,
salvo que hagáis el cálculo;
¿cuál será el valor del decimal quinquagésimo?

el área de la esfera
dividida por cuatro veces el cuadrado del radio,

no hay otra manera de saberlo
que hacer todos y cada uno de los cálculos
que conducen hasta este decimal,

es decir, calcular todos los decimales anteriores
sin saltarse ni uno
–como en el tiempo de nuestra vida:
no hay otra manera de saber
lo que pasará dentro de un año
que vivir día a día todo el año,
hora a hora, minuto a minuto todo el año,
un tiempo, pues, diferente del tiempo de los astros,

predictible a largo término.
Pero sigamos con los decimales del número ?:
el método de los polígonos se hace largo y fatigoso:
¿habría manera de hallar un camino más rápido?

John Wallis, hacia mil seiscientos ochenta,
encuentra (en Oxford) que ? puede ser expresado
-tomad nota-
como el doble del producto de los cuadrados
de todos los números pares
dividido por el producto de los cuadrados

el volumen de la esfera
dividido por cuatro tercios del cubo de su radio,

de todos los números impares;
parece misterioso, lo sé,
no es evidente, ni fácil de demostrar,
pero es un salto, ¿no lo véis?:
hemos pasado, por primera vez en dos mil años,
de la geometría a la aritmética,

vemos el número ? con una luz diferente,
nos cuesta reconocer en este cociente
de productos de números
aquel cociente de longitudes inmediatas,

tan directamente visibles y sensibles,
y ahora nos parece arisco y misterioso,
pero su cálculo se ha hecho más fácil,

más y más decimales;
el proceso se acelera todavía más
cuando se hallan otras formas aritméticas

de escribir el número π, :
como suma de potencias,
como suma de inversos de potencias,
como raíz de sumas de inversos de potencias…
Pero se necesita, para eso,
afinar los instrumentos de las matemáticas,
inventar las derivadas,
inventar las integrales

–¿inventar o descubrir?:
observad que son conceptos diferentes
que suponen, también, ideas muy diversas

dos veces el producto de los cuadrados de todos los pares
dividido por el producto de los cuadrados de todos los impares

sobre qué son los números y la mente–,
inventar series de Taylor,
inventar series de Fourier,
inventar muchos otros procedimientos
que no quiero mencionar para evitar
que este escrito deje de ser lo que quiero:
un poema, en cierta forma, y no una lección

de matemáticas o historia
–por eso no hablo de otras propiedades
del número π, como la transcendencia,
ni doy ningún detalle de lo que digo.
No hablo de fórmulas concretas,
sino de emociones que he sentido,
y que antes que yo han sentido muchos otros,
y que sentirán muchos otros cuando yo ya no esté,
emociones de belleza y de vértigo

de viaje y de aventura,
de esfuerzo, de derrota, de victoria,
de rebeldía, de perseverancia,
de fusión con el mundo y de lejanía del mundo,
que algún día también sentiréis vosotros

el área de la elipse,
dividida por el producto de sus ejes,

si pensáis, con detalle, en este número
o en otros números que le son familiares
–la raíz cuadrada de dos, por ejemplo,
es decir, el cociente de la diagonal
y el lado de un cuadrado,
cociente irracional
que amargó la vejez de Pitágoras,
quien había enseñado que el mundo

estaba hecho de números puramente racionales
–pero ¡qué ironía, que dos formas,
el círculo y el cuadrado, que encontramos por doquier,
rehúsen expresarse en estos números!.
Pero podéis preguntaros otras cosas
que cuál será el siguiente decimal:
con los ordenadores, el proceso se ha acelerado
enormemente y conocemos ya

miles de decimales,
en lugar de los quinientos a que se había llegado
con el ingenio y las fuerzas estrictamente humanas;
así, pues, suponed que ya tenemos

miles de decimales,

todos ellos irrelevantes a efectos prácticos,
salvo los cinco primeros o, como máximo,
de los quince o veinte primeros, hilando fino.
Os podéis preguntar por la abundancia
relativa de las diversas cifras:
la del uno, la del dos, la del tres, la del cuatro,
la del cinco, la del seis, la del siete, la del ocho,
la del nueve, la del cero.
Pues bien: se comprueba –pero mucho antes

de que esto hubiera sido comprobado ya lo había demostrado
Borel y otros matemáticos–
que la abundancia relativa de las diversas cifras
es la misma,
que la abundancia relativa de todos los grupos de dos cifras
–quince, veintitrés, noventa y cinco, por ejemplo–
es la misma

que la abundancia relativa de todos los grupos de tres cifras

–ciento veintiuno, quinientos veintitrés, pongamos por caso-
es la misma,
y así sucesivamente para grupos
de más y más cifras;
en otras palabras: es seguro
que en los decimales de π, encontraréis la fecha

de vuestro nacimiento
(23-10-1953, en mi caso,
o bien 31-4-1592, si nos fijamos
en las siete primeras cifras de pi)
y también la fecha de vuestra muerte
(que no sabréis reconocer,
como en mi caso),
y vuestro número de teléfono;
más aún: si designamos las letras mediante números

–1 la A, 2 la B, 3 la C, 4 la D
y así sucesivamente–
sabed desde ahora que vuestro nombre está escrito

en los decimales del número π, ,
y que en algún lugar del número π, podéis hallar,
juntos, vuestro nombre y el de vuestro amor
y el nombre de vuestros hijos,
y las fechas del nacimiento y de la muerte
de cada uno de vosotros
Es vertiginoso, ciertamente, pero he de decir
que al lado de vuestro nombre también está escrito
el nombre de cualquier hombre o mujer

que hayan existido o que nunca existirán:
es, pues, vertiginoso y fútil:
está toda vuestra historia
pero también todas las otras posibles historias
que habríais podido vivir,
todos los otros amores
que hubierais podido tener,
de manera que lo dice todo y nada,
como algunos oráculos antiguos,

o como pasa a menudo cuando se habla demasiado.
Si miráis el número π, después de haber leído
este poema, os parecerá, quizás, vertiginoso,

como un pozo sin fondo, como un infinito
que se despliega ilimitadamente delante vuestro,
pero moriréis antes de haber podido leer
una mínima parte de sus decimales.
En el número π, hay el reposo y el movimiento
(como en el círculo),
la eternidad y el tiempo

(como en Dios),
la finitud y la infinidad
(como en el universo),
la armonía y el caos
(como en el mundo):

una definición breve y precisa,

y una inacabable sucesión de decimales
que no repiten su orden en ningún período.
Pero hay casos aún más inquietantes:
números que no es posible definir,
ristras infinitas de decimales

colocados al azar, al puro azar,
números, pues, que nunca podréis reducir
a una definición breve y concisa,
como π, o raíz de dos,
sino números que son movimiento sin reposo,
caos sin armonía, tiempo sin eternidad,
números que ni tan sólo podemos pronunciar,
números que nos recuerdan que el mundo es inefable,

la longitud de la circunferencia
dividida por dos veces el radio

y por eso conviene que, de vez en cuando,
la poesía hable de esta clase de números
que comparten con ella los límites del lenguaje,
y quien sabe si del mundo,
tal como los números hablan en ella
mediante los acentos, las sílabas, las estrofas.
O quizás son números que no pueden existir
si es que el mundo, en el fondo, es palabra
–no nuestra, claro está, sino de un Dios

que hubiera querido hacerse palabra a la medida
de nuestra limitada capacidad de escucha–,
pero esto nos conduciría a otros derroteros
–los de Dios y de su presencia
en el mundo y en nosotros–
que convendría no esquivar como lo hacemos,
tan desdeñosamente, en estos tiempos.

Pero me detengo aquí
y doy por acabado este poema
–de hecho, inacabado y discursivo–,
sabiendo, empero, que el número π, sigue,

caudaloso como todos los ríos a un tiempo,
con más cifras que gotas el Nilo o el Ganges,
el Volga o el Amazonas,
con más cifras que granos de arena
hay en todas las playas de la Tierra,
con más cifras que átomos hay
en todos los planetas del sistema solar,
y rehusando siempre un orden claro y repetitivo,
como un río espumoso y turbulento, infinito,

pero también lento, sutil, discreto,
modesto en su apariencia
pero con más propiedades que oro hay
en las minas del mundo,

o hasta que Dios se canse de él y diga basta,
y haga terminar el universo por la fatiga
de tener que soportar números como éste,
el número π.

(GRACIAS)^∞

Más contenido matemático en redes sociales

Comparte MatemáTICas: 1,1,2,3,5,8,13,...

Aprovechamiento de bancos de Recursos Educativos Abiertos (REA). Conversión de SCORM a .elp con eXeLearning

Comparte MatemáTICas: 1,1,2,3,5,8,13,...

En post anteriores hemos tratado el concepto de Transformación Digital Educativa (TDE) con Recursos Educativos Abiertos (REA). Bancos de REA institucionales de calidad.

En esta entrada comparto vídeo describiendo el proceso de descarga de un recurso del excelente repositorio CREA Andalucía y obtención de fuente .elp (eXe Learning Project) a partir de él.

Pasos
  1. Acceso a CREA Andalucía
  2. Localización y selección del REA a descargar
  3. Descarga del REA en formato SCORM 2004 desde el nodo andaluz de Agrega (Agrega Andalucía)
  4. Apertura del fichero .zip (descargado en el paso 3) en eXeLearning
  5. Modificación en eXeLearning
  6. Guardado como fichero fuente en formato .elp (eXe Learning Project)
  7. Ejemplo de exportación en formato carpeta autocontenida (para trabajar con el REA en pendrive, subir a un repositorio, trabajar en local en un ordenador…)

Vídeo

Comparte MatemáTICas: 1,1,2,3,5,8,13,...

Ponencia sobre Recursos Educativos Abiertos (REA) en el Congreso Internacional sobre Educación, Investigación y Virtualidad – Universidad Nacional de Asunción de Paraguay

Comparte MatemáTICas: 1,1,2,3,5,8,13,...

La Dirección de Investigación y la Carrera de Ciencias de la Educación de la Facultad de Filosofía de la Universidad Nacional de Asunción (FFI-UNA) – Paraguay, casa central y filiales, invitan a participar en el Congreso Internacional Virtual sobre Educación, Investigación y Virtualidad 2020, que contará con la participación de expositores nacionales e internacionales.

La actividad se está desarrollando desde ayer, lunes 23, hasta el sábado, 28 de noviembre de 2020, de 18:00 a 20:30 h (hora de Asunción), con una amplia participación de colegas de distintos países del contexto latinoamericano. Los expositores del Congreso proceden de: Argentina, Brasil, Colombia, España, Paraguay y Uruguay.

La transmisión se está llevando a cabo a través del Facebook Live de la página de la Dirección de Investigación de la Facultad de Filosofía UNA: https://www.facebook.com/investigacionfiluna.

El Congreso brinda una oportunidad excelente para seguir aprendiendo y compartiendo experiencias sobre la docencia, investigación y gestión educativa en tiempos de pandemia en el contexto latinoamericano que, sin duda alguna, redundará en la mejora de la Educación en nuestro entorno.

Aprovecho estas líneas para expresar mi agradecimiento al Dr. Pedro Caballero y al Mg. Felipe Villalba, Director de Investigación y Profesor de la de la FFI-UNA, respectivamente, por la invitación a participar como ponente en este importante Congreso Internacional. En igual medida quiero expresar mi felicitación a la Universidad Nacional de Asunción (UNA) por el diseño y la impecable organización de este evento, tan necesario en el tiempo tan complejo que nos ha tocado vivir con motivo de la COVID-19.

Mi participación será el próximo jueves, y en ella trataré de aportar mi visión sobre la importancia de los Recursos Educativos Abiertos para la inclusión educativa y la igualdad de oportunidades, en tiempos de pandemia.

¡Los esperamos!

Programa del Congreso sobre Educación, Investigación y Virtualidad 2020

Grabación de la Jornada (26 de noviembre de 2020)

Enlace a la grabación (Desde 59′ hasta 1h 48′ y cierre, últimos 30′)

 

Más contenido matemático en redes sociales

Comparte MatemáTICas: 1,1,2,3,5,8,13,...

Colaboración en el Magister en Dirección y Liderazgo de las Instituciones Educativas – Universidad Nacional Andrés Bello de Chile

Comparte MatemáTICas: 1,1,2,3,5,8,13,...

Agradecido y muy satisfecho de haber compartido experiencia y obtenido aprendizajes en el CONVERSATORIO INTERNACIONAL DE EDUCACIÓN “Perspectivas a futuro: aprendizajes desde la emergencia” organizado por la Universidad Andrés Bello de Chile, celebrado el pasado 4 de noviembre a través de la Plataforma Zoom, en el marco del Magister en Dirección y Liderazgo de las Instituciones Educativas – Universidad Nacional Andrés Bello de Chile.

Mi participación estuvo centrada en la organización y gestión escolar en tiempos de pandemia, poniendo el foco en el papel que juega la tecnología en este complejo presente educativo que atravesamos con motivo de la COVID-19. El título de mi ponencia fue: «Transformación Digital Educativa, elemento imprescindible (clave) en tiempos del coronavirus».

Estimo muy necesarios y enriquecedores estos encuentros internacionales para poner en común las experiencias educativas desde la óptica global de los distintos países durante la pandemia. Los directivos escolares en activo, y en formación, requieren espacios para compartir que den luz a las políticas públicas educativas y puedan materializarse en acciones para el complejo, exigente y vertiginoso presente.

[·] Moderadora:

· Desde Chile: Bárbara Matus

[·] Entrevistados internacionales:

· Desde México: Gisela Hurtado Villalón
· Desde Japón: Marcela Lamadrid
· Desde España: Joaquín Paredes y Luis Miguel Iglesias

El pase de diapositivas requiere JavaScript.

Mi agradecimiento a la Universidad Andrés Bello por la organización de tipo de acciones formativas y por contar conmigo, así como al Dr. Joaquín Paredes por la propuesta.

 

MÁS CONTENIDO MATEMÁTICO EN REDES SOCIALES

Comparte MatemáTICas: 1,1,2,3,5,8,13,...
WP2Social Auto Publish Powered By : XYZScripts.com